xref: /freebsd/sys/kern/uipc_sockbuf.c (revision ee2ea5ceafed78a5bd9810beb9e3ca927180c226)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD$
35  */
36 
37 #include "opt_param.h"
38 #include <sys/param.h>
39 #include <sys/aio.h> /* for aio_swake proto */
40 #include <sys/domain.h>
41 #include <sys/event.h>
42 #include <sys/file.h>	/* for maxfiles */
43 #include <sys/kernel.h>
44 #include <sys/lock.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/mutex.h>
48 #include <sys/proc.h>
49 #include <sys/protosw.h>
50 #include <sys/resourcevar.h>
51 #include <sys/signalvar.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/stat.h>
55 #include <sys/sysctl.h>
56 #include <sys/systm.h>
57 
58 int	maxsockets;
59 
60 void (*aio_swake)(struct socket *, struct sockbuf *);
61 
62 /*
63  * Primitive routines for operating on sockets and socket buffers
64  */
65 
66 u_long	sb_max = SB_MAX;		/* XXX should be static */
67 
68 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
69 
70 /*
71  * Procedures to manipulate state flags of socket
72  * and do appropriate wakeups.  Normal sequence from the
73  * active (originating) side is that soisconnecting() is
74  * called during processing of connect() call,
75  * resulting in an eventual call to soisconnected() if/when the
76  * connection is established.  When the connection is torn down
77  * soisdisconnecting() is called during processing of disconnect() call,
78  * and soisdisconnected() is called when the connection to the peer
79  * is totally severed.  The semantics of these routines are such that
80  * connectionless protocols can call soisconnected() and soisdisconnected()
81  * only, bypassing the in-progress calls when setting up a ``connection''
82  * takes no time.
83  *
84  * From the passive side, a socket is created with
85  * two queues of sockets: so_incomp for connections in progress
86  * and so_comp for connections already made and awaiting user acceptance.
87  * As a protocol is preparing incoming connections, it creates a socket
88  * structure queued on so_incomp by calling sonewconn().  When the connection
89  * is established, soisconnected() is called, and transfers the
90  * socket structure to so_comp, making it available to accept().
91  *
92  * If a socket is closed with sockets on either
93  * so_incomp or so_comp, these sockets are dropped.
94  *
95  * If higher level protocols are implemented in
96  * the kernel, the wakeups done here will sometimes
97  * cause software-interrupt process scheduling.
98  */
99 
100 void
101 soisconnecting(so)
102 	register struct socket *so;
103 {
104 
105 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
106 	so->so_state |= SS_ISCONNECTING;
107 }
108 
109 void
110 soisconnected_locked(so)
111 	struct socket *so;
112 {
113 	struct socket *head = so->so_head;
114 
115 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
116 	so->so_state |= SS_ISCONNECTED;
117 	if (head && (so->so_state & SS_INCOMP)) {
118 		if ((so->so_options & SO_ACCEPTFILTER) != 0) {
119 			so->so_upcall = head->so_accf->so_accept_filter->accf_callback;
120 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
121 			so->so_rcv.sb_flags |= SB_UPCALL;
122 			so->so_options &= ~SO_ACCEPTFILTER;
123 			so->so_upcall(so, so->so_upcallarg, 0);
124 			return;
125 		}
126 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
127 		head->so_incqlen--;
128 		so->so_state &= ~SS_INCOMP;
129 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
130 		so->so_state |= SS_COMP;
131 		sorwakeup_locked(head);
132 		wakeup_one(&head->so_timeo);
133 	} else {
134 		wakeup(&so->so_timeo);
135 		sorwakeup_locked(so);
136 		sowwakeup_locked(so);
137 	}
138 }
139 
140 void
141 soisconnected(so)
142 	struct socket *so;
143 {
144 	struct socket *head = so->so_head;
145 
146 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
147 	so->so_state |= SS_ISCONNECTED;
