1 /* 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 34 * $Id: uipc_socket2.c,v 1.29 1997/09/04 17:39:16 tegge Exp $ 35 */ 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/proc.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/protosw.h> 44 #include <sys/stat.h> 45 #include <sys/socket.h> 46 #include <sys/socketvar.h> 47 #include <sys/signalvar.h> 48 #include <sys/sysctl.h> 49 50 /* 51 * Primitive routines for operating on sockets and socket buffers 52 */ 53 54 u_long sb_max = SB_MAX; /* XXX should be static */ 55 56 static u_long sb_efficiency = 8; /* parameter for sbreserve() */ 57 58 /* 59 * Procedures to manipulate state flags of socket 60 * and do appropriate wakeups. Normal sequence from the 61 * active (originating) side is that soisconnecting() is 62 * called during processing of connect() call, 63 * resulting in an eventual call to soisconnected() if/when the 64 * connection is established. When the connection is torn down 65 * soisdisconnecting() is called during processing of disconnect() call, 66 * and soisdisconnected() is called when the connection to the peer 67 * is totally severed. The semantics of these routines are such that 68 * connectionless protocols can call soisconnected() and soisdisconnected() 69 * only, bypassing the in-progress calls when setting up a ``connection'' 70 * takes no time. 71 * 72 * From the passive side, a socket is created with 73 * two queues of sockets: so_q0 for connections in progress 74 * and so_q for connections already made and awaiting user acceptance. 75 * As a protocol is preparing incoming connections, it creates a socket 76 * structure queued on so_q0 by calling sonewconn(). When the connection 77 * is established, soisconnected() is called, and transfers the 78 * socket structure to so_q, making it available to accept(). 79 * 80 * If a socket is closed with sockets on either 81 * so_q0 or so_q, these sockets are dropped. 82 * 83 * If higher level protocols are implemented in 84 * the kernel, the wakeups done here will sometimes 85 * cause software-interrupt process scheduling. 86 */ 87 88 void 89 soisconnecting(so) 90 register struct socket *so; 91 { 92 93 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 94 so->so_state |= SS_ISCONNECTING; 95 } 96 97 void 98 soisconnected(so) 99 register struct socket *so; 100 { 101 register struct socket *head = so->so_head; 102 103 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 104 so->so_state |= SS_ISCONNECTED; 105 if (head && (so->so_state & SS_INCOMP)) { 106 TAILQ_REMOVE(&head->so_incomp, so, so_list); 107 head->so_incqlen--; 108 so->so_state &= ~SS_INCOMP; 109 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 110 so->so_state |= SS_COMP; 111 sorwakeup(head); 112 wakeup_one(&head->so_timeo); 113 } else { 114 wakeup(&so->so_timeo); 115 sorwakeup(so); 116 sowwakeup(so); 117 } 118 } 119 120 void 121 soisdisconnecting(so) 122 register struct socket *so; 123 { 124 125 so->so_state &= ~SS_ISCONNECTING; 126 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); 127 wakeup((caddr_t)&so->so_timeo); 128 sowwakeup(so); 129 sorwakeup(so); 130 } 131 132 void 133 soisdisconnected(so) 134 register struct socket *so; 135 { 136 137 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 138 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE); 139 wakeup((caddr_t)&so->so_timeo); 140 sowwakeup(so); 141 sorwakeup(so); 142 } 143 144 /* 145 * Return a random connection that hasn't been serviced yet and 146 * is eligible for discard. There is a one in qlen chance that 147 * we will return a null, saying that there are no dropable 148 * requests. In this case, the protocol specific code should drop 149 * the new request. This insures fairness. 150 * 151 * This may be used in conjunction with protocol specific queue 152 * congestion routines. 