xref: /freebsd/sys/kern/uipc_sockbuf.c (revision ec65e4f8d0654361df5e97d4de3518edebf76b46)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_param.h"
36 
37 #include <sys/param.h>
38 #include <sys/aio.h> /* for aio_swake proto */
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/mutex.h>
44 #include <sys/proc.h>
45 #include <sys/protosw.h>
46 #include <sys/resourcevar.h>
47 #include <sys/signalvar.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/sx.h>
51 #include <sys/sysctl.h>
52 
53 /*
54  * Function pointer set by the AIO routines so that the socket buffer code
55  * can call back into the AIO module if it is loaded.
56  */
57 void	(*aio_swake)(struct socket *, struct sockbuf *);
58 
59 /*
60  * Primitive routines for operating on socket buffers
61  */
62 
63 u_long	sb_max = SB_MAX;
64 u_long sb_max_adj =
65        (quad_t)SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
66 
67 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
68 
69 static struct mbuf	*sbcut_internal(struct sockbuf *sb, int len);
70 static void	sbflush_internal(struct sockbuf *sb);
71 
72 /*
73  * Our own version of m_clrprotoflags(), that can preserve M_NOTREADY.
74  */
75 static void
76 sbm_clrprotoflags(struct mbuf *m, int flags)
77 {
78 	int mask;
79 
80 	mask = ~M_PROTOFLAGS;
81 	if (flags & PRUS_NOTREADY)
82 		mask |= M_NOTREADY;
83 	while (m) {
84 		m->m_flags &= mask;
85 		m = m->m_next;
86 	}
87 }
88 
89 /*
90  * Mark ready "count" mbufs starting with "m".
91  */
92 int
93 sbready(struct sockbuf *sb, struct mbuf *m, int count)
94 {
95 	u_int blocker;
96 
97 	SOCKBUF_LOCK_ASSERT(sb);
98 	KASSERT(sb->sb_fnrdy != NULL, ("%s: sb %p NULL fnrdy", __func__, sb));
99 
100 	blocker = (sb->sb_fnrdy == m) ? M_BLOCKED : 0;
101 
102 	for (int i = 0; i < count; i++, m = m->m_next) {
103 		KASSERT(m->m_flags & M_NOTREADY,
104 		    ("%s: m %p !M_NOTREADY", __func__, m));
105 		m->m_flags &= ~(M_NOTREADY | blocker);
106 		if (blocker)
107 			sb->sb_acc += m->m_len;
108 	}
109 
110 	if (!blocker)
111 		return (EINPROGRESS);
112 
113 	/* This one was blocking all the queue. */
114 	for (; m && (m->m_flags & M_NOTREADY) == 0; m = m->m_next) {
115 		KASSERT(m->m_flags & M_BLOCKED,
116 		    ("%s: m %p !M_BLOCKED", __func__, m));
117 		m->m_flags &= ~M_BLOCKED;
118 		sb->sb_acc += m->m_len;
119 	}
120 
121 	sb->sb_fnrdy = m;
122 
123 	return (0);
124 }
125 
126 /*
127  * Adjust sockbuf state reflecting allocation of m.
128  */
129 void
130 sballoc(struct sockbuf *sb, struct mbuf *m)
131 {
132 
133 	SOCKBUF_LOCK_ASSERT(sb);
134 
135 	sb->sb_ccc += m->m_len;
136 
137 	if (sb->sb_fnrdy == NULL) {
138 		if (m->m_flags & M_NOTREADY)
139 			sb->sb_fnrdy = m;
140 		else
141 			sb->sb_acc += m->m_len;
142 	} else
143 		m->m_flags |= M_BLOCKED;
144 
145 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
146 		sb->sb_ctl += m->m_len;
147 
148 	sb->sb_mbcnt += MSIZE;
149 	sb->sb_mcnt += 1;
150 
151 	if (m->m_flags & M_EXT) {
152 		sb->sb_mbcnt += m->m_ext.ext_size;
153 		sb->sb_ccnt += 1;
154 	}
155 }
156 
157 /*
158  * Adjust sockbuf state reflecting freeing of m.
159  */
160 void
161 sbfree(struct sockbuf *sb, struct mbuf *m)
162 {
163 
164 #if 0	/* XXX: not yet: soclose() call path comes here w/o lock. */
165 	SOCKBUF_LOCK_ASSERT(sb);
166 #endif
167 
168 	sb->sb_ccc -= m->m_len;
169 
170 	if (!(m->m_flags & M_NOTAVAIL))
171 		sb->sb_acc -= m->m_len;
172 
173 	if (m == sb->sb_fnrdy) {
174 		struct mbuf *n;
175 
176 		KASSERT(m->m_flags & M_NOTREADY,
177 		    ("%s: m %p !M_NOTREADY", __func__, m));
178 
179 		n = m->m_next;
180 		while (n != NULL && !(n->m_flags & M_NOTREADY)) {
181 			n->m_flags &= ~M_BLOCKED;
182 			sb->sb_acc += n->m_len;
183 			n = n->m_next;
184 		}
185 		sb->sb_fnrdy = n;
186 	}
187 
188 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
189 		sb->sb_ctl -= m->m_len;
190 
191 	sb->sb_mbcnt -= MSIZE;
192 	sb->sb_mcnt -= 1;
193 	if (m->m_flags & M_EXT) {
194 		sb->sb_mbcnt -= m->m_ext.ext_size;
195 		sb->sb_ccnt -= 1;
196 	}
197 
198 	if (sb->sb_sndptr == m) {
199 		sb->sb_sndptr = NULL;
200 		sb->sb_sndptroff = 0;
201 	}
202 	if (sb->sb_sndptroff != 0)
203 		sb->sb_sndptroff -= m->m_len;
204 }
205 
206 /*
207  * Socantsendmore indicates that no more data will be sent on the socket; it
208  * would normally be applied to a socket when the user informs the system
209  * that no more data is to be sent, by the protocol code (in case
210  * PRU_SHUTDOWN).  Socantrcvmore indicates that no more data will be
211  * received, and will normally be applied to the socket by a protocol when it
212  * detects that the peer will send no more data.  Data queued for reading in
213  * the socket may yet be read.