148 	if (head && (so->so_state & SS_INCOMP)) {
149 		if ((so->so_options & SO_ACCEPTFILTER) != 0) {
150 			so->so_upcall = head->so_accf->so_accept_filter->accf_callback;
151 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
152 			so->so_rcv.sb_flags |= SB_UPCALL;
153 			so->so_options &= ~SO_ACCEPTFILTER;
154 			so->so_upcall(so, so->so_upcallarg, 0);
155 			return;
156 		}
157 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
158 		head->so_incqlen--;
159 		so->so_state &= ~SS_INCOMP;
160 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
161 		head->so_qlen++;
162 		so->so_state |= SS_COMP;
163 		sorwakeup_locked(head);
164 		wakeup_one(&head->so_timeo);
165 	} else {
166 		wakeup(&so->so_timeo);
167 		sorwakeup_locked(so);
168 		sowwakeup_locked(so);
169 	}
170 }
171 
172 void
173 soisdisconnecting(so)
174 	register struct socket *so;
175 {
176 
177 	so->so_state &= ~SS_ISCONNECTING;
178 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
179 	wakeup((caddr_t)&so->so_timeo);
180 	sowwakeup_locked(so);
181 	sorwakeup_locked(so);
182 }
183 
184 void
185 soisdisconnected_locked(so)
186 	register struct socket *so;
187 {
188 
189 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
190 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
191 	wakeup((caddr_t)&so->so_timeo);
192 	sowwakeup_locked(so);
193 	sorwakeup_locked(so);
194 }
195 
196 void
197 soisdisconnected(so)
198 	register struct socket *so;
199 {
200 
201 	soisdisconnected_locked(so);
202 }
203 
204 /*
205  * When an attempt at a new connection is noted on a socket
206  * which accepts connections, sonewconn is called.  If the
207  * connection is possible (subject to space constraints, etc.)
208  * then we allocate a new structure, propoerly linked into the
209  * data structure of the original socket, and return this.
210  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
211  *
212  * note: the ref count on the socket is 0 on return
213  */
214 struct socket *
215 sonewconn(head, connstatus)
216 	register struct socket *head;
217 	int connstatus;
218 {
219 	register struct socket *so;
220 
221 	if (head->so_qlen > 3 * head->so_qlimit / 2)
222 		return ((struct socket *)0);
223 	so = soalloc(0);
224 	if (so == NULL)
225 		return ((struct socket *)0);
226 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
227 		connstatus = 0;
228 	so->so_head = head;
229 	so->so_type = head->so_type;
230 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
231 	so->so_linger = head->so_linger;
232 	so->so_state = head->so_state | SS_NOFDREF;
233 	so->so_proto = head->so_proto;
234 	so->so_timeo = head->so_timeo;
235 	so->so_cred = crhold(head->so_cred);
236 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
237 	    (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
238 		sotryfree(so);
239 		return ((struct socket *)0);
240 	}
241 
242 	if (connstatus) {
243 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
244 		so->so_state |= SS_COMP;
245 		head->so_qlen++;
246 	} else {
247 		if (head->so_incqlen >= head->so_qlimit) {
248 			struct socket *sp;
249 			sp = TAILQ_FIRST(&head->so_incomp);
250 			(void) soabort(sp);
251 		}
252 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
253 		so->so_state |= SS_INCOMP;
254 		head->so_incqlen++;
255 	}
256 	if (connstatus) {
257 		sorwakeup_locked(head);
258 		wakeup((caddr_t)&head->so_timeo);
259 		so->so_state |= connstatus;
260 	}
261 	return (so);
262 }
263 
264 /*
265  * Socantsendmore indicates that no more data will be sent on the
266  * socket; it would normally be applied to a socket when the user
267  * informs the system that no more data is to be sent, by the protocol
268  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
269  * will be received, and will normally be applied to the socket by a
270  * protocol when it detects that the peer will send no more data.
271  * Data queued for reading in the socket may yet be read.
