1 /* 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 34 * $FreeBSD$ 35 */ 36 37 #include "opt_mac.h" 38 #include "opt_param.h" 39 40 #include <sys/param.h> 41 #include <sys/aio.h> /* for aio_swake proto */ 42 #include <sys/domain.h> 43 #include <sys/event.h> 44 #include <sys/file.h> /* for maxfiles */ 45 #include <sys/kernel.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mac.h> 49 #include <sys/mbuf.h> 50 #include <sys/mutex.h> 51 #include <sys/proc.h> 52 #include <sys/protosw.h> 53 #include <sys/resourcevar.h> 54 #include <sys/signalvar.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/stat.h> 58 #include <sys/sysctl.h> 59 #include <sys/systm.h> 60 61 int maxsockets; 62 63 void (*aio_swake)(struct socket *, struct sockbuf *); 64 65 /* 66 * Primitive routines for operating on sockets and socket buffers 67 */ 68 69 u_long sb_max = SB_MAX; /* XXX should be static */ 70 71 static u_long sb_efficiency = 8; /* parameter for sbreserve() */ 72 73 /* 74 * Procedures to manipulate state flags of socket 75 * and do appropriate wakeups. Normal sequence from the 76 * active (originating) side is that soisconnecting() is 77 * called during processing of connect() call, 78 * resulting in an eventual call to soisconnected() if/when the 79 * connection is established. When the connection is torn down 80 * soisdisconnecting() is called during processing of disconnect() call, 81 * and soisdisconnected() is called when the connection to the peer 82 * is totally severed. The semantics of these routines are such that 83 * connectionless protocols can call soisconnected() and soisdisconnected() 84 * only, bypassing the in-progress calls when setting up a ``connection'' 85 * takes no time. 86 * 87 * From the passive side, a socket is created with 88 * two queues of sockets: so_incomp for connections in progress 89 * and so_comp for connections already made and awaiting user acceptance. 90 * As a protocol is preparing incoming connections, it creates a socket 91 * structure queued on so_incomp by calling sonewconn(). When the connection 92 * is established, soisconnected() is called, and transfers the 93 * socket structure to so_comp, making it available to accept(). 94 * 95 * If a socket is closed with sockets on either 96 * so_incomp or so_comp, these sockets are dropped. 97 * 98 * If higher level protocols are implemented in 99 * the kernel, the wakeups done here will sometimes 100 * cause software-interrupt process scheduling. 101 */ 102 103 void 104 soisconnecting(so) 105 register struct socket *so; 106 { 107 108 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 109 so->so_state |= SS_ISCONNECTING; 110 } 111 112 void 113 soisconnected(so) 114 struct socket *so; 115 { 116 struct socket *head = so->so_head; 117 118 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 119 so->so_state |= SS_ISCONNECTED; 120 if (head && (so->so_state & SS_INCOMP)) { 121 if ((so->so_options & SO_ACCEPTFILTER) != 0) { 122 so->so_upcall = head->so_accf->so_accept_filter->accf_callback; 123 so->so_upcallarg = head->so_accf->so_accept_filter_arg; 124 so->so_rcv.sb_flags |= SB_UPCALL; 125 so->so_options &= ~SO_ACCEPTFILTER; 126 so->so_upcall(so, so->so_upcallarg, 0); 127 return; 128 } 129 TAILQ_REMOVE(&head->so_incomp, so, so_list); 130 head->so_incqlen--; 131 so->so_state &= ~SS_INCOMP; 132 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 133 head->so_qlen++; 134 so->so_state |= SS_COMP; 135 sorwakeup(head); 136 wakeup_one(&head->so_timeo); 137 } else { 138 wakeup(&so->so_timeo); 139 sorwakeup(so); 140 sowwakeup(so); 141 } 142 } 143 144 void 145 soisdisconnecting(so) 146 register struct socket *so; 147 { 148 149 so->so_state &= ~SS_ISCONNECTING; 150 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); 151 