214  */
215 void
216 socantsendmore_locked(struct socket *so)
217 {
218 
219 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
220 
221 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
222 	sowwakeup_locked(so);
223 	mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
224 }
225 
226 void
227 socantsendmore(struct socket *so)
228 {
229 
230 	SOCKBUF_LOCK(&so->so_snd);
231 	socantsendmore_locked(so);
232 	mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
233 }
234 
235 void
236 socantrcvmore_locked(struct socket *so)
237 {
238 
239 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
240 
241 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
242 	sorwakeup_locked(so);
243 	mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
244 }
245 
246 void
247 socantrcvmore(struct socket *so)
248 {
249 
250 	SOCKBUF_LOCK(&so->so_rcv);
251 	socantrcvmore_locked(so);
252 	mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
253 }
254 
255 /*
256  * Wait for data to arrive at/drain from a socket buffer.
257  */
258 int
259 sbwait(struct sockbuf *sb)
260 {
261 
262 	SOCKBUF_LOCK_ASSERT(sb);
263 
264 	sb->sb_flags |= SB_WAIT;
265 	return (msleep_sbt(&sb->sb_acc, &sb->sb_mtx,
266 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
267 	    sb->sb_timeo, 0, 0));
268 }
269 
270 int
271 sblock(struct sockbuf *sb, int flags)
272 {
273 
274 	KASSERT((flags & SBL_VALID) == flags,
275 	    ("sblock: flags invalid (0x%x)", flags));
276 
277 	if (flags & SBL_WAIT) {
278 		if ((sb->sb_flags & SB_NOINTR) ||
279 		    (flags & SBL_NOINTR)) {
280 			sx_xlock(&sb->sb_sx);
281 			return (0);
282 		}
283 		return (sx_xlock_sig(&sb->sb_sx));
284 	} else {
285 		if (sx_try_xlock(&sb->sb_sx) == 0)
286 			return (EWOULDBLOCK);
287 		return (0);
288 	}
289 }
290 
291 void
292 sbunlock(struct sockbuf *sb)
293 {
294 
295 	sx_xunlock(&sb->sb_sx);
296 }
297 
298 /*
299  * Wakeup processes waiting on a socket buffer.  Do asynchronous notification
300  * via SIGIO if the socket has the SS_ASYNC flag set.
301  *
302  * Called with the socket buffer lock held; will release the lock by the end
303  * of the function.  This allows the caller to acquire the socket buffer lock
304  * while testing for the need for various sorts of wakeup and hold it through
305  * to the point where it's no longer required.  We currently hold the lock
306  * through calls out to other subsystems (with the exception of kqueue), and
307  * then release it to avoid lock order issues.  It's not clear that's
308  * correct.
309  */
310 void
311 sowakeup(struct socket *so, struct sockbuf *sb)
312 {
313 	int ret;
314 
315 	SOCKBUF_LOCK_ASSERT(sb);
316 
317 	selwakeuppri(&sb->sb_sel, PSOCK);
318 	if (!SEL_WAITING(&sb->sb_sel))
319 		sb->sb_flags &= ~SB_SEL;
320 	if (sb->sb_flags & SB_WAIT) {
321 		sb->sb_flags &= ~SB_WAIT;
322 		wakeup(&sb->sb_acc);
323 	}
324 	KNOTE_LOCKED(&sb->sb_sel.si_note, 0);
325 	if (sb->sb_upcall != NULL) {
326 		ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT);
327 		if (ret == SU_ISCONNECTED) {
328 			KASSERT(sb == &so->so_rcv,
329 			    ("SO_SND upcall returned SU_ISCONNECTED"));
330 			soupcall_clear(so, SO_RCV);
331 		}
332 	} else
333 		ret = SU_OK;
334 	if (sb->sb_flags & SB_AIO)
335 		sowakeup_aio(so, sb);
336 	SOCKBUF_UNLOCK(sb);
337 	if (ret == SU_ISCONNECTED)
338 		soisconnected(so);
339 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
340 		pgsigio(&so->so_sigio, SIGIO, 0);
341 	mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED);
342 }
343 
344 /*
345  * Socket buffer (struct sockbuf) utility routines.
346  *
347  * Each socket contains two socket buffers: one for sending data and one for
348  * receiving data.  Each buffer contains a queue of mbufs, information about
349  * the number of mbufs and amount of data in the queue, and other fields
350  * allowing select() statements and notification on data availability to be
351  * implemented.
352  *
353  * Data stored in a socket buffer is maintained as a list of records.  Each
354  * record is a list of mbufs chained together with the m_next field.  Records
355  * are chained together with the m_nextpkt field. The upper level routine
356  * soreceive() expects the following conventions to be observed when placing
357  * information in the receive buffer:
358  *
359  * 1. If the protocol requires each message be preceded by the sender's name,
360  *    then a record containing that name must be present before any
361  *    associated data (mbuf's must be of type MT_SONAME).
