xref: /freebsd/sys/kern/uipc_sockbuf.c (revision f856af0466c076beef4ea9b15d088e1119a945b8)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_param.h"
36 
37 #include <sys/param.h>
38 #include <sys/aio.h> /* for aio_swake proto */
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mbuf.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/protosw.h>
45 #include <sys/resourcevar.h>
46 #include <sys/signalvar.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/sysctl.h>
50 
51 /*
52  * Function pointer set by the AIO routines so that the socket buffer code
53  * can call back into the AIO module if it is loaded.
54  */
55 void	(*aio_swake)(struct socket *, struct sockbuf *);
56 
57 /*
58  * Primitive routines for operating on socket buffers
59  */
60 
61 u_long	sb_max = SB_MAX;
62 static	u_long sb_max_adj =
63     SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
64 
65 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
66 
67 static void	sbdrop_internal(struct sockbuf *sb, int len);
68 static void	sbflush_internal(struct sockbuf *sb);
69 static void	sbrelease_internal(struct sockbuf *sb, struct socket *so);
70 
71 /*
72  * Socantsendmore indicates that no more data will be sent on the socket; it
73  * would normally be applied to a socket when the user informs the system
74  * that no more data is to be sent, by the protocol code (in case
75  * PRU_SHUTDOWN).  Socantrcvmore indicates that no more data will be
76  * received, and will normally be applied to the socket by a protocol when it
77  * detects that the peer will send no more data.  Data queued for reading in
78  * the socket may yet be read.
79  */
80 void
81 socantsendmore_locked(struct socket *so)
82 {
83 
84 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
85 
86 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
87 	sowwakeup_locked(so);
88 	mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
89 }
90 
91 void
92 socantsendmore(struct socket *so)
93 {
94 
95 	SOCKBUF_LOCK(&so->so_snd);
96 	socantsendmore_locked(so);
97 	mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
98 }
99 
100 void
101 socantrcvmore_locked(struct socket *so)
102 {
103 
104 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
105 
106 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
107 	sorwakeup_locked(so);
108 	mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
109 }
110 
111 void
112 socantrcvmore(struct socket *so)
113 {
114 
115 	SOCKBUF_LOCK(&so->so_rcv);
116 	socantrcvmore_locked(so);
117 	mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
118 }
119 
120 /*
121  * Wait for data to arrive at/drain from a socket buffer.
122  */
123 int
124 sbwait(struct sockbuf *sb)
125 {
126 
127 	SOCKBUF_LOCK_ASSERT(sb);
128 
129 	sb->sb_flags |= SB_WAIT;
130 	return (msleep(&sb->sb_cc, &sb->sb_mtx,
131 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
132 	    sb->sb_timeo));
133 }
134 
135 /*
136  * Lock a sockbuf already known to be locked; return any error returned from
137  * sleep (EINTR).
138  */
139 int
140 sb_lock(struct sockbuf *sb)
141 {
142 	int error;
143 
144 	SOCKBUF_LOCK_ASSERT(sb);
145 
146 	while (sb->sb_flags & SB_LOCK) {
147 		sb->sb_flags |= SB_WANT;
148 		error = msleep(&sb->sb_flags, &sb->sb_mtx,
149 		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
150 		    "sblock", 0);
151 		if (error)
152 			return (error);
153 	}
154 	sb->sb_flags |= SB_LOCK;
155 	return (0);
156 }
157 
158 /*
159  * Wakeup processes waiting on a socket buffer.  Do asynchronous notification
160  * via SIGIO if the socket has the SS_ASYNC flag set.
161  *
162  * Called with the socket buffer lock held; will release the lock by the end
163  * of the function.  This allows the caller to acquire the socket buffer lock
164  * while testing for the need for various sorts of wakeup and hold it through
165  * to the point where it's no longer required.  We currently hold the lock
166  * through calls out to other subsystems (with the exception of kqueue), and
167  * then release it to avoid lock order issues.  It's not clear that's
168  * correct.