wakeup(&so->so_timeo); 152 sowwakeup(so); 153 sorwakeup(so); 154 } 155 156 void 157 soisdisconnected(so) 158 register struct socket *so; 159 { 160 161 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 162 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED); 163 wakeup(&so->so_timeo); 164 sbdrop(&so->so_snd, so->so_snd.sb_cc); 165 sowwakeup(so); 166 sorwakeup(so); 167 } 168 169 /* 170 * When an attempt at a new connection is noted on a socket 171 * which accepts connections, sonewconn is called. If the 172 * connection is possible (subject to space constraints, etc.) 173 * then we allocate a new structure, propoerly linked into the 174 * data structure of the original socket, and return this. 175 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. 176 * 177 * note: the ref count on the socket is 0 on return 178 */ 179 struct socket * 180 sonewconn(head, connstatus) 181 register struct socket *head; 182 int connstatus; 183 { 184 register struct socket *so; 185 186 if (head->so_qlen > 3 * head->so_qlimit / 2) 187 return ((struct socket *)0); 188 so = soalloc(0); 189 if (so == NULL) 190 return ((struct socket *)0); 191 if ((head->so_options & SO_ACCEPTFILTER) != 0) 192 connstatus = 0; 193 so->so_head = head; 194 so->so_type = head->so_type; 195 so->so_options = head->so_options &~ SO_ACCEPTCONN; 196 so->so_linger = head->so_linger; 197 so->so_state = head->so_state | SS_NOFDREF; 198 so->so_proto = head->so_proto; 199 so->so_timeo = head->so_timeo; 200 so->so_cred = crhold(head->so_cred); 201 #ifdef MAC 202 mac_create_socket_from_socket(head, so); 203 #endif 204 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) || 205 (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 206 sotryfree(so); 207 return ((struct socket *)0); 208 } 209 210 if (connstatus) { 211 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 212 so->so_state |= SS_COMP; 213 head->so_qlen++; 214 } else { 215 if (head->so_incqlen > head->so_qlimit) { 216 struct socket *sp; 217 sp = TAILQ_FIRST(&head->so_incomp); 218 (void) soabort(sp); 219 } 220 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 221 so->so_state |= SS_INCOMP; 222 head->so_incqlen++; 223 } 224 if (connstatus) { 225 sorwakeup(head); 226 wakeup(&head->so_timeo); 227 so->so_state |= connstatus; 228 } 229 return (so); 230 } 231 232 /* 233 * Socantsendmore indicates that no more data will be sent on the 234 * socket; it would normally be applied to a socket when the user 235 * informs the system that no more data is to be sent, by the protocol 236 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 237 * will be received, and will normally be applied to the socket by a 238 * protocol when it detects that the peer will send no more data. 239 * Data queued for reading in the socket may yet be read. 240 */ 241 242 void 243 socantsendmore(so) 244 struct socket *so; 245 { 246 247 so->so_state |= SS_CANTSENDMORE; 248 sowwakeup(so); 249 } 250 251 void 252 socantrcvmore(so) 253 struct socket *so; 254 { 255 256 so->so_state |= SS_CANTRCVMORE; 257 sorwakeup(so); 258 } 259 260 /* 261 * Wait for data to arrive at/drain from a socket buffer. 262 */ 263 int 264 sbwait(sb) 265 struct sockbuf *sb; 266 { 267 268 sb->sb_flags |= SB_WAIT; 269 return (tsleep(&sb->sb_cc, 270 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", 271 sb->sb_timeo)); 272 } 273 274 /* 275 * Lock a sockbuf already known to be locked; 276 * return any error returned from sleep (EINTR). 277 */ 278 int 279 sb_lock(sb) 280 register struct sockbuf *sb; 281 { 282 int error; 283 284 while (sb->sb_flags & SB_LOCK) { 285 sb->sb_flags |= SB_WANT; 286 error = tsleep(&sb->sb_flags, 287 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH, 288 "sblock", 0); 289 if (error) 290 return (error); 291 } 292 sb->sb_flags |= SB_LOCK; 293 return (0); 294 } 295 296 /* 297 * Wakeup processes waiting on a socket buffer. 