362  * 2. If the protocol supports the exchange of ``access rights'' (really just
363  *    additional data associated with the message), and there are ``rights''
364  *    to be received, then a record containing this data should be present
365  *    (mbuf's must be of type MT_RIGHTS).
366  * 3. If a name or rights record exists, then it must be followed by a data
367  *    record, perhaps of zero length.
368  *
369  * Before using a new socket structure it is first necessary to reserve
370  * buffer space to the socket, by calling sbreserve().  This should commit
371  * some of the available buffer space in the system buffer pool for the
372  * socket (currently, it does nothing but enforce limits).  The space should
373  * be released by calling sbrelease() when the socket is destroyed.
374  */
375 int
376 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
377 {
378 	struct thread *td = curthread;
379 
380 	SOCKBUF_LOCK(&so->so_snd);
381 	SOCKBUF_LOCK(&so->so_rcv);
382 	if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0)
383 		goto bad;
384 	if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0)
385 		goto bad2;
386 	if (so->so_rcv.sb_lowat == 0)
387 		so->so_rcv.sb_lowat = 1;
388 	if (so->so_snd.sb_lowat == 0)
389 		so->so_snd.sb_lowat = MCLBYTES;
390 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
391 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
392 	SOCKBUF_UNLOCK(&so->so_rcv);
393 	SOCKBUF_UNLOCK(&so->so_snd);
394 	return (0);
395 bad2:
396 	sbrelease_locked(&so->so_snd, so);
397 bad:
398 	SOCKBUF_UNLOCK(&so->so_rcv);
399 	SOCKBUF_UNLOCK(&so->so_snd);
400 	return (ENOBUFS);
401 }
402 
403 static int
404 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
405 {
406 	int error = 0;
407 	u_long tmp_sb_max = sb_max;
408 
409 	error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req);
410 	if (error || !req->newptr)
411 		return (error);
412 	if (tmp_sb_max < MSIZE + MCLBYTES)
413 		return (EINVAL);
414 	sb_max = tmp_sb_max;
415 	sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
416 	return (0);
417 }
418 
419 /*
420  * Allot mbufs to a sockbuf.  Attempt to scale mbmax so that mbcnt doesn't
421  * become limiting if buffering efficiency is near the normal case.
422  */
423 int
424 sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so,
425     struct thread *td)
426 {
427 	rlim_t sbsize_limit;
428 
429 	SOCKBUF_LOCK_ASSERT(sb);
430 
431 	/*
432 	 * When a thread is passed, we take into account the thread's socket
433 	 * buffer size limit.  The caller will generally pass curthread, but
434 	 * in the TCP input path, NULL will be passed to indicate that no
435 	 * appropriate thread resource limits are available.  In that case,
436 	 * we don't apply a process limit.
437 	 */
438 	if (cc > sb_max_adj)
439 		return (0);
440 	if (td != NULL) {
441 		sbsize_limit = lim_cur(td, RLIMIT_SBSIZE);
442 	} else
443 		sbsize_limit = RLIM_INFINITY;
444 	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
445 	    sbsize_limit))
446 		return (0);
447 	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
448 	if (sb->sb_lowat > sb->sb_hiwat)
449 		sb->sb_lowat = sb->sb_hiwat;
450 	return (1);
451 }
452 
453 int
454 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so,
455     struct thread *td)
456 {
457 	int error;
458 
459 	SOCKBUF_LOCK(sb);
460 	error = sbreserve_locked(sb, cc, so, td);
461 	SOCKBUF_UNLOCK(sb);
462 	return (error);
463 }
464 
465 /*
466  * Free mbufs held by a socket, and reserved mbuf space.
467  */
468 void
469 sbrelease_internal(struct sockbuf *sb, struct socket *so)
470 {
471 
472 	sbflush_internal(sb);
473 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
474 	    RLIM_INFINITY);
475 	sb->sb_mbmax = 0;
476 }
477 
478 void
479 sbrelease_locked(struct sockbuf *sb, struct socket *so)
480 {
481 
482 	SOCKBUF_LOCK_ASSERT(sb);
483 
484 	sbrelease_internal(sb, so);
485 }
486 
487 void
488 sbrelease(struct sockbuf *sb, struct socket *so)
489 {
490 
491 	SOCKBUF_LOCK(sb);
492 	sbrelease_locked(sb, so);
493 	SOCKBUF_UNLOCK(sb);
494 }
495 
496 void
497 sbdestroy(struct sockbuf *sb, struct socket *so)
498 {
499 
500 	sbrelease_internal(sb, so);
501 }
502 
503 /*
504  * Routines to add and remove data from an mbuf queue.
505  *
506  * The routines sbappend() or sbappendrecord() are normally called to append
507  * new mbufs to a socket buffer, after checking that adequate space is
508  * available, comparing the function sbspace() with the amount of data to be
509  * added.  sbappendrecord() differs from sbappend() in that data supplied is
510  * treated as the beginning of a new record.  To place a sender's address,
511  * optional access rights, and data in a socket receive buffer,
512  * sbappendaddr() should be used.  To place access rights and data in a
513  * socket receive buffer, sbappendrights() should be used.  In either case,
514  * the new data begins a new record.  Note that unlike sbappend() and
515  * sbappendrecord(), these routines check for the caller that there will be
516  * enough space to store the data.  Each fails if there is not enough space,
517  * or if it cannot find mbufs to store additional information in.
518  *
519  * Reliable protocols may use the socket send buffer to hold data awaiting
520  * acknowledgement.  Data is normally copied from a socket send buffer in a
521  * protocol with m_copy for output to a peer, and then removing the data from
522  * the socket buffer with sbdrop() or sbdroprecord() when the data is
523  * acknowledged by the peer.