272  */
273 
274 void
275 socantsendmore(so)
276 	struct socket *so;
277 {
278 
279 	so->so_state |= SS_CANTSENDMORE;
280 	sowwakeup_locked(so);
281 }
282 
283 void
284 socantrcvmore(so)
285 	struct socket *so;
286 {
287 
288 	so->so_state |= SS_CANTRCVMORE;
289 	sorwakeup_locked(so);
290 }
291 
292 /*
293  * Wait for data to arrive at/drain from a socket buffer.
294  */
295 int
296 sbwait(sb)
297 	struct sockbuf *sb;
298 {
299 
300 	sb->sb_flags |= SB_WAIT;
301 	return (tsleep((caddr_t)&sb->sb_cc,
302 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
303 	    sb->sb_timeo));
304 }
305 
306 /*
307  * Lock a sockbuf already known to be locked;
308  * return any error returned from sleep (EINTR).
309  */
310 int
311 sb_lock(sb)
312 	register struct sockbuf *sb;
313 {
314 	int error;
315 
316 	while (sb->sb_flags & SB_LOCK) {
317 		sb->sb_flags |= SB_WANT;
318 		error = tsleep((caddr_t)&sb->sb_flags,
319 		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
320 		    "sblock", 0);
321 		if (error)
322 			return (error);
323 	}
324 	sb->sb_flags |= SB_LOCK;
325 	return (0);
326 }
327 
328 /*
329  * Wakeup processes waiting on a socket buffer.
330  * Do asynchronous notification via SIGIO
331  * if the socket has the SS_ASYNC flag set.
332  */
333 void
334 sowakeup(so, sb)
335 	register struct socket *so;
336 	register struct sockbuf *sb;
337 {
338 
339 	selwakeup(&sb->sb_sel);
340 	sb->sb_flags &= ~SB_SEL;
341 	if (sb->sb_flags & SB_WAIT) {
342 		sb->sb_flags &= ~SB_WAIT;
343 		wakeup((caddr_t)&sb->sb_cc);
344 	}
345 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
346 		pgsigio(&so->so_sigio, SIGIO, 0);
347 	if (sb->sb_flags & SB_UPCALL)
348 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
349 	if (sb->sb_flags & SB_AIO)
350 		aio_swake(so, sb);
351 	KNOTE(&sb->sb_sel.si_note, 0);
352 }
353 
354 /*
355  * Socket buffer (struct sockbuf) utility routines.
356  *
357  * Each socket contains two socket buffers: one for sending data and
358  * one for receiving data.  Each buffer contains a queue of mbufs,
359  * information about the number of mbufs and amount of data in the
360  * queue, and other fields allowing select() statements and notification
361  * on data availability to be implemented.
362  *
363  * Data stored in a socket buffer is maintained as a list of records.
364  * Each record is a list of mbufs chained together with the m_next
365  * field.  Records are chained together with the m_nextpkt field. The upper
366  * level routine soreceive() expects the following conventions to be
367  * observed when placing information in the receive buffer:
368  *
369  * 1. If the protocol requires each message be preceded by the sender's
370  *    name, then a record containing that name must be present before
371  *    any associated data (mbuf's must be of type MT_SONAME).
372  * 2. If the protocol supports the exchange of ``access rights'' (really
373  *    just additional data associated with the message), and there are
374  *    ``rights'' to be received, then a record containing this data
375  *    should be present (mbuf's must be of type MT_RIGHTS).
376  * 3. If a name or rights record exists, then it must be followed by
377  *    a data record, perhaps of zero length.
378  *
379  * Before using a new socket structure it is first necessary to reserve
380  * buffer space to the socket, by calling sbreserve().  This should commit
381  * some of the available buffer space in the system buffer pool for the
382  * socket (currently, it does nothing but enforce limits).  The space
383  * should be released by calling sbrelease() when the socket is destroyed.