298 * Do asynchronous notification via SIGIO 299 * if the socket has the SS_ASYNC flag set. 300 */ 301 void 302 sowakeup(so, sb) 303 register struct socket *so; 304 register struct sockbuf *sb; 305 { 306 307 selwakeup(&sb->sb_sel); 308 sb->sb_flags &= ~SB_SEL; 309 if (sb->sb_flags & SB_WAIT) { 310 sb->sb_flags &= ~SB_WAIT; 311 wakeup(&sb->sb_cc); 312 } 313 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL) 314 pgsigio(&so->so_sigio, SIGIO, 0); 315 if (sb->sb_flags & SB_UPCALL) 316 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT); 317 if (sb->sb_flags & SB_AIO) 318 aio_swake(so, sb); 319 KNOTE(&sb->sb_sel.si_note, 0); 320 } 321 322 /* 323 * Socket buffer (struct sockbuf) utility routines. 324 * 325 * Each socket contains two socket buffers: one for sending data and 326 * one for receiving data. Each buffer contains a queue of mbufs, 327 * information about the number of mbufs and amount of data in the 328 * queue, and other fields allowing select() statements and notification 329 * on data availability to be implemented. 330 * 331 * Data stored in a socket buffer is maintained as a list of records. 332 * Each record is a list of mbufs chained together with the m_next 333 * field. Records are chained together with the m_nextpkt field. The upper 334 * level routine soreceive() expects the following conventions to be 335 * observed when placing information in the receive buffer: 336 * 337 * 1. If the protocol requires each message be preceded by the sender's 338 * name, then a record containing that name must be present before 339 * any associated data (mbuf's must be of type MT_SONAME). 340 * 2. If the protocol supports the exchange of ``access rights'' (really 341 * just additional data associated with the message), and there are 342 * ``rights'' to be received, then a record containing this data 343 * should be present (mbuf's must be of type MT_RIGHTS). 344 * 3. If a name or rights record exists, then it must be followed by 345 * a data record, perhaps of zero length. 346 * 347 * Before using a new socket structure it is first necessary to reserve 348 * buffer space to the socket, by calling sbreserve(). This should commit 349 * some of the available buffer space in the system buffer pool for the 350 * socket (currently, it does nothing but enforce limits). The space 351 * should be released by calling sbrelease() when the socket is destroyed. 352 */ 353 354 int 355 soreserve(so, sndcc, rcvcc) 356 register struct socket *so; 357 u_long sndcc, rcvcc; 358 { 359 struct thread *td = curthread; 360 361 if (sbreserve(&so->so_snd, sndcc, so, td) == 0) 362 goto bad; 363 if (sbreserve(&so->so_rcv, rcvcc, so, td) == 0) 364 goto bad2; 365 if (so->so_rcv.sb_lowat == 0) 366 so->so_rcv.sb_lowat = 1; 367 if (so->so_snd.sb_lowat == 0) 368 so->so_snd.sb_lowat = MCLBYTES; 369 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 370 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 371 return (0); 372 bad2: 373 sbrelease(&so->so_snd, so); 374 bad: 375 return (ENOBUFS); 376 } 377 378 /* 379 * Allot mbufs to a sockbuf. 380 * Attempt to scale mbmax so that mbcnt doesn't become limiting 381 * if buffering efficiency is near the normal case. 382 */ 383 int 384 sbreserve(sb, cc, so, td) 385 struct sockbuf *sb; 386 u_long cc; 387 struct socket *so; 388 struct thread *td; 389 { 390 391 /* 392 * td will only be NULL when we're in an interrupt 393 * (e.g. in tcp_input()) 394 */ 395 if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES)) 396 return (0); 397 if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc, 398 td ? td->td_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur : RLIM_INFINITY)) { 399 return (0); 400 } 401 sb->sb_mbmax = min(cc * sb_efficiency, sb_max); 402 if (sb->sb_lowat > sb->sb_hiwat) 403 sb->sb_lowat = sb->sb_hiwat; 404 return (1); 405 } 406 407 /* 408 * Free mbufs held by a socket, and reserved mbuf space. 