524  */
525 #ifdef SOCKBUF_DEBUG
526 void
527 sblastrecordchk(struct sockbuf *sb, const char *file, int line)
528 {
529 	struct mbuf *m = sb->sb_mb;
530 
531 	SOCKBUF_LOCK_ASSERT(sb);
532 
533 	while (m && m->m_nextpkt)
534 		m = m->m_nextpkt;
535 
536 	if (m != sb->sb_lastrecord) {
537 		printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
538 			__func__, sb->sb_mb, sb->sb_lastrecord, m);
539 		printf("packet chain:\n");
540 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
541 			printf("\t%p\n", m);
542 		panic("%s from %s:%u", __func__, file, line);
543 	}
544 }
545 
546 void
547 sblastmbufchk(struct sockbuf *sb, const char *file, int line)
548 {
549 	struct mbuf *m = sb->sb_mb;
550 	struct mbuf *n;
551 
552 	SOCKBUF_LOCK_ASSERT(sb);
553 
554 	while (m && m->m_nextpkt)
555 		m = m->m_nextpkt;
556 
557 	while (m && m->m_next)
558 		m = m->m_next;
559 
560 	if (m != sb->sb_mbtail) {
561 		printf("%s: sb_mb %p sb_mbtail %p last %p\n",
562 			__func__, sb->sb_mb, sb->sb_mbtail, m);
563 		printf("packet tree:\n");
564 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
565 			printf("\t");
566 			for (n = m; n != NULL; n = n->m_next)
567 				printf("%p ", n);
568 			printf("\n");
569 		}
570 		panic("%s from %s:%u", __func__, file, line);
571 	}
572 }
573 #endif /* SOCKBUF_DEBUG */
574 
575 #define SBLINKRECORD(sb, m0) do {					\
576 	SOCKBUF_LOCK_ASSERT(sb);					\
577 	if ((sb)->sb_lastrecord != NULL)				\
578 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
579 	else								\
580 		(sb)->sb_mb = (m0);					\
581 	(sb)->sb_lastrecord = (m0);					\
582 } while (/*CONSTCOND*/0)
583 
584 /*
585  * Append mbuf chain m to the last record in the socket buffer sb.  The
586  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
587  * are discarded and mbufs are compacted where possible.
588  */
589 void
590 sbappend_locked(struct sockbuf *sb, struct mbuf *m, int flags)
591 {
592 	struct mbuf *n;
593 
594 	SOCKBUF_LOCK_ASSERT(sb);
595 
596 	if (m == NULL)
597 		return;
598 	sbm_clrprotoflags(m, flags);
599 	SBLASTRECORDCHK(sb);
600 	n = sb->sb_mb;
601 	if (n) {
602 		while (n->m_nextpkt)
603 			n = n->m_nextpkt;
604 		do {
605 			if (n->m_flags & M_EOR) {
606 				sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
607 				return;
608 			}
609 		} while (n->m_next && (n = n->m_next));
610 	} else {
611 		/*
612 		 * XXX Would like to simply use sb_mbtail here, but
613 		 * XXX I need to verify that I won't miss an EOR that
614 		 * XXX way.
615 		 */
616 		if ((n = sb->sb_lastrecord) != NULL) {
617 			do {
618 				if (n->m_flags & M_EOR) {
619 					sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
620 					return;
621 				}
622 			} while (n->m_next && (n = n->m_next));
623 		} else {
624 			/*
625 			 * If this is the first record in the socket buffer,
626 			 * it's also the last record.
627 			 */
628 			sb->sb_lastrecord = m;
629 		}
630 	}
631 	sbcompress(sb, m, n);
632 	SBLASTRECORDCHK(sb);
633 }
634 
635 /*
636  * Append mbuf chain m to the last record in the socket buffer sb.  The
637  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
638  * are discarded and mbufs are compacted where possible.
639  */
640 void
641 sbappend(struct sockbuf *sb, struct mbuf *m, int flags)
642 {
643 
644 	SOCKBUF_LOCK(sb);
645 	sbappend_locked(sb, m, flags);
646 	SOCKBUF_UNLOCK(sb);
647 }
648 
649 /*
650  * This version of sbappend() should only be used when the caller absolutely
651  * knows that there will never be more than one record in the socket buffer,
652  * that is, a stream protocol (such as TCP).
653  */
654 void
655 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags)
656 {
657 	SOCKBUF_LOCK_ASSERT(sb);
658 
659 	KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
660 	KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
661 
662 	SBLASTMBUFCHK(sb);
663 
664 	/* Remove all packet headers and mbuf tags to get a pure data chain. */
665 	m_demote(m, 1, flags & PRUS_NOTREADY ? M_NOTREADY : 0);
666 
667 	sbcompress(sb, m, sb->sb_mbtail);
668 
669 	sb->sb_lastrecord = sb->sb_mb;
670 	SBLASTRECORDCHK(sb);
671 }
672 
673 /*
674  * This version of sbappend() should only be used when the caller absolutely
675  * knows that there will never be more than one record in the socket buffer,
676  * that is, a stream protocol (such as TCP).