384  */
385 
386 int
387 soreserve(so, sndcc, rcvcc)
388 	register struct socket *so;
389 	u_long sndcc, rcvcc;
390 {
391 	struct thread *td = curthread;
392 
393 	if (sbreserve(&so->so_snd, sndcc, so, td) == 0)
394 		goto bad;
395 	if (sbreserve(&so->so_rcv, rcvcc, so, td) == 0)
396 		goto bad2;
397 	if (so->so_rcv.sb_lowat == 0)
398 		so->so_rcv.sb_lowat = 1;
399 	if (so->so_snd.sb_lowat == 0)
400 		so->so_snd.sb_lowat = MCLBYTES;
401 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
402 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
403 	return (0);
404 bad2:
405 	sbrelease(&so->so_snd, so);
406 bad:
407 	return (ENOBUFS);
408 }
409 
410 /*
411  * Allot mbufs to a sockbuf.
412  * Attempt to scale mbmax so that mbcnt doesn't become limiting
413  * if buffering efficiency is near the normal case.
414  */
415 int
416 sbreserve(sb, cc, so, td)
417 	struct sockbuf *sb;
418 	u_long cc;
419 	struct socket *so;
420 	struct thread *td;
421 {
422 
423 	/*
424 	 * td will only be NULL when we're in an interrupt
425 	 * (e.g. in tcp_input())
426 	 */
427 	if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES))
428 		return (0);
429 	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
430 	    td ? td->td_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur : RLIM_INFINITY)) {
431 		return (0);
432 	}
433 	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
434 	if (sb->sb_lowat > sb->sb_hiwat)
435 		sb->sb_lowat = sb->sb_hiwat;
436 	return (1);
437 }
438 
439 /*
440  * Free mbufs held by a socket, and reserved mbuf space.
441  */
442 void
443 sbrelease(sb, so)
444 	struct sockbuf *sb;
445 	struct socket *so;
446 {
447 
448 	sbflush(sb);
449 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
450 	    RLIM_INFINITY);
451 	sb->sb_mbmax = 0;
452 }
453 
454 /*
455  * Routines to add and remove
456  * data from an mbuf queue.
457  *
458  * The routines sbappend() or sbappendrecord() are normally called to
459  * append new mbufs to a socket buffer, after checking that adequate
460  * space is available, comparing the function sbspace() with the amount
461  * of data to be added.  sbappendrecord() differs from sbappend() in
462  * that data supplied is treated as the beginning of a new record.
463  * To place a sender's address, optional access rights, and data in a
464  * socket receive buffer, sbappendaddr() should be used.  To place
465  * access rights and data in a socket receive buffer, sbappendrights()
466  * should be used.  In either case, the new data begins a new record.
467  * Note that unlike sbappend() and sbappendrecord(), these routines check
468  * for the caller that there will be enough space to store the data.
469  * Each fails if there is not enough space, or if it cannot find mbufs
470  * to store additional information in.
471  *
472  * Reliable protocols may use the socket send buffer to hold data
473  * awaiting acknowledgement.  Data is normally copied from a socket
474  * send buffer in a protocol with m_copy for output to a peer,
475  * and then removing the data from the socket buffer with sbdrop()
476  * or sbdroprecord() when the data is acknowledged by the peer.
477  */
478 
479 /*
480  * Append mbuf chain m to the last record in the
481  * socket buffer sb.  The additional space associated
482  * the mbuf chain is recorded in sb.  Empty mbufs are
483  * discarded and mbufs are compacted where possible.