409 */ 410 void 411 sbrelease(sb, so) 412 struct sockbuf *sb; 413 struct socket *so; 414 { 415 416 sbflush(sb); 417 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0, 418 RLIM_INFINITY); 419 sb->sb_mbmax = 0; 420 } 421 422 /* 423 * Routines to add and remove 424 * data from an mbuf queue. 425 * 426 * The routines sbappend() or sbappendrecord() are normally called to 427 * append new mbufs to a socket buffer, after checking that adequate 428 * space is available, comparing the function sbspace() with the amount 429 * of data to be added. sbappendrecord() differs from sbappend() in 430 * that data supplied is treated as the beginning of a new record. 431 * To place a sender's address, optional access rights, and data in a 432 * socket receive buffer, sbappendaddr() should be used. To place 433 * access rights and data in a socket receive buffer, sbappendrights() 434 * should be used. In either case, the new data begins a new record. 435 * Note that unlike sbappend() and sbappendrecord(), these routines check 436 * for the caller that there will be enough space to store the data. 437 * Each fails if there is not enough space, or if it cannot find mbufs 438 * to store additional information in. 439 * 440 * Reliable protocols may use the socket send buffer to hold data 441 * awaiting acknowledgement. Data is normally copied from a socket 442 * send buffer in a protocol with m_copy for output to a peer, 443 * and then removing the data from the socket buffer with sbdrop() 444 * or sbdroprecord() when the data is acknowledged by the peer. 445 */ 446 447 /* 448 * Append mbuf chain m to the last record in the 449 * socket buffer sb. The additional space associated 450 * the mbuf chain is recorded in sb. Empty mbufs are 451 * discarded and mbufs are compacted where possible. 452 */ 453 void 454 sbappend(sb, m) 455 struct sockbuf *sb; 456 struct mbuf *m; 457 { 458 register struct mbuf *n; 459 460 if (m == 0) 461 return; 462 n = sb->sb_mb; 463 if (n) { 464 while (n->m_nextpkt) 465 n = n->m_nextpkt; 466 do { 467 if (n->m_flags & M_EOR) { 468 sbappendrecord(sb, m); /* XXXXXX!!!! */ 469 return; 470 } 471 } while (n->m_next && (n = n->m_next)); 472 } 473 sbcompress(sb, m, n); 474 } 475 476 #ifdef SOCKBUF_DEBUG 477 void 478 sbcheck(sb) 479 register struct sockbuf *sb; 480 { 481 register struct mbuf *m; 482 register struct mbuf *n = 0; 483 register u_long len = 0, mbcnt = 0; 484 485 for (m = sb->sb_mb; m; m = n) { 486 n = m->m_nextpkt; 487 for (; m; m = m->m_next) { 488 len += m->m_len; 489 mbcnt += MSIZE; 490 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ 491 mbcnt += m->m_ext.ext_size; 492 } 493 } 494 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 495 printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc, 496 mbcnt, sb->sb_mbcnt); 497 panic("sbcheck"); 498 } 499 } 500 #endif 501 502 /* 503 * As above, except the mbuf chain 504 * begins a new record. 505 */ 506 void 507 sbappendrecord(sb, m0) 508 register struct sockbuf *sb; 509 register struct mbuf *m0; 510 { 511 register struct mbuf *m; 512 513 if (m0 == 0) 514 return; 515 m = sb->sb_mb; 516 if (m) 517 while (m->m_nextpkt) 518 m = m->m_nextpkt; 519 /* 520 * Put the first mbuf on the queue. 521 * Note this permits zero length records. 