169  */
170 void
171 sowakeup(struct socket *so, struct sockbuf *sb)
172 {
173 
174 	SOCKBUF_LOCK_ASSERT(sb);
175 
176 	selwakeuppri(&sb->sb_sel, PSOCK);
177 	sb->sb_flags &= ~SB_SEL;
178 	if (sb->sb_flags & SB_WAIT) {
179 		sb->sb_flags &= ~SB_WAIT;
180 		wakeup(&sb->sb_cc);
181 	}
182 	KNOTE_LOCKED(&sb->sb_sel.si_note, 0);
183 	SOCKBUF_UNLOCK(sb);
184 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
185 		pgsigio(&so->so_sigio, SIGIO, 0);
186 	if (sb->sb_flags & SB_UPCALL)
187 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
188 	if (sb->sb_flags & SB_AIO)
189 		aio_swake(so, sb);
190 	mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED);
191 }
192 
193 /*
194  * Socket buffer (struct sockbuf) utility routines.
195  *
196  * Each socket contains two socket buffers: one for sending data and one for
197  * receiving data.  Each buffer contains a queue of mbufs, information about
198  * the number of mbufs and amount of data in the queue, and other fields
199  * allowing select() statements and notification on data availability to be
200  * implemented.
201  *
202  * Data stored in a socket buffer is maintained as a list of records.  Each
203  * record is a list of mbufs chained together with the m_next field.  Records
204  * are chained together with the m_nextpkt field. The upper level routine
205  * soreceive() expects the following conventions to be observed when placing
206  * information in the receive buffer:
207  *
208  * 1. If the protocol requires each message be preceded by the sender's name,
209  *    then a record containing that name must be present before any
210  *    associated data (mbuf's must be of type MT_SONAME).
211  * 2. If the protocol supports the exchange of ``access rights'' (really just
212  *    additional data associated with the message), and there are ``rights''
213  *    to be received, then a record containing this data should be present
214  *    (mbuf's must be of type MT_RIGHTS).
215  * 3. If a name or rights record exists, then it must be followed by a data
216  *    record, perhaps of zero length.
217  *
218  * Before using a new socket structure it is first necessary to reserve
219  * buffer space to the socket, by calling sbreserve().  This should commit
220  * some of the available buffer space in the system buffer pool for the
221  * socket (currently, it does nothing but enforce limits).  The space should
222  * be released by calling sbrelease() when the socket is destroyed.
223  */
224 int
225 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
226 {
227 	struct thread *td = curthread;
228 
229 	SOCKBUF_LOCK(&so->so_snd);
230 	SOCKBUF_LOCK(&so->so_rcv);
231 	if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0)
232 		goto bad;
233 	if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0)
234 		goto bad2;
235 	if (so->so_rcv.sb_lowat == 0)
236 		so->so_rcv.sb_lowat = 1;
237 	if (so->so_snd.sb_lowat == 0)
238 		so->so_snd.sb_lowat = MCLBYTES;
239 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
240 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
241 	SOCKBUF_UNLOCK(&so->so_rcv);
242 	SOCKBUF_UNLOCK(&so->so_snd);
243 	return (0);
244 bad2:
245 	sbrelease_locked(&so->so_snd, so);
246 bad:
247 	SOCKBUF_UNLOCK(&so->so_rcv);
248 	SOCKBUF_UNLOCK(&so->so_snd);
249 	return (ENOBUFS);
250 }
251 
252 static int
253 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
254 {
255 	int error = 0;
256 	u_long tmp_sb_max = sb_max;
257 
258 	error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req);
259 	if (error || !req->newptr)
260 		return (error);
261 	if (tmp_sb_max < MSIZE + MCLBYTES)
262 		return (EINVAL);
263 	sb_max = tmp_sb_max;
264 	sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
265 	return (0);
266 }
267 
268 /*
269  * Allot mbufs to a sockbuf.  Attempt to scale mbmax so that mbcnt doesn't
270  * become limiting if buffering efficiency is near the normal case.
271  */
272 int
273 sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so,
274     struct thread *td)
275 {
276 	rlim_t sbsize_limit;
277 
278 	SOCKBUF_LOCK_ASSERT(sb);
279 
280 	/*
281 	 * td will only be NULL when we're in an interrupt (e.g. in
282 	 * tcp_input()).
283 	 *
284 	 * XXXRW: This comment needs updating, as might the code.