484  */
485 void
486 sbappend(sb, m)
487 	struct sockbuf *sb;
488 	struct mbuf *m;
489 {
490 	register struct mbuf *n;
491 
492 	if (m == 0)
493 		return;
494 	n = sb->sb_mb;
495 	if (n) {
496 		while (n->m_nextpkt)
497 			n = n->m_nextpkt;
498 		do {
499 			if (n->m_flags & M_EOR) {
500 				sbappendrecord(sb, m); /* XXXXXX!!!! */
501 				return;
502 			}
503 		} while (n->m_next && (n = n->m_next));
504 	}
505 	sbcompress(sb, m, n);
506 }
507 
508 #ifdef SOCKBUF_DEBUG
509 void
510 sbcheck(sb)
511 	register struct sockbuf *sb;
512 {
513 	register struct mbuf *m;
514 	register struct mbuf *n = 0;
515 	register u_long len = 0, mbcnt = 0;
516 
517 	for (m = sb->sb_mb; m; m = n) {
518 	    n = m->m_nextpkt;
519 	    for (; m; m = m->m_next) {
520 		len += m->m_len;
521 		mbcnt += MSIZE;
522 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
523 			mbcnt += m->m_ext.ext_size;
524 	    }
525 	}
526 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
527 		printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
528 		    mbcnt, sb->sb_mbcnt);
529 		panic("sbcheck");
530 	}
531 }
532 #endif
533 
534 /*
535  * As above, except the mbuf chain
536  * begins a new record.
537  */
538 void
539 sbappendrecord(sb, m0)
540 	register struct sockbuf *sb;
541 	register struct mbuf *m0;
542 {
543 	register struct mbuf *m;
544 
545 	if (m0 == 0)
546 		return;
547 	m = sb->sb_mb;
548 	if (m)
549 		while (m->m_nextpkt)
550 			m = m->m_nextpkt;
551 	/*
552 	 * Put the first mbuf on the queue.
553 	 * Note this permits zero length records.
554 	 */
555 	sballoc(sb, m0);
556 	if (m)
557 		m->m_nextpkt = m0;
558 	else
559 		sb->sb_mb = m0;
560 	m = m0->m_next;
561 	m0->m_next = 0;
562 	if (m && (m0->m_flags & M_EOR)) {
563 		m0->m_flags &= ~M_EOR;
564 		m->m_flags |= M_EOR;
565 	}
566 	sbcompress(sb, m, m0);
567 }
568 
569 /*
570  * As above except that OOB data
571  * is inserted at the beginning of the sockbuf,
572  * but after any other OOB data.
573  */
574 void
575 sbinsertoob(sb, m0)
576 	register struct sockbuf *sb;
577 	register struct mbuf *m0;
578 {
579 	register struct mbuf *m;
580 	register struct mbuf **mp;
581 
582 	if (m0 == 0)
583 		return;
584 	for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
585 	    m = *mp;
586 	    again:
587 		switch (m->m_type) {
588 
589 		case MT_OOBDATA:
590 			continue;		/* WANT next train */
591 
592 		case MT_CONTROL:
593 			m = m->m_next;
594 			if (m)
595 				goto again;	/* inspect THIS train further */
596 		}
597 		break;
598 	}
599 	/*
600 	 * Put the first mbuf on the queue.
601 	 * Note this permits zero length records.
602 	 */
603 	sballoc(sb, m0);
604 	m0->m_nextpkt = *mp;
605 	*mp = m0;
606 	m = m0->m_next;
607 	m0->m_next = 0;
608 	if (m && (m0->m_flags & M_EOR)) {
609 		m0->m_flags &= ~M_EOR;
610 		m->m_flags |= M_EOR;
611 	}
612 	sbcompress(sb, m, m0);
613 }
614 
615 /*
616  * Append address and data, and optionally, control (ancillary) data
617  * to the receive queue of a socket.  If present,
618  * m0 must include a packet header with total length.
619  * Returns 0 if no space in sockbuf or insufficient mbufs.