677  */
678 void
679 sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags)
680 {
681 
682 	SOCKBUF_LOCK(sb);
683 	sbappendstream_locked(sb, m, flags);
684 	SOCKBUF_UNLOCK(sb);
685 }
686 
687 #ifdef SOCKBUF_DEBUG
688 void
689 sbcheck(struct sockbuf *sb, const char *file, int line)
690 {
691 	struct mbuf *m, *n, *fnrdy;
692 	u_long acc, ccc, mbcnt;
693 
694 	SOCKBUF_LOCK_ASSERT(sb);
695 
696 	acc = ccc = mbcnt = 0;
697 	fnrdy = NULL;
698 
699 	for (m = sb->sb_mb; m; m = n) {
700 	    n = m->m_nextpkt;
701 	    for (; m; m = m->m_next) {
702 		if (m->m_len == 0) {
703 			printf("sb %p empty mbuf %p\n", sb, m);
704 			goto fail;
705 		}
706 		if ((m->m_flags & M_NOTREADY) && fnrdy == NULL) {
707 			if (m != sb->sb_fnrdy) {
708 				printf("sb %p: fnrdy %p != m %p\n",
709 				    sb, sb->sb_fnrdy, m);
710 				goto fail;
711 			}
712 			fnrdy = m;
713 		}
714 		if (fnrdy) {
715 			if (!(m->m_flags & M_NOTAVAIL)) {
716 				printf("sb %p: fnrdy %p, m %p is avail\n",
717 				    sb, sb->sb_fnrdy, m);
718 				goto fail;
719 			}
720 		} else
721 			acc += m->m_len;
722 		ccc += m->m_len;
723 		mbcnt += MSIZE;
724 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
725 			mbcnt += m->m_ext.ext_size;
726 	    }
727 	}
728 	if (acc != sb->sb_acc || ccc != sb->sb_ccc || mbcnt != sb->sb_mbcnt) {
729 		printf("acc %ld/%u ccc %ld/%u mbcnt %ld/%u\n",
730 		    acc, sb->sb_acc, ccc, sb->sb_ccc, mbcnt, sb->sb_mbcnt);
731 		goto fail;
732 	}
733 	return;
734 fail:
735 	panic("%s from %s:%u", __func__, file, line);
736 }
737 #endif
738 
739 /*
740  * As above, except the mbuf chain begins a new record.
741  */
742 void
743 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
744 {
745 	struct mbuf *m;
746 
747 	SOCKBUF_LOCK_ASSERT(sb);
748 
749 	if (m0 == NULL)
750 		return;
751 	m_clrprotoflags(m0);
752 	/*
753 	 * Put the first mbuf on the queue.  Note this permits zero length
754 	 * records.
755 	 */
756 	sballoc(sb, m0);
757 	SBLASTRECORDCHK(sb);
758 	SBLINKRECORD(sb, m0);
759 	sb->sb_mbtail = m0;
760 	m = m0->m_next;
761 	m0->m_next = 0;
762 	if (m && (m0->m_flags & M_EOR)) {
763 		m0->m_flags &= ~M_EOR;
764 		m->m_flags |= M_EOR;
765 	}
766 	/* always call sbcompress() so it can do SBLASTMBUFCHK() */
767 	sbcompress(sb, m, m0);
768 }
769 
770 /*
771  * As above, except the mbuf chain begins a new record.
772  */
773 void
774 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
775 {
776 
777 	SOCKBUF_LOCK(sb);
778 	sbappendrecord_locked(sb, m0);
779 	SOCKBUF_UNLOCK(sb);
780 }
781 
782 /* Helper routine that appends data, control, and address to a sockbuf. */
783 static int
784 sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa,
785     struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last)
786 {
787 	struct mbuf *m, *n, *nlast;
788 #if MSIZE <= 256
789 	if (asa->sa_len > MLEN)
790 		return (0);
791 #endif
792 	m = m_get(M_NOWAIT, MT_SONAME);
793 	if (m == NULL)
794 		return (0);
795 	m->m_len = asa->sa_len;
796 	bcopy(asa, mtod(m, caddr_t), asa->sa_len);
797 	if (m0)
798 		m_clrprotoflags(m0);
799 	if (ctrl_last)
800 		ctrl_last->m_next = m0;	/* concatenate data to control */
801 	else
802 		control = m0;
803 	m->m_next = control;
804 	for (n = m; n->m_next != NULL; n = n->m_next)
805 		sballoc(sb, n);
806 	sballoc(sb, n);
807 	nlast = n;
808 	SBLINKRECORD(sb, m);
809 
810 	sb->sb_mbtail = nlast;
811 	SBLASTMBUFCHK(sb);
812 
813 	SBLASTRECORDCHK(sb);
814 	return (1);
815 }
816 
817 /*
818  * Append address and data, and optionally, control (ancillary) data to the
819  * receive queue of a socket.  If present, m0 must include a packet header
820  * with total length.  Returns 0 if no space in sockbuf or insufficient
821  * mbufs.
822  */
823 int
824 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
825     struct mbuf *m0, struct mbuf *control)
826 {
827 	struct mbuf *ctrl_last;
828 	int space = asa->sa_len;
829 
830 	SOCKBUF_LOCK_ASSERT(sb);
831 
832 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
833 		panic("sbappendaddr_locked");
834 	if (m0)
835 		space += m0->m_pkthdr.len;
836 	space += m_length(control, &ctrl_last);
837 
838 	if (space > sbspace(sb))
839 		return (0);
840 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
841 }
842 
843 /*
844  * Append address and data, and optionally, control (ancillary) data to the
845  * receive queue of a socket.  If present, m0 must include a packet header
846  * with total length.  Returns 0 if insufficient mbufs.  Does not validate space
847  * on the receiving sockbuf.