522 */ 523 sballoc(sb, m0); 524 if (m) 525 m->m_nextpkt = m0; 526 else 527 sb->sb_mb = m0; 528 m = m0->m_next; 529 m0->m_next = 0; 530 if (m && (m0->m_flags & M_EOR)) { 531 m0->m_flags &= ~M_EOR; 532 m->m_flags |= M_EOR; 533 } 534 sbcompress(sb, m, m0); 535 } 536 537 /* 538 * As above except that OOB data 539 * is inserted at the beginning of the sockbuf, 540 * but after any other OOB data. 541 */ 542 void 543 sbinsertoob(sb, m0) 544 register struct sockbuf *sb; 545 register struct mbuf *m0; 546 { 547 register struct mbuf *m; 548 register struct mbuf **mp; 549 550 if (m0 == 0) 551 return; 552 for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) { 553 m = *mp; 554 again: 555 switch (m->m_type) { 556 557 case MT_OOBDATA: 558 continue; /* WANT next train */ 559 560 case MT_CONTROL: 561 m = m->m_next; 562 if (m) 563 goto again; /* inspect THIS train further */ 564 } 565 break; 566 } 567 /* 568 * Put the first mbuf on the queue. 569 * Note this permits zero length records. 570 */ 571 sballoc(sb, m0); 572 m0->m_nextpkt = *mp; 573 *mp = m0; 574 m = m0->m_next; 575 m0->m_next = 0; 576 if (m && (m0->m_flags & M_EOR)) { 577 m0->m_flags &= ~M_EOR; 578 m->m_flags |= M_EOR; 579 } 580 sbcompress(sb, m, m0); 581 } 582 583 /* 584 * Append address and data, and optionally, control (ancillary) data 585 * to the receive queue of a socket. If present, 586 * m0 must include a packet header with total length. 587 * Returns 0 if no space in sockbuf or insufficient mbufs. 588 */ 589 int 590 sbappendaddr(sb, asa, m0, control) 591 register struct sockbuf *sb; 592 struct sockaddr *asa; 593 struct mbuf *m0, *control; 594 { 595 register struct mbuf *m, *n; 596 int space = asa->sa_len; 597 598 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 599 panic("sbappendaddr"); 600 if (m0) 601 space += m0->m_pkthdr.len; 602 for (n = control; n; n = n->m_next) { 603 space += n->m_len; 604 if (n->m_next == 0) /* keep pointer to last control buf */ 605 break; 606 } 607 if (space > sbspace(sb)) 608 return (0); 609 if (asa->sa_len > MLEN) 610 return (0); 611 MGET(m, M_DONTWAIT, MT_SONAME); 612 if (m == 0) 613 return (0); 614 m->m_len = asa->sa_len; 615 bcopy(asa, mtod(m, caddr_t), asa->sa_len); 616 if (n) 617 n->m_next = m0; /* concatenate data to control */ 618 else 619 control = m0; 620 m->m_next = control; 621 for (n = m; n; n = n->m_next) 622 sballoc(sb, n); 623 n = sb->sb_mb; 624 if (n) { 625 while (n->m_nextpkt) 626 n = n->m_nextpkt; 627 n->m_nextpkt = m; 628 } else 629 sb->sb_mb = m; 630 return (1); 631 } 632 633 int 634 sbappendcontrol(sb, m0, control) 635 struct sockbuf *sb; 636 struct mbuf *control, *m0; 637 { 638 register struct mbuf *m, *n; 639 int space = 0; 640 641 if (control == 0) 642 panic("sbappendcontrol"); 643 for (m = control; ; m = m->m_next) { 644 space += m->m_len; 645 if (m->m_next == 0) 646 break; 647 } 648 n = m; /* save pointer to last control buffer */ 649 for (m = m0; m; m = m->m_next) 650 space += m->m_len; 651 if (space > sbspace(sb)) 652 return (0); 653 n->m_next = m0; /* concatenate data to control */ 654 for (m = control; m; m = m->m_next) 655 sballoc(sb, m); 656 n = sb->sb_mb; 657 if (n) { 658 while (n->m_nextpkt) 659 n = n->m_nextpkt; 660 n->m_nextpkt = control; 661 } else 662 sb->sb_mb = control; 663 return (1); 664 } 665 666 /* 667 * Compress mbuf chain m into the socket 668 * buffer sb following mbuf n. If n 669 * is null, the buffer is presumed empty. 670 */ 671 void 672 sbcompress(sb, m, n) 673 register struct sockbuf *sb; 674 register struct mbuf *m, *n; 675 { 676 register int eor = 0; 677 register struct mbuf *o; 678 679 while (m) { 680 eor |= m->m_flags & M_EOR; 681 if (m->m_len == 0 && 682 (eor == 0 || 683 (((o = m->m_next) || (o = n)) && 684 o->m_type == m->m_type))) { 685 m = m_free(m); 686 continue; 687 } 688 if (n && (n->m_flags & M_EOR) == 0 && 689 M_WRITABLE(n) && 690 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ 691 m->m_len <= M_TRAILINGSPACE(n) && 692 n->m_type == m->m_type) { 693 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, 694 (unsigned)m->m_len); 695 n->m_len += m->m_len; 696 sb->sb_cc += m->m_len; 697 m = m_free(m); 698 continue; 699 } 700 if (n) 701 n->m_next = m; 702 else 703 sb->sb_mb = m; 704 sballoc(sb, m); 705 n = m; 706 m->m_flags &= ~M_EOR; 707 m = m->m_next; 708 n->m_next = 0; 709 } 710 if (eor) { 711 if (n) 712 n->m_flags |= eor; 713 else 714 printf("semi-panic: sbcompress\n"); 715 } 716 } 717 718 /* 719 * Free all mbufs in a sockbuf. 