285 	 */
286 	if (cc > sb_max_adj)
287 		return (0);
288 	if (td != NULL) {
289 		PROC_LOCK(td->td_proc);
290 		sbsize_limit = lim_cur(td->td_proc, RLIMIT_SBSIZE);
291 		PROC_UNLOCK(td->td_proc);
292 	} else
293 		sbsize_limit = RLIM_INFINITY;
294 	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
295 	    sbsize_limit))
296 		return (0);
297 	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
298 	if (sb->sb_lowat > sb->sb_hiwat)
299 		sb->sb_lowat = sb->sb_hiwat;
300 	return (1);
301 }
302 
303 int
304 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so,
305     struct thread *td)
306 {
307 	int error;
308 
309 	SOCKBUF_LOCK(sb);
310 	error = sbreserve_locked(sb, cc, so, td);
311 	SOCKBUF_UNLOCK(sb);
312 	return (error);
313 }
314 
315 /*
316  * Free mbufs held by a socket, and reserved mbuf space.
317  */
318 static void
319 sbrelease_internal(struct sockbuf *sb, struct socket *so)
320 {
321 
322 	sbflush_internal(sb);
323 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
324 	    RLIM_INFINITY);
325 	sb->sb_mbmax = 0;
326 }
327 
328 void
329 sbrelease_locked(struct sockbuf *sb, struct socket *so)
330 {
331 
332 	SOCKBUF_LOCK_ASSERT(sb);
333 
334 	sbrelease_internal(sb, so);
335 }
336 
337 void
338 sbrelease(struct sockbuf *sb, struct socket *so)
339 {
340 
341 	SOCKBUF_LOCK(sb);
342 	sbrelease_locked(sb, so);
343 	SOCKBUF_UNLOCK(sb);
344 }
345 
346 void
347 sbdestroy(struct sockbuf *sb, struct socket *so)
348 {
349 
350 	sbrelease_internal(sb, so);
351 }
352 
353 
354 /*
355  * Routines to add and remove data from an mbuf queue.
356  *
357  * The routines sbappend() or sbappendrecord() are normally called to append
358  * new mbufs to a socket buffer, after checking that adequate space is
359  * available, comparing the function sbspace() with the amount of data to be
360  * added.  sbappendrecord() differs from sbappend() in that data supplied is
361  * treated as the beginning of a new record.  To place a sender's address,
362  * optional access rights, and data in a socket receive buffer,
363  * sbappendaddr() should be used.  To place access rights and data in a
364  * socket receive buffer, sbappendrights() should be used.  In either case,
365  * the new data begins a new record.  Note that unlike sbappend() and
366  * sbappendrecord(), these routines check for the caller that there will be
367  * enough space to store the data.  Each fails if there is not enough space,
368  * or if it cannot find mbufs to store additional information in.
369  *
370  * Reliable protocols may use the socket send buffer to hold data awaiting
371  * acknowledgement.  Data is normally copied from a socket send buffer in a
372  * protocol with m_copy for output to a peer, and then removing the data from
373  * the socket buffer with sbdrop() or sbdroprecord() when the data is
374  * acknowledged by the peer.