620  */
621 int
622 sbappendaddr(sb, asa, m0, control)
623 	register struct sockbuf *sb;
624 	struct sockaddr *asa;
625 	struct mbuf *m0, *control;
626 {
627 	register struct mbuf *m, *n;
628 	int space = asa->sa_len;
629 
630 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
631 		panic("sbappendaddr");
632 	if (m0)
633 		space += m0->m_pkthdr.len;
634 	for (n = control; n; n = n->m_next) {
635 		space += n->m_len;
636 		if (n->m_next == 0)	/* keep pointer to last control buf */
637 			break;
638 	}
639 	if (space > sbspace(sb))
640 		return (0);
641 	if (asa->sa_len > MLEN)
642 		return (0);
643 	MGET(m, M_DONTWAIT, MT_SONAME);
644 	if (m == 0)
645 		return (0);
646 	m->m_len = asa->sa_len;
647 	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
648 	if (n)
649 		n->m_next = m0;		/* concatenate data to control */
650 	else
651 		control = m0;
652 	m->m_next = control;
653 	for (n = m; n; n = n->m_next)
654 		sballoc(sb, n);
655 	n = sb->sb_mb;
656 	if (n) {
657 		while (n->m_nextpkt)
658 			n = n->m_nextpkt;
659 		n->m_nextpkt = m;
660 	} else
661 		sb->sb_mb = m;
662 	return (1);
663 }
664 
665 int
666 sbappendcontrol(sb, m0, control)
667 	struct sockbuf *sb;
668 	struct mbuf *control, *m0;
669 {
670 	register struct mbuf *m, *n;
671 	int space = 0;
672 
673 	if (control == 0)
674 		panic("sbappendcontrol");
675 	for (m = control; ; m = m->m_next) {
676 		space += m->m_len;
677 		if (m->m_next == 0)
678 			break;
679 	}
680 	n = m;			/* save pointer to last control buffer */
681 	for (m = m0; m; m = m->m_next)
682 		space += m->m_len;
683 	if (space > sbspace(sb))
684 		return (0);
685 	n->m_next = m0;			/* concatenate data to control */
686 	for (m = control; m; m = m->m_next)
687 		sballoc(sb, m);
688 	n = sb->sb_mb;
689 	if (n) {
690 		while (n->m_nextpkt)
691 			n = n->m_nextpkt;
692 		n->m_nextpkt = control;
693 	} else
694 		sb->sb_mb = control;
695 	return (1);
696 }
697 
698 /*
699  * Compress mbuf chain m into the socket
700  * buffer sb following mbuf n.  If n
701  * is null, the buffer is presumed empty.
702  */
703 void
704 sbcompress(sb, m, n)
705 	register struct sockbuf *sb;
706 	register struct mbuf *m, *n;
707 {
708 	register int eor = 0;
709 	register struct mbuf *o;
710 
711 	while (m) {
712 		eor |= m->m_flags & M_EOR;
713 		if (m->m_len == 0 &&
714 		    (eor == 0 ||
715 		     (((o = m->m_next) || (o = n)) &&
716 		      o->m_type == m->m_type))) {
717 			m = m_free(m);
718 			continue;
719 		}
720 		if (n && (n->m_flags & M_EOR) == 0 &&
721 		    M_WRITABLE(n) &&
722 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
723 		    m->m_len <= M_TRAILINGSPACE(n) &&
724 		    n->m_type == m->m_type) {
725 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
726 			    (unsigned)m->m_len);
727 			n->m_len += m->m_len;
728 			sb->sb_cc += m->m_len;
729 			m = m_free(m);
730 			continue;
731 		}
732 		if (n)
733 			n->m_next = m;
734 		else
735 			sb->sb_mb = m;
736 		sballoc(sb, m);
737 		n = m;
738 		m->m_flags &= ~M_EOR;
739 		m = m->m_next;
740 		n->m_next = 0;
741 	}
742 	if (eor) {
743 		if (n)
744 			n->m_flags |= eor;
745 		else
746 			printf("semi-panic: sbcompress\n");
747 	}
748 }
749 
750 /*
751  * Free all mbufs in a sockbuf.
752  * Check that all resources are reclaimed.