153 */ 154 struct socket * 155 sodropablereq(head) 156 register struct socket *head; 157 { 158 register struct socket *so; 159 unsigned int i, j, qlen; 160 161 static int rnd; 162 static long old_mono_secs; 163 static unsigned int cur_cnt, old_cnt; 164 165 if ((i = (mono_time.tv_sec - old_mono_secs)) != 0) { 166 old_mono_secs = mono_time.tv_sec; 167 old_cnt = cur_cnt / i; 168 cur_cnt = 0; 169 } 170 171 so = TAILQ_FIRST(&head->so_incomp); 172 if (!so) 173 return (so); 174 175 qlen = head->so_incqlen; 176 if (++cur_cnt > qlen || old_cnt > qlen) { 177 rnd = (314159 * rnd + 66329) & 0xffff; 178 j = ((qlen + 1) * rnd) >> 16; 179 180 while (j-- && so) 181 so = TAILQ_NEXT(so, so_list); 182 } 183 184 return (so); 185 } 186 187 /* 188 * When an attempt at a new connection is noted on a socket 189 * which accepts connections, sonewconn is called. If the 190 * connection is possible (subject to space constraints, etc.) 191 * then we allocate a new structure, propoerly linked into the 192 * data structure of the original socket, and return this. 193 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. 194 */ 195 struct socket * 196 sonewconn(head, connstatus) 197 register struct socket *head; 198 int connstatus; 199 { 200 register struct socket *so; 201 202 if (head->so_qlen > 3 * head->so_qlimit / 2) 203 return ((struct socket *)0); 204 MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT); 205 if (so == NULL) 206 return ((struct socket *)0); 207 bzero((caddr_t)so, sizeof(*so)); 208 so->so_head = head; 209 so->so_type = head->so_type; 210 so->so_options = head->so_options &~ SO_ACCEPTCONN; 211 so->so_linger = head->so_linger; 212 so->so_state = head->so_state | SS_NOFDREF; 213 so->so_proto = head->so_proto; 214 so->so_timeo = head->so_timeo; 215 so->so_pgid = head->so_pgid; 216 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat); 217 218 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 219 (void) free((caddr_t)so, M_SOCKET); 220 return ((struct socket *)0); 221 } 222 223 if (connstatus) { 224 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 225 so->so_state |= SS_COMP; 226 } else { 227 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 228 so->so_state |= SS_INCOMP; 229 head->so_incqlen++; 230 } 231 head->so_qlen++; 232 if (connstatus) { 233 sorwakeup(head); 234 wakeup((caddr_t)&head->so_timeo); 235 so->so_state |= connstatus; 236 } 237 return (so); 238 } 239 240 /* 241 * Socantsendmore indicates that no more data will be sent on the 242 * socket; it would normally be applied to a socket when the user 243 * informs the system that no more data is to be sent, by the protocol 244 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 245 * will be received, and will normally be applied to the socket by a 246 * protocol when it detects that the peer will send no more data. 247 * Data queued for reading in the socket may yet be read. 248 */ 249 250 void 251 socantsendmore(so) 252 struct socket *so; 253 { 254 255 so->so_state |= SS_CANTSENDMORE; 256 sowwakeup(so); 257 } 258 259 void 260 socantrcvmore(so) 261 struct socket *so; 262 { 263 264 so->so_state |= SS_CANTRCVMORE; 265 sorwakeup(so); 266 } 267 268 /* 269 * Wait for data to arrive at/drain from a socket buffer. 270 */ 271 int 272 sbwait(sb) 273 struct sockbuf *sb; 274 { 275 276 sb->sb_flags |= SB_WAIT; 277 return (tsleep((caddr_t)&sb->sb_cc, 278 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", 279 sb->sb_timeo)); 280 } 281 282 /* 283 * Lock a sockbuf already known to be locked; 284 * return any error returned from sleep (EINTR). 285 */ 286 int 287 sb_lock(sb) 288 register struct sockbuf *sb; 289 { 290 int error; 291 292 while (sb->sb_flags & SB_LOCK) { 293 sb->sb_flags |= SB_WANT; 294 error = tsleep((caddr_t)&sb->sb_flags, 295 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH, 296 "sblock", 0); 297 if (error) 298 return (error); 299 } 300 sb->sb_flags |= SB_LOCK; 301 return (0); 302 } 303 304 /* 305 * Wakeup processes waiting on a socket buffer. 