375  */
376 #ifdef SOCKBUF_DEBUG
377 void
378 sblastrecordchk(struct sockbuf *sb, const char *file, int line)
379 {
380 	struct mbuf *m = sb->sb_mb;
381 
382 	SOCKBUF_LOCK_ASSERT(sb);
383 
384 	while (m && m->m_nextpkt)
385 		m = m->m_nextpkt;
386 
387 	if (m != sb->sb_lastrecord) {
388 		printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
389 			__func__, sb->sb_mb, sb->sb_lastrecord, m);
390 		printf("packet chain:\n");
391 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
392 			printf("\t%p\n", m);
393 		panic("%s from %s:%u", __func__, file, line);
394 	}
395 }
396 
397 void
398 sblastmbufchk(struct sockbuf *sb, const char *file, int line)
399 {
400 	struct mbuf *m = sb->sb_mb;
401 	struct mbuf *n;
402 
403 	SOCKBUF_LOCK_ASSERT(sb);
404 
405 	while (m && m->m_nextpkt)
406 		m = m->m_nextpkt;
407 
408 	while (m && m->m_next)
409 		m = m->m_next;
410 
411 	if (m != sb->sb_mbtail) {
412 		printf("%s: sb_mb %p sb_mbtail %p last %p\n",
413 			__func__, sb->sb_mb, sb->sb_mbtail, m);
414 		printf("packet tree:\n");
415 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
416 			printf("\t");
417 			for (n = m; n != NULL; n = n->m_next)
418 				printf("%p ", n);
419 			printf("\n");
420 		}
421 		panic("%s from %s:%u", __func__, file, line);
422 	}
423 }
424 #endif /* SOCKBUF_DEBUG */
425 
426 #define SBLINKRECORD(sb, m0) do {					\
427 	SOCKBUF_LOCK_ASSERT(sb);					\
428 	if ((sb)->sb_lastrecord != NULL)				\
429 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
430 	else								\
431 		(sb)->sb_mb = (m0);					\
432 	(sb)->sb_lastrecord = (m0);					\
433 } while (/*CONSTCOND*/0)
434 
435 /*
436  * Append mbuf chain m to the last record in the socket buffer sb.  The
437  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
438  * are discarded and mbufs are compacted where possible.
439  */
440 void
441 sbappend_locked(struct sockbuf *sb, struct mbuf *m)
442 {
443 	struct mbuf *n;
444 
445 	SOCKBUF_LOCK_ASSERT(sb);
446 
447 	if (m == 0)
448 		return;
449 
450 	SBLASTRECORDCHK(sb);
451 	n = sb->sb_mb;
452 	if (n) {
453 		while (n->m_nextpkt)
454 			n = n->m_nextpkt;
455 		do {
456 			if (n->m_flags & M_EOR) {
457 				sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
458 				return;
459 			}
460 		} while (n->m_next && (n = n->m_next));
461 	} else {
462 		/*
463 		 * XXX Would like to simply use sb_mbtail here, but
464 		 * XXX I need to verify that I won't miss an EOR that
465 		 * XXX way.
466 		 */
467 		if ((n = sb->sb_lastrecord) != NULL) {
468 			do {
469 				if (n->m_flags & M_EOR) {
470 					sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
471 					return;
472 				}
473 			} while (n->m_next && (n = n->m_next));
474 		} else {
475 			/*
476 			 * If this is the first record in the socket buffer,
477 			 * it's also the last record.
478 			 */
479 			sb->sb_lastrecord = m;
480 		}
481 	}
482 	sbcompress(sb, m, n);
483 	SBLASTRECORDCHK(sb);
484 }
485 
486 /*
487  * Append mbuf chain m to the last record in the socket buffer sb.  The
488  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
489  * are discarded and mbufs are compacted where possible.
490  */
491 void
492 sbappend(struct sockbuf *sb, struct mbuf *m)
493 {
494 
495 	SOCKBUF_LOCK(sb);
496 	sbappend_locked(sb, m);
497 	SOCKBUF_UNLOCK(sb);
498 }
499 
500 /*
501  * This version of sbappend() should only be used when the caller absolutely
502  * knows that there will never be more than one record in the socket buffer,
503  * that is, a stream protocol (such as TCP).
504  */
505 void
506 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m)
507 {
508 	SOCKBUF_LOCK_ASSERT(sb);
509 
510 	KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
511 	KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
512 
513 	SBLASTMBUFCHK(sb);
514 
515 	sbcompress(sb, m, sb->sb_mbtail);
516 
517 	sb->sb_lastrecord = sb->sb_mb;
518 	SBLASTRECORDCHK(sb);
519 }
520 
521 /*
522  * This version of sbappend() should only be used when the caller absolutely
523  * knows that there will never be more than one record in the socket buffer,
524  * that is, a stream protocol (such as TCP).