753  */
754 void
755 sbflush(sb)
756 	register struct sockbuf *sb;
757 {
758 
759 	if (sb->sb_flags & SB_LOCK)
760 		panic("sbflush: locked");
761 	while (sb->sb_mbcnt) {
762 		/*
763 		 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
764 		 * we would loop forever. Panic instead.
765 		 */
766 		if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
767 			break;
768 		sbdrop(sb, (int)sb->sb_cc);
769 	}
770 	if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt)
771 		panic("sbflush: cc %ld || mb %p || mbcnt %ld", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt);
772 }
773 
774 /*
775  * Drop data from (the front of) a sockbuf.
776  */
777 void
778 sbdrop(sb, len)
779 	register struct sockbuf *sb;
780 	register int len;
781 {
782 	register struct mbuf *m;
783 	struct mbuf *next;
784 
785 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
786 	while (len > 0) {
787 		if (m == 0) {
788 			if (next == 0)
789 				panic("sbdrop");
790 			m = next;
791 			next = m->m_nextpkt;
792 			continue;
793 		}
794 		if (m->m_len > len) {
795 			m->m_len -= len;
796 			m->m_data += len;
797 			sb->sb_cc -= len;
798 			break;
799 		}
800 		len -= m->m_len;
801 		sbfree(sb, m);
802 		m = m_free(m);
803 	}
804 	while (m && m->m_len == 0) {
805 		sbfree(sb, m);
806 		m = m_free(m);
807 	}
808 	if (m) {
809 		sb->sb_mb = m;
810 		m->m_nextpkt = next;
811 	} else
812 		sb->sb_mb = next;
813 }
814 
815 /*
816  * Drop a record off the front of a sockbuf
817  * and move the next record to the front.
818  */
819 void
820 sbdroprecord(sb)
821 	register struct sockbuf *sb;
822 {
823 	register struct mbuf *m;
824 
825 	m = sb->sb_mb;
826 	if (m) {
827 		sb->sb_mb = m->m_nextpkt;
828 		do {
829 			sbfree(sb, m);
830 			m = m_free(m);
831 		} while (m);
832 	}
833 }
834 
835 /*
836  * Create a "control" mbuf containing the specified data
837  * with the specified type for presentation on a socket buffer.
838  */
839 struct mbuf *
840 sbcreatecontrol(p, size, type, level)
841 	caddr_t p;
842 	register int size;
843 	int type, level;
844 {
845 	register struct cmsghdr *cp;
846 	struct mbuf *m;
847 
848 	if (CMSG_SPACE((u_int)size) > MCLBYTES)
849 		return ((struct mbuf *) NULL);
850 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
851 		return ((struct mbuf *) NULL);
852 	if (CMSG_SPACE((u_int)size) > MLEN) {
853 		MCLGET(m, M_DONTWAIT);
854 		if ((m->m_flags & M_EXT) == 0) {
855 			m_free(m);
856 			return ((struct mbuf *) NULL);
857 		}
858 	}
859 	cp = mtod(m, struct cmsghdr *);
860 	m->m_len = 0;
861 	KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
862 	    ("sbcreatecontrol: short mbuf"));
863 	if (p != NULL)
864 		(void)memcpy(CMSG_DATA(cp), p, size);
865 	m->m_len = CMSG_SPACE(size);
866 	cp->cmsg_len = CMSG_LEN(size);
867 	cp->cmsg_level = level;
868 	cp->cmsg_type = type;
869 	return (m);
870 }
871 
872 /*
873  * Some routines that return EOPNOTSUPP for entry points that are not
874  * supported by a protocol.  Fill in as needed.