720 * Check that all resources are reclaimed. 721 */ 722 void 723 sbflush(sb) 724 register struct sockbuf *sb; 725 { 726 727 if (sb->sb_flags & SB_LOCK) 728 panic("sbflush: locked"); 729 while (sb->sb_mbcnt) { 730 /* 731 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty: 732 * we would loop forever. Panic instead. 733 */ 734 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len)) 735 break; 736 sbdrop(sb, (int)sb->sb_cc); 737 } 738 if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt) 739 panic("sbflush: cc %u || mb %p || mbcnt %u", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt); 740 } 741 742 /* 743 * Drop data from (the front of) a sockbuf. 744 */ 745 void 746 sbdrop(sb, len) 747 register struct sockbuf *sb; 748 register int len; 749 { 750 register struct mbuf *m; 751 struct mbuf *next; 752 753 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 754 while (len > 0) { 755 if (m == 0) { 756 if (next == 0) 757 panic("sbdrop"); 758 m = next; 759 next = m->m_nextpkt; 760 continue; 761 } 762 if (m->m_len > len) { 763 m->m_len -= len; 764 m->m_data += len; 765 sb->sb_cc -= len; 766 break; 767 } 768 len -= m->m_len; 769 sbfree(sb, m); 770 m = m_free(m); 771 } 772 while (m && m->m_len == 0) { 773 sbfree(sb, m); 774 m = m_free(m); 775 } 776 if (m) { 777 sb->sb_mb = m; 778 m->m_nextpkt = next; 779 } else 780 sb->sb_mb = next; 781 } 782 783 /* 784 * Drop a record off the front of a sockbuf 785 * and move the next record to the front. 786 */ 787 void 788 sbdroprecord(sb) 789 register struct sockbuf *sb; 790 { 791 register struct mbuf *m; 792 793 m = sb->sb_mb; 794 if (m) { 795 sb->sb_mb = m->m_nextpkt; 796 do { 797 sbfree(sb, m); 798 m = m_free(m); 799 } while (m); 800 } 801 } 802 803 /* 804 * Create a "control" mbuf containing the specified data 805 * with the specified type for presentation on a socket buffer. 806 */ 807 struct mbuf * 808 sbcreatecontrol(p, size, type, level) 809 caddr_t p; 810 register int size; 811 int type, level; 812 { 813 register struct cmsghdr *cp; 814 struct mbuf *m; 815 816 if (CMSG_SPACE((u_int)size) > MCLBYTES) 817 return ((struct mbuf *) NULL); 818 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) 819 return ((struct mbuf *) NULL); 820 if (CMSG_SPACE((u_int)size) > MLEN) { 821 MCLGET(m, M_DONTWAIT); 822 if ((m->m_flags & M_EXT) == 0) { 823 m_free(m); 824 return ((struct mbuf *) NULL); 825 } 826 } 827 cp = mtod(m, struct cmsghdr *); 828 m->m_len = 0; 829 KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m), 830 ("sbcreatecontrol: short mbuf")); 831 if (p != NULL) 832 (void)memcpy(CMSG_DATA(cp), p, size); 833 m->m_len = CMSG_SPACE(size); 834 cp->cmsg_len = CMSG_LEN(size); 835 cp->cmsg_level = level; 836 cp->cmsg_type = type; 837 return (m); 838 } 839 840 /* 841 * Some routines that return EOPNOTSUPP for entry points that are not 842 * supported by a protocol. Fill in as needed. 