525  */
526 void
527 sbappendstream(struct sockbuf *sb, struct mbuf *m)
528 {
529 
530 	SOCKBUF_LOCK(sb);
531 	sbappendstream_locked(sb, m);
532 	SOCKBUF_UNLOCK(sb);
533 }
534 
535 #ifdef SOCKBUF_DEBUG
536 void
537 sbcheck(struct sockbuf *sb)
538 {
539 	struct mbuf *m;
540 	struct mbuf *n = 0;
541 	u_long len = 0, mbcnt = 0;
542 
543 	SOCKBUF_LOCK_ASSERT(sb);
544 
545 	for (m = sb->sb_mb; m; m = n) {
546 	    n = m->m_nextpkt;
547 	    for (; m; m = m->m_next) {
548 		len += m->m_len;
549 		mbcnt += MSIZE;
550 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
551 			mbcnt += m->m_ext.ext_size;
552 	    }
553 	}
554 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
555 		printf("cc %ld != %u || mbcnt %ld != %u\n", len, sb->sb_cc,
556 		    mbcnt, sb->sb_mbcnt);
557 		panic("sbcheck");
558 	}
559 }
560 #endif
561 
562 /*
563  * As above, except the mbuf chain begins a new record.
564  */
565 void
566 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
567 {
568 	struct mbuf *m;
569 
570 	SOCKBUF_LOCK_ASSERT(sb);
571 
572 	if (m0 == 0)
573 		return;
574 	m = sb->sb_mb;
575 	if (m)
576 		while (m->m_nextpkt)
577 			m = m->m_nextpkt;
578 	/*
579 	 * Put the first mbuf on the queue.  Note this permits zero length
580 	 * records.
581 	 */
582 	sballoc(sb, m0);
583 	SBLASTRECORDCHK(sb);
584 	SBLINKRECORD(sb, m0);
585 	if (m)
586 		m->m_nextpkt = m0;
587 	else
588 		sb->sb_mb = m0;
589 	m = m0->m_next;
590 	m0->m_next = 0;
591 	if (m && (m0->m_flags & M_EOR)) {
592 		m0->m_flags &= ~M_EOR;
593 		m->m_flags |= M_EOR;
594 	}
595 	sbcompress(sb, m, m0);
596 }
597 
598 /*
599  * As above, except the mbuf chain begins a new record.
600  */
601 void
602 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
603 {
604 
605 	SOCKBUF_LOCK(sb);
606 	sbappendrecord_locked(sb, m0);
607 	SOCKBUF_UNLOCK(sb);
608 }
609 
610 /*
611  * Append address and data, and optionally, control (ancillary) data to the
612  * receive queue of a socket.  If present, m0 must include a packet header
613  * with total length.  Returns 0 if no space in sockbuf or insufficient
614  * mbufs.
615  */
616 int
617 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
618     struct mbuf *m0, struct mbuf *control)
619 {
620 	struct mbuf *m, *n, *nlast;
621 	int space = asa->sa_len;
622 
623 	SOCKBUF_LOCK_ASSERT(sb);
624 
625 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
626 		panic("sbappendaddr_locked");
627 	if (m0)
628 		space += m0->m_pkthdr.len;
629 	space += m_length(control, &n);
630 
631 	if (space > sbspace(sb))
632 		return (0);
633 #if MSIZE <= 256
634 	if (asa->sa_len > MLEN)
635 		return (0);
636 #endif
637 	MGET(m, M_DONTWAIT, MT_SONAME);
638 	if (m == 0)
639 		return (0);
640 	m->m_len = asa->sa_len;
641 	bcopy(asa, mtod(m, caddr_t), asa->sa_len);
642 	if (n)
643 		n->m_next = m0;		/* concatenate data to control */
644 	else
645 		control = m0;
646 	m->m_next = control;
647 	for (n = m; n->m_next != NULL; n = n->m_next)
648 		sballoc(sb, n);
649 	sballoc(sb, n);
650 	nlast = n;
651 	SBLINKRECORD(sb, m);
652 
653 	sb->sb_mbtail = nlast;
654 	SBLASTMBUFCHK(sb);
655 
656 	SBLASTRECORDCHK(sb);
657 	return (1);
658 }
659 
660 /*
661  * Append address and data, and optionally, control (ancillary) data to the
662  * receive queue of a socket.  If present, m0 must include a packet header
663  * with total length.  Returns 0 if no space in sockbuf or insufficient
664  * mbufs.