306 * Do asynchronous notification via SIGIO 307 * if the socket has the SS_ASYNC flag set. 308 */ 309 void 310 sowakeup(so, sb) 311 register struct socket *so; 312 register struct sockbuf *sb; 313 { 314 struct proc *p; 315 316 selwakeup(&sb->sb_sel); 317 sb->sb_flags &= ~SB_SEL; 318 if (sb->sb_flags & SB_WAIT) { 319 sb->sb_flags &= ~SB_WAIT; 320 wakeup((caddr_t)&sb->sb_cc); 321 } 322 if (so->so_state & SS_ASYNC) { 323 if (so->so_pgid < 0) 324 gsignal(-so->so_pgid, SIGIO); 325 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0) 326 psignal(p, SIGIO); 327 } 328 } 329 330 /* 331 * Socket buffer (struct sockbuf) utility routines. 332 * 333 * Each socket contains two socket buffers: one for sending data and 334 * one for receiving data. Each buffer contains a queue of mbufs, 335 * information about the number of mbufs and amount of data in the 336 * queue, and other fields allowing select() statements and notification 337 * on data availability to be implemented. 338 * 339 * Data stored in a socket buffer is maintained as a list of records. 340 * Each record is a list of mbufs chained together with the m_next 341 * field. Records are chained together with the m_nextpkt field. The upper 342 * level routine soreceive() expects the following conventions to be 343 * observed when placing information in the receive buffer: 344 * 345 * 1. If the protocol requires each message be preceded by the sender's 346 * name, then a record containing that name must be present before 347 * any associated data (mbuf's must be of type MT_SONAME). 348 * 2. If the protocol supports the exchange of ``access rights'' (really 349 * just additional data associated with the message), and there are 350 * ``rights'' to be received, then a record containing this data 351 * should be present (mbuf's must be of type MT_RIGHTS). 352 * 3. If a name or rights record exists, then it must be followed by 353 * a data record, perhaps of zero length. 354 * 355 * Before using a new socket structure it is first necessary to reserve 356 * buffer space to the socket, by calling sbreserve(). This should commit 357 * some of the available buffer space in the system buffer pool for the 358 * socket (currently, it does nothing but enforce limits). The space 359 * should be released by calling sbrelease() when the socket is destroyed. 360 */ 361 362 int 363 soreserve(so, sndcc, rcvcc) 364 register struct socket *so; 365 u_long sndcc, rcvcc; 366 { 367 368 if (sbreserve(&so->so_snd, sndcc) == 0) 369 goto bad; 370 if (sbreserve(&so->so_rcv, rcvcc) == 0) 371 goto bad2; 372 if (so->so_rcv.sb_lowat == 0) 373 so->so_rcv.sb_lowat = 1; 374 if (so->so_snd.sb_lowat == 0) 375 so->so_snd.sb_lowat = MCLBYTES; 376 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 377 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 378 return (0); 379 bad2: 380 sbrelease(&so->so_snd); 381 bad: 382 return (ENOBUFS); 383 } 384 385 /* 386 * Allot mbufs to a sockbuf. 387 * Attempt to scale mbmax so that mbcnt doesn't become limiting 388 * if buffering efficiency is near the normal case. 389 */ 390 int 391 sbreserve(sb, cc) 392 struct sockbuf *sb; 393 u_long cc; 394 { 395 if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES)) 396 return (0); 397 sb->sb_hiwat = cc; 398 sb->sb_mbmax = min(cc * sb_efficiency, sb_max); 399 if (sb->sb_lowat > sb->sb_hiwat) 400 sb->sb_lowat = sb->sb_hiwat; 401 return (1); 402 } 403 404 /* 405 * Free mbufs held by a socket, and reserved mbuf space. 406 */ 407 void 408 sbrelease(sb) 409 struct sockbuf *sb; 410 { 411 412 sbflush(sb); 413 sb->sb_hiwat = sb->sb_mbmax = 0; 414 } 415 416 /* 417 * Routines to add and remove 418 * data from an mbuf queue. 