875  */
876 int
877 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
878 {
879 	return EOPNOTSUPP;
880 }
881 
882 int
883 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
884 {
885 	return EOPNOTSUPP;
886 }
887 
888 int
889 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
890 {
891 	return EOPNOTSUPP;
892 }
893 
894 int
895 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
896 		    struct ifnet *ifp, struct thread *td)
897 {
898 	return EOPNOTSUPP;
899 }
900 
901 int
902 pru_listen_notsupp(struct socket *so, struct thread *td)
903 {
904 	return EOPNOTSUPP;
905 }
906 
907 int
908 pru_rcvd_notsupp(struct socket *so, int flags)
909 {
910 	return EOPNOTSUPP;
911 }
912 
913 int
914 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
915 {
916 	return EOPNOTSUPP;
917 }
918 
919 /*
920  * This isn't really a ``null'' operation, but it's the default one
921  * and doesn't do anything destructive.
922  */
923 int
924 pru_sense_null(struct socket *so, struct stat *sb)
925 {
926 	sb->st_blksize = so->so_snd.sb_hiwat;
927 	return 0;
928 }
929 
930 /*
931  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
932  */
933 struct sockaddr *
934 dup_sockaddr(sa, canwait)
935 	struct sockaddr *sa;
936 	int canwait;
937 {
938 	struct sockaddr *sa2;
939 
940 	MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
941 	       canwait ? M_WAITOK : M_NOWAIT);
942 	if (sa2)
943 		bcopy(sa, sa2, sa->sa_len);
944 	return sa2;
945 }
946 
947 /*
948  * Create an external-format (``xsocket'') structure using the information
949  * in the kernel-format socket structure pointed to by so.  This is done
950  * to reduce the spew of irrelevant information over this interface,
951  * to isolate user code from changes in the kernel structure, and
952  * potentially to provide information-hiding if we decide that
953  * some of this information should be hidden from users.
954  */
955 void
956 sotoxsocket(struct socket *so, struct xsocket *xso)
957 {
958 	xso->xso_len = sizeof *xso;
959 	xso->xso_so = so;
960 	xso->so_type = so->so_type;
961 	xso->so_options = so->so_options;
962 	xso->so_linger = so->so_linger;
963 	xso->so_state = so->so_state;
964 	xso->so_pcb = so->so_pcb;
965 	xso->xso_protocol = so->so_proto->pr_protocol;
966 	xso->xso_family = so->so_proto->pr_domain->dom_family;
967 	xso->so_qlen = so->so_qlen;
968 	xso->so_incqlen = so->so_incqlen;
969 	xso->so_qlimit = so->so_qlimit;
970 	xso->so_timeo = so->so_timeo;
971 	xso->so_error = so->so_error;
972 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
973 	xso->so_oobmark = so->so_oobmark;
974 	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
975 	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
976 	xso->so_uid = so->so_cred->cr_uid;
977 }
978 
979 /*
980  * This does the same for sockbufs.  Note that the xsockbuf structure,
981  * since it is always embedded in a socket, does not include a self
982  * pointer nor a length.  We make this entry point public in case
983  * some other mechanism needs it.
984  */
985 void
986 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
987 {
988 	xsb->sb_cc = sb->sb_cc;
989 	xsb->sb_hiwat = sb->sb_hiwat;
990 	xsb->sb_mbcnt = sb->sb_mbcnt;
991 	xsb->sb_mbmax = sb->sb_mbmax;
992 	xsb->sb_lowat = sb->sb_lowat;
993 	xsb->sb_flags = sb->sb_flags;
994 	xsb->sb_timeo = sb->sb_timeo;
995 }
996 
997 /*
998  * Here is the definition of some of the basic objects in the kern.ipc
999  * branch of the MIB.
1000  */
1001 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
1002 
1003 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1004 static int dummy;
1005 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
1006 
1007 SYSCTL_INT(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW,
1008     &sb_max, 0, "Maximum socket buffer size");
1009 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD,
1010     &maxsockets, 0, "Maximum number of sockets avaliable");
1011 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1012     &sb_efficiency, 0, "");
1013 
1014 /*
1015  * Initialise maxsockets
1016  */
1017 static void init_maxsockets(void *ignored)
1018 {
1019 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
1020 	maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
1021 }
1022 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
1023