843 */ 844 int 845 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 846 { 847 return EOPNOTSUPP; 848 } 849 850 int 851 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 852 { 853 return EOPNOTSUPP; 854 } 855 856 int 857 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 858 { 859 return EOPNOTSUPP; 860 } 861 862 int 863 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 864 struct ifnet *ifp, struct thread *td) 865 { 866 return EOPNOTSUPP; 867 } 868 869 int 870 pru_listen_notsupp(struct socket *so, struct thread *td) 871 { 872 return EOPNOTSUPP; 873 } 874 875 int 876 pru_rcvd_notsupp(struct socket *so, int flags) 877 { 878 return EOPNOTSUPP; 879 } 880 881 int 882 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 883 { 884 return EOPNOTSUPP; 885 } 886 887 /* 888 * This isn't really a ``null'' operation, but it's the default one 889 * and doesn't do anything destructive. 890 */ 891 int 892 pru_sense_null(struct socket *so, struct stat *sb) 893 { 894 sb->st_blksize = so->so_snd.sb_hiwat; 895 return 0; 896 } 897 898 /* 899 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 900 */ 901 struct sockaddr * 902 dup_sockaddr(sa, canwait) 903 struct sockaddr *sa; 904 int canwait; 905 { 906 struct sockaddr *sa2; 907 908 MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME, 909 canwait ? M_WAITOK : M_NOWAIT); 910 if (sa2) 911 bcopy(sa, sa2, sa->sa_len); 912 return sa2; 913 } 914 915 /* 916 * Create an external-format (``xsocket'') structure using the information 917 * in the kernel-format socket structure pointed to by so. This is done 918 * to reduce the spew of irrelevant information over this interface, 919 * to isolate user code from changes in the kernel structure, and 920 * potentially to provide information-hiding if we decide that 921 * some of this information should be hidden from users. 922 */ 923 void 924 sotoxsocket(struct socket *so, struct xsocket *xso) 925 { 926 xso->xso_len = sizeof *xso; 927 xso->xso_so = so; 928 xso->so_type = so->so_type; 929 xso->so_options = so->so_options; 930 xso->so_linger = so->so_linger; 931 xso->so_state = so->so_state; 932 xso->so_pcb = so->so_pcb; 933 xso->xso_protocol = so->so_proto->pr_protocol; 934 xso->xso_family = so->so_proto->pr_domain->dom_family; 935 xso->so_qlen = so->so_qlen; 936 xso->so_incqlen = so->so_incqlen; 937 xso->so_qlimit = so->so_qlimit; 938 xso->so_timeo = so->so_timeo; 939 xso->so_error = so->so_error; 940 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 941 xso->so_oobmark = so->so_oobmark; 942 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 943 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 944 xso->so_uid = so->so_cred->cr_uid; 945 } 946 947 /* 948 * This does the same for sockbufs. Note that the xsockbuf structure, 949 * since it is always embedded in a socket, does not include a self 950 * pointer nor a length. We make this entry point public in case 951 * some other mechanism needs it. 952 */ 953 void 954 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb) 955 { 956 xsb->sb_cc = sb->sb_cc; 957 xsb->sb_hiwat = sb->sb_hiwat; 958 xsb->sb_mbcnt = sb->sb_mbcnt; 959 xsb->sb_mbmax = sb->sb_mbmax; 960 xsb->sb_lowat = sb->sb_lowat; 961 xsb->sb_flags = sb->sb_flags; 962 xsb->sb_timeo = sb->sb_timeo; 963 } 964 965 /* 966 * Here is the definition of some of the basic objects in the kern.ipc 967 * branch of the MIB. 968 */ 969 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 970 971 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */ 972 static int dummy; 973 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, ""); 974 975 SYSCTL_INT(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW, 976 &sb_max, 0, "Maximum socket buffer size"); 977 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD, 978 &maxsockets, 0, "Maximum number of sockets avaliable"); 979 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW, 980 &sb_efficiency, 0, ""); 981 982 /* 983 * Initialise maxsockets 984 */ 985 static void init_maxsockets(void *ignored) 986 { 987 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 988 maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters)); 989 } 990 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 991