665  */
666 int
667 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
668     struct mbuf *m0, struct mbuf *control)
669 {
670 	int retval;
671 
672 	SOCKBUF_LOCK(sb);
673 	retval = sbappendaddr_locked(sb, asa, m0, control);
674 	SOCKBUF_UNLOCK(sb);
675 	return (retval);
676 }
677 
678 int
679 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
680     struct mbuf *control)
681 {
682 	struct mbuf *m, *n, *mlast;
683 	int space;
684 
685 	SOCKBUF_LOCK_ASSERT(sb);
686 
687 	if (control == 0)
688 		panic("sbappendcontrol_locked");
689 	space = m_length(control, &n) + m_length(m0, NULL);
690 
691 	if (space > sbspace(sb))
692 		return (0);
693 	n->m_next = m0;			/* concatenate data to control */
694 
695 	SBLASTRECORDCHK(sb);
696 
697 	for (m = control; m->m_next; m = m->m_next)
698 		sballoc(sb, m);
699 	sballoc(sb, m);
700 	mlast = m;
701 	SBLINKRECORD(sb, control);
702 
703 	sb->sb_mbtail = mlast;
704 	SBLASTMBUFCHK(sb);
705 
706 	SBLASTRECORDCHK(sb);
707 	return (1);
708 }
709 
710 int
711 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
712 {
713 	int retval;
714 
715 	SOCKBUF_LOCK(sb);
716 	retval = sbappendcontrol_locked(sb, m0, control);
717 	SOCKBUF_UNLOCK(sb);
718 	return (retval);
719 }
720 
721 /*
722  * Append the data in mbuf chain (m) into the socket buffer sb following mbuf
723  * (n).  If (n) is NULL, the buffer is presumed empty.
724  *
725  * When the data is compressed, mbufs in the chain may be handled in one of
726  * three ways:
727  *
728  * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
729  *     record boundary, and no change in data type).
730  *
731  * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
732  *     an mbuf already in the socket buffer.  This can occur if an
733  *     appropriate mbuf exists, there is room, and no merging of data types
734  *     will occur.
735  *
736  * (3) The mbuf may be appended to the end of the existing mbuf chain.
737  *
738  * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
739  * end-of-record.
740  */
741 void
742 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
743 {
744 	int eor = 0;
745 	struct mbuf *o;
746 
747 	SOCKBUF_LOCK_ASSERT(sb);
748 
749 	while (m) {
750 		eor |= m->m_flags & M_EOR;
751 		if (m->m_len == 0 &&
752 		    (eor == 0 ||
753 		     (((o = m->m_next) || (o = n)) &&
754 		      o->m_type == m->m_type))) {
755 			if (sb->sb_lastrecord == m)
756 				sb->sb_lastrecord = m->m_next;
757 			m = m_free(m);
758 			continue;
759 		}
760 		if (n && (n->m_flags & M_EOR) == 0 &&
761 		    M_WRITABLE(n) &&
762 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
763 		    m->m_len <= M_TRAILINGSPACE(n) &&
764 		    n->m_type == m->m_type) {
765 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
766 			    (unsigned)m->m_len);
767 			n->m_len += m->m_len;
768 			sb->sb_cc += m->m_len;
769 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
770 				/* XXX: Probably don't need.*/
771 				sb->sb_ctl += m->m_len;
772 			m = m_free(m);
773 			continue;
774 		}
775 		if (n)
776 			n->m_next = m;
777 		else
778 			sb->sb_mb = m;
779 		sb->sb_mbtail = m;
780 		sballoc(sb, m);
781 		n = m;
782 		m->m_flags &= ~M_EOR;
783 		m = m->m_next;
784 		n->m_next = 0;
785 	}
786 	if (eor) {
787 		KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
788 		n->m_flags |= eor;
789 	}
790 	SBLASTMBUFCHK(sb);
791 }
792 
793 /*
794  * Free all mbufs in a sockbuf.  Check that all resources are reclaimed.
795  */
796 static void
797 sbflush_internal(struct sockbuf *sb)
798 {
799 
800 	if (sb->sb_flags & SB_LOCK)
801 		panic("sbflush_internal: locked");
802 	while (sb->sb_mbcnt) {
803 		/*
804 		 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
805 		 * we would loop forever. Panic instead.