848  */
849 int
850 sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa,
851     struct mbuf *m0, struct mbuf *control)
852 {
853 	struct mbuf *ctrl_last;
854 
855 	SOCKBUF_LOCK_ASSERT(sb);
856 
857 	ctrl_last = (control == NULL) ? NULL : m_last(control);
858 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
859 }
860 
861 /*
862  * Append address and data, and optionally, control (ancillary) data to the
863  * receive queue of a socket.  If present, m0 must include a packet header
864  * with total length.  Returns 0 if no space in sockbuf or insufficient
865  * mbufs.
866  */
867 int
868 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
869     struct mbuf *m0, struct mbuf *control)
870 {
871 	int retval;
872 
873 	SOCKBUF_LOCK(sb);
874 	retval = sbappendaddr_locked(sb, asa, m0, control);
875 	SOCKBUF_UNLOCK(sb);
876 	return (retval);
877 }
878 
879 int
880 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
881     struct mbuf *control)
882 {
883 	struct mbuf *m, *n, *mlast;
884 	int space;
885 
886 	SOCKBUF_LOCK_ASSERT(sb);
887 
888 	if (control == NULL)
889 		panic("sbappendcontrol_locked");
890 	space = m_length(control, &n) + m_length(m0, NULL);
891 
892 	if (space > sbspace(sb))
893 		return (0);
894 	m_clrprotoflags(m0);
895 	n->m_next = m0;			/* concatenate data to control */
896 
897 	SBLASTRECORDCHK(sb);
898 
899 	for (m = control; m->m_next; m = m->m_next)
900 		sballoc(sb, m);
901 	sballoc(sb, m);
902 	mlast = m;
903 	SBLINKRECORD(sb, control);
904 
905 	sb->sb_mbtail = mlast;
906 	SBLASTMBUFCHK(sb);
907 
908 	SBLASTRECORDCHK(sb);
909 	return (1);
910 }
911 
912 int
913 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
914 {
915 	int retval;
916 
917 	SOCKBUF_LOCK(sb);
918 	retval = sbappendcontrol_locked(sb, m0, control);
919 	SOCKBUF_UNLOCK(sb);
920 	return (retval);
921 }
922 
923 /*
924  * Append the data in mbuf chain (m) into the socket buffer sb following mbuf
925  * (n).  If (n) is NULL, the buffer is presumed empty.
926  *
927  * When the data is compressed, mbufs in the chain may be handled in one of
928  * three ways:
929  *
930  * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
931  *     record boundary, and no change in data type).
932  *
933  * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
934  *     an mbuf already in the socket buffer.  This can occur if an
935  *     appropriate mbuf exists, there is room, both mbufs are not marked as
936  *     not ready, and no merging of data types will occur.
937  *
938  * (3) The mbuf may be appended to the end of the existing mbuf chain.
939  *
940  * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
941  * end-of-record.
942  */
943 void
944 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
945 {
946 	int eor = 0;
947 	struct mbuf *o;
948 
949 	SOCKBUF_LOCK_ASSERT(sb);
950 
951 	while (m) {
952 		eor |= m->m_flags & M_EOR;
953 		if (m->m_len == 0 &&
954 		    (eor == 0 ||
955 		     (((o = m->m_next) || (o = n)) &&
956 		      o->m_type == m->m_type))) {
957 			if (sb->sb_lastrecord == m)
958 				sb->sb_lastrecord = m->m_next;
959 			m = m_free(m);
960 			continue;
961 		}
962 		if (n && (n->m_flags & M_EOR) == 0 &&
963 		    M_WRITABLE(n) &&
964 		    ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
965 		    !(m->m_flags & M_NOTREADY) &&
966 		    !(n->m_flags & M_NOTREADY) &&
967 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
968 		    m->m_len <= M_TRAILINGSPACE(n) &&
969 		    n->m_type == m->m_type) {
970 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
971 			    (unsigned)m->m_len);
972 			n->m_len += m->m_len;
973 			sb->sb_ccc += m->m_len;
974 			if (sb->sb_fnrdy == NULL)
975 				sb->sb_acc += m->m_len;
976 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
977 				/* XXX: Probably don't need.*/
978 				sb->sb_ctl += m->m_len;
979 			m = m_free(m);
980 			continue;
981 		}
982 		if (n)
983 			n->m_next = m;
984 		else
985 			sb->sb_mb = m;
986 		sb->sb_mbtail = m;
987 		sballoc(sb, m);
988 		n = m;
989 		m->m_flags &= ~M_EOR;
990 		m = m->m_next;
991 		n->m_next = 0;
992 	}
993 	if (eor) {
994 		KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
995 		n->m_flags |= eor;
996 	}
997 	SBLASTMBUFCHK(sb);
998 }
999 
1000 /*
1001  * Free all mbufs in a sockbuf.  Check that all resources are reclaimed.
1002  */
1003 static void
1004 sbflush_internal(struct sockbuf *sb)
1005 {
1006 
1007 	while (sb->sb_mbcnt) {
1008 		/*
1009 		 * Don't call sbcut(sb, 0) if the leading mbuf is non-empty:
1010 		 * we would loop forever. Panic instead.
1011 		 */
1012 		if (sb->sb_ccc == 0 && (sb->sb_mb == NULL || sb->sb_mb->m_len))
1013 			break;
1014 		m_freem(sbcut_internal(sb, (int)sb->sb_ccc));
1015 	}
1016 	KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
1017 	    ("%s: ccc %u mb %p mbcnt %u", __func__,
1018 	    sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
1019 }
1020 
1021 void
1022 sbflush_locked(struct sockbuf *sb)
1023 {
1024 
1025 	SOCKBUF_LOCK_ASSERT(sb);
1026 	sbflush_internal(sb);
1027 }
1028 
1029 void
1030 sbflush(struct sockbuf *sb)
1031 {
1032 
1033 	SOCKBUF_LOCK(sb);
1034 	sbflush_locked(sb);
1035 	SOCKBUF_UNLOCK(sb);
1036 }
1037 
1038 /*
1039  * Cut data from (the front of) a sockbuf.