806 		 */
807 		if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
808 			break;
809 		sbdrop_internal(sb, (int)sb->sb_cc);
810 	}
811 	if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt)
812 		panic("sbflush_internal: cc %u || mb %p || mbcnt %u",
813 		    sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt);
814 }
815 
816 void
817 sbflush_locked(struct sockbuf *sb)
818 {
819 
820 	SOCKBUF_LOCK_ASSERT(sb);
821 	sbflush_internal(sb);
822 }
823 
824 void
825 sbflush(struct sockbuf *sb)
826 {
827 
828 	SOCKBUF_LOCK(sb);
829 	sbflush_locked(sb);
830 	SOCKBUF_UNLOCK(sb);
831 }
832 
833 /*
834  * Drop data from (the front of) a sockbuf.
835  */
836 static void
837 sbdrop_internal(struct sockbuf *sb, int len)
838 {
839 	struct mbuf *m;
840 	struct mbuf *next;
841 
842 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
843 	while (len > 0) {
844 		if (m == 0) {
845 			if (next == 0)
846 				panic("sbdrop");
847 			m = next;
848 			next = m->m_nextpkt;
849 			continue;
850 		}
851 		if (m->m_len > len) {
852 			m->m_len -= len;
853 			m->m_data += len;
854 			sb->sb_cc -= len;
855 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
856 				sb->sb_ctl -= len;
857 			break;
858 		}
859 		len -= m->m_len;
860 		sbfree(sb, m);
861 		m = m_free(m);
862 	}
863 	while (m && m->m_len == 0) {
864 		sbfree(sb, m);
865 		m = m_free(m);
866 	}
867 	if (m) {
868 		sb->sb_mb = m;
869 		m->m_nextpkt = next;
870 	} else
871 		sb->sb_mb = next;
872 	/*
873 	 * First part is an inline SB_EMPTY_FIXUP().  Second part makes sure
874 	 * sb_lastrecord is up-to-date if we dropped part of the last record.
875 	 */
876 	m = sb->sb_mb;
877 	if (m == NULL) {
878 		sb->sb_mbtail = NULL;
879 		sb->sb_lastrecord = NULL;
880 	} else if (m->m_nextpkt == NULL) {
881 		sb->sb_lastrecord = m;
882 	}
883 }
884 
885 /*
886  * Drop data from (the front of) a sockbuf.
887  */
888 void
889 sbdrop_locked(struct sockbuf *sb, int len)
890 {
891 
892 	SOCKBUF_LOCK_ASSERT(sb);
893 
894 	sbdrop_internal(sb, len);
895 }
896 
897 void
898 sbdrop(struct sockbuf *sb, int len)
899 {
900 
901 	SOCKBUF_LOCK(sb);
902 	sbdrop_locked(sb, len);
903 	SOCKBUF_UNLOCK(sb);
904 }
905 
906 /*
907  * Drop a record off the front of a sockbuf and move the next record to the
908  * front.
909  */
910 void
911 sbdroprecord_locked(struct sockbuf *sb)
912 {
913 	struct mbuf *m;
914 
915 	SOCKBUF_LOCK_ASSERT(sb);
916 
917 	m = sb->sb_mb;
918 	if (m) {
919 		sb->sb_mb = m->m_nextpkt;
920 		do {
921 			sbfree(sb, m);
922 			m = m_free(m);
923 		} while (m);
924 	}
925 	SB_EMPTY_FIXUP(sb);
926 }
927 
928 /*
929  * Drop a record off the front of a sockbuf and move the next record to the
930  * front.
931  */
932 void
933 sbdroprecord(struct sockbuf *sb)
934 {
935 
936 	SOCKBUF_LOCK(sb);
937 	sbdroprecord_locked(sb);
938 	SOCKBUF_UNLOCK(sb);
939 }
940 
941 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
942 static int dummy;
943 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
944 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_ULONG|CTLFLAG_RW,
945     &sb_max, 0, sysctl_handle_sb_max, "LU", "Maximum socket buffer size");
946 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
947     &sb_efficiency, 0, "");
948