1040  */
1041 static struct mbuf *
1042 sbcut_internal(struct sockbuf *sb, int len)
1043 {
1044 	struct mbuf *m, *next, *mfree;
1045 
1046 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1047 	mfree = NULL;
1048 
1049 	while (len > 0) {
1050 		if (m == NULL) {
1051 			KASSERT(next, ("%s: no next, len %d", __func__, len));
1052 			m = next;
1053 			next = m->m_nextpkt;
1054 		}
1055 		if (m->m_len > len) {
1056 			KASSERT(!(m->m_flags & M_NOTAVAIL),
1057 			    ("%s: m %p M_NOTAVAIL", __func__, m));
1058 			m->m_len -= len;
1059 			m->m_data += len;
1060 			sb->sb_ccc -= len;
1061 			sb->sb_acc -= len;
1062 			if (sb->sb_sndptroff != 0)
1063 				sb->sb_sndptroff -= len;
1064 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1065 				sb->sb_ctl -= len;
1066 			break;
1067 		}
1068 		len -= m->m_len;
1069 		sbfree(sb, m);
1070 		/*
1071 		 * Do not put M_NOTREADY buffers to the free list, they
1072 		 * are referenced from outside.
1073 		 */
1074 		if (m->m_flags & M_NOTREADY)
1075 			m = m->m_next;
1076 		else {
1077 			struct mbuf *n;
1078 
1079 			n = m->m_next;
1080 			m->m_next = mfree;
1081 			mfree = m;
1082 			m = n;
1083 		}
1084 	}
1085 	/*
1086 	 * Free any zero-length mbufs from the buffer.
1087 	 * For SOCK_DGRAM sockets such mbufs represent empty records.
1088 	 * XXX: For SOCK_STREAM sockets such mbufs can appear in the buffer,
1089 	 * when sosend_generic() needs to send only control data.
1090 	 */
1091 	while (m && m->m_len == 0) {
1092 		struct mbuf *n;
1093 
1094 		sbfree(sb, m);
1095 		n = m->m_next;
1096 		m->m_next = mfree;
1097 		mfree = m;
1098 		m = n;
1099 	}
1100 	if (m) {
1101 		sb->sb_mb = m;
1102 		m->m_nextpkt = next;
1103 	} else
1104 		sb->sb_mb = next;
1105 	/*
1106 	 * First part is an inline SB_EMPTY_FIXUP().  Second part makes sure
1107 	 * sb_lastrecord is up-to-date if we dropped part of the last record.
1108 	 */
1109 	m = sb->sb_mb;
1110 	if (m == NULL) {
1111 		sb->sb_mbtail = NULL;
1112 		sb->sb_lastrecord = NULL;
1113 	} else if (m->m_nextpkt == NULL) {
1114 		sb->sb_lastrecord = m;
1115 	}
1116 
1117 	return (mfree);
1118 }
1119 
1120 /*
1121  * Drop data from (the front of) a sockbuf.
1122  */
1123 void
1124 sbdrop_locked(struct sockbuf *sb, int len)
1125 {
1126 
1127 	SOCKBUF_LOCK_ASSERT(sb);
1128 	m_freem(sbcut_internal(sb, len));
1129 }
1130 
1131 /*
1132  * Drop data from (the front of) a sockbuf,
1133  * and return it to caller.
1134  */
1135 struct mbuf *
1136 sbcut_locked(struct sockbuf *sb, int len)
1137 {
1138 
1139 	SOCKBUF_LOCK_ASSERT(sb);
1140 	return (sbcut_internal(sb, len));
1141 }
1142 
1143 void
1144 sbdrop(struct sockbuf *sb, int len)
1145 {
1146 	struct mbuf *mfree;
1147 
1148 	SOCKBUF_LOCK(sb);
1149 	mfree = sbcut_internal(sb, len);
1150 	SOCKBUF_UNLOCK(sb);
1151 
1152 	m_freem(mfree);
1153 }
1154 
1155 /*
1156  * Maintain a pointer and offset pair into the socket buffer mbuf chain to
1157  * avoid traversal of the entire socket buffer for larger offsets.
1158  */
1159 struct mbuf *
1160 sbsndptr(struct sockbuf *sb, u_int off, u_int len, u_int *moff)
1161 {
1162 	struct mbuf *m, *ret;
1163 
1164 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1165 	KASSERT(off + len <= sb->sb_acc, ("%s: beyond sb", __func__));
1166 	KASSERT(sb->sb_sndptroff <= sb->sb_acc, ("%s: sndptroff broken", __func__));
1167 
1168 	/*
1169 	 * Is off below stored offset? Happens on retransmits.
1170 	 * Just return, we can't help here.
1171 	 */
1172 	if (sb->sb_sndptroff > off) {
1173 		*moff = off;
1174 		return (sb->sb_mb);
1175 	}
1176 
1177 	/* Return closest mbuf in chain for current offset. */
1178 	*moff = off - sb->sb_sndptroff;
1179 	m = ret = sb->sb_sndptr ? sb->sb_sndptr : sb->sb_mb;
1180 	if (*moff == m->m_len) {
1181 		*moff = 0;
1182 		sb->sb_sndptroff += m->m_len;
1183 		m = ret = m->m_next;
1184 		KASSERT(ret->m_len > 0,
1185 		    ("mbuf %p in sockbuf %p chain has no valid data", ret, sb));
1186 	}
1187 
1188 	/* Advance by len to be as close as possible for the next transmit. */
1189 	for (off = off - sb->sb_sndptroff + len - 1;
1190 	     off > 0 && m != NULL && off >= m->m_len;
1191 	     m = m->m_next) {
1192 		sb->sb_sndptroff += m->m_len;
1193 		off -= m->m_len;
1194 	}
1195 	if (off > 0 && m == NULL)
1196 		panic("%s: sockbuf %p and mbuf %p clashing", __func__, sb, ret);
1197 	sb->sb_sndptr = m;
1198 
1199 	return (ret);
1200 }
1201 
1202 /*
1203  * Return the first mbuf and the mbuf data offset for the provided
1204  * send offset without changing the "sb_sndptroff" field.
1205  */
1206 struct mbuf *
1207 sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff)
1208 {
1209 	struct mbuf *m;
1210 
1211 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1212 
1213 	/*
1214 	 * If the "off" is below the stored offset, which happens on
1215 	 * retransmits, just use "sb_mb":
1216 	 */
1217 	if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1218 		m = sb->sb_mb;
1219 	} else {
1220 		m = sb->sb_sndptr;
1221 		off -= sb->sb_sndptroff;
1222 	}
1223 	while (off > 0 && m != NULL) {
1224 		if (off < m->m_len)
1225 			break;
1226 		off -= m->m_len;
1227 		m = m->m_next;
1228 	}
1229 	*moff = off;
1230 	return (m);
1231 }
1232 
1233 /*
1234  * Drop a record off the front of a sockbuf and move the next record to the
1235  * front.
1236  */
1237 void
1238 sbdroprecord_locked(struct sockbuf *sb)
1239 {
1240 	struct mbuf *m;
1241 
1242 	SOCKBUF_LOCK_ASSERT(sb);
1243 
1244 	m = sb->sb_mb;
1245 	if (m) {
1246 		sb->sb_mb = m->m_nextpkt;
1247 		do {
1248 			sbfree(sb, m);
1249 			m = m_free(m);
1250 		} while (m);
1251 	}
1252 	SB_EMPTY_FIXUP(sb);
1253 }
1254 
1255 /*
1256  * Drop a record off the front of a sockbuf and move the next record to the
1257  * front.
1258  */
1259 void
1260 sbdroprecord(struct sockbuf *sb)
1261 {
1262 
1263 	SOCKBUF_LOCK(sb);
1264 	sbdroprecord_locked(sb);
1265 	SOCKBUF_UNLOCK(sb);
1266 }
1267 
1268 /*
1269  * Create a "control" mbuf containing the specified data with the specified
1270  * type for presentation on a socket buffer.
1271  */
1272 struct mbuf *
1273 sbcreatecontrol(caddr_t p, int size, int type, int level)
1274 {
1275 	struct cmsghdr *cp;
1276 	struct mbuf *m;
1277 
1278 	if (CMSG_SPACE((u_int)size) > MCLBYTES)
1279 		return ((struct mbuf *) NULL);
1280 	if (CMSG_SPACE((u_int)size) > MLEN)
1281 		m = m_getcl(M_NOWAIT, MT_CONTROL, 0);
1282 	else
1283 		m = m_get(M_NOWAIT, MT_CONTROL);
1284 	if (m == NULL)
1285 		return ((struct mbuf *) NULL);
1286 	cp = mtod(m, struct cmsghdr *);
1287 	m->m_len = 0;
1288 	KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
1289 	    ("sbcreatecontrol: short mbuf"));
1290 	/*
1291 	 * Don't leave the padding between the msg header and the
1292 	 * cmsg data and the padding after the cmsg data un-initialized.
1293 	 */
1294 	bzero(cp, CMSG_SPACE((u_int)size));
1295 	if (p != NULL)
1296 		(void)memcpy(CMSG_DATA(cp), p, size);
1297 	m->m_len = CMSG_SPACE(size);
1298 	cp->cmsg_len = CMSG_LEN(size);
1299 	cp->cmsg_level = level;
1300 	cp->cmsg_type = type;
1301 	return (m);
1302 }
1303 
1304 /*
1305  * This does the same for socket buffers that sotoxsocket does for sockets:
1306  * generate an user-format data structure describing the socket buffer.  Note
1307  * that the xsockbuf structure, since it is always embedded in a socket, does
1308  * not include a self pointer nor a length.  We make this entry point public
1309  * in case some other mechanism needs it.
1310  */
1311 void
1312 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1313 {
1314 
1315 	xsb->sb_cc = sb->sb_ccc;
1316 	xsb->sb_hiwat = sb->sb_hiwat;
1317 	xsb->sb_mbcnt = sb->sb_mbcnt;
1318 	xsb->sb_mcnt = sb->sb_mcnt;
1319 	xsb->sb_ccnt = sb->sb_ccnt;
1320 	xsb->sb_mbmax = sb->sb_mbmax;
1321 	xsb->sb_lowat = sb->sb_lowat;
1322 	xsb->sb_flags = sb->sb_flags;
1323 	xsb->sb_timeo = sb->sb_timeo;
1324 }
1325 
1326 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1327 static int dummy;
1328 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
1329 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_ULONG|CTLFLAG_RW,
1330     &sb_max, 0, sysctl_handle_sb_max, "LU", "Maximum socket buffer size");
1331 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1332     &sb_efficiency, 0, "Socket buffer size waste factor");
1333