419 * 420 * The routines sbappend() or sbappendrecord() are normally called to 421 * append new mbufs to a socket buffer, after checking that adequate 422 * space is available, comparing the function sbspace() with the amount 423 * of data to be added. sbappendrecord() differs from sbappend() in 424 * that data supplied is treated as the beginning of a new record. 425 * To place a sender's address, optional access rights, and data in a 426 * socket receive buffer, sbappendaddr() should be used. To place 427 * access rights and data in a socket receive buffer, sbappendrights() 428 * should be used. In either case, the new data begins a new record. 429 * Note that unlike sbappend() and sbappendrecord(), these routines check 430 * for the caller that there will be enough space to store the data. 431 * Each fails if there is not enough space, or if it cannot find mbufs 432 * to store additional information in. 433 * 434 * Reliable protocols may use the socket send buffer to hold data 435 * awaiting acknowledgement. Data is normally copied from a socket 436 * send buffer in a protocol with m_copy for output to a peer, 437 * and then removing the data from the socket buffer with sbdrop() 438 * or sbdroprecord() when the data is acknowledged by the peer. 439 */ 440 441 /* 442 * Append mbuf chain m to the last record in the 443 * socket buffer sb. The additional space associated 444 * the mbuf chain is recorded in sb. Empty mbufs are 445 * discarded and mbufs are compacted where possible. 446 */ 447 void 448 sbappend(sb, m) 449 struct sockbuf *sb; 450 struct mbuf *m; 451 { 452 register struct mbuf *n; 453 454 if (m == 0) 455 return; 456 n = sb->sb_mb; 457 if (n) { 458 while (n->m_nextpkt) 459 n = n->m_nextpkt; 460 do { 461 if (n->m_flags & M_EOR) { 462 sbappendrecord(sb, m); /* XXXXXX!!!! */ 463 return; 464 } 465 } while (n->m_next && (n = n->m_next)); 466 } 467 sbcompress(sb, m, n); 468 } 469 470 #ifdef SOCKBUF_DEBUG 471 void 472 sbcheck(sb) 473 register struct sockbuf *sb; 474 { 475 register struct mbuf *m; 476 register int len = 0, mbcnt = 0; 477 478 for (m = sb->sb_mb; m; m = m->m_next) { 479 len += m->m_len; 480 mbcnt += MSIZE; 481 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ 482 mbcnt += m->m_ext.ext_size; 483 if (m->m_nextpkt) 484 panic("sbcheck nextpkt"); 485 } 486 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 487 printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc, 488 mbcnt, sb->sb_mbcnt); 489 panic("sbcheck"); 490 } 491 } 492 #endif 493 494 /* 495 * As above, except the mbuf chain 496 * begins a new record. 497 */ 498 void 499 sbappendrecord(sb, m0) 500 register struct sockbuf *sb; 501 register struct mbuf *m0; 502 { 503 register struct mbuf *m; 504 505 if (m0 == 0) 506 return; 507 m = sb->sb_mb; 508 if (m) 509 while (m->m_nextpkt) 510 m = m->m_nextpkt; 511 /* 512 * Put the first mbuf on the queue. 513 * Note this permits zero length records. 514 */ 515 sballoc(sb, m0); 516 if (m) 517 m->m_nextpkt = m0; 518 else 519 sb->sb_mb = m0; 520 m = m0->m_next; 521 m0->m_next = 0; 522 if (m && (m0->m_flags & M_EOR)) { 523 m0->m_flags &= ~M_EOR; 524 m->m_flags |= M_EOR; 525 } 526 sbcompress(sb, m, m0); 527 } 528 529 /* 530 * As above except that OOB data 531 * is inserted at the beginning of the sockbuf, 532 * but after any other OOB data. 533 */ 534 void 535 sbinsertoob(sb, m0) 536 register struct sockbuf *sb; 537 register struct mbuf *m0; 538 { 539 register struct mbuf *m; 540 register struct mbuf **mp; 541 542 if (m0 == 0) 543 return; 544 for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) { 545 m = *mp; 546 again: 547 switch (m->m_type) { 548 549 case MT_OOBDATA: 550 continue; /* WANT next train */ 551 552 case MT_CONTROL: 553 m = m->m_next; 554 if (m) 555 goto again; /* inspect THIS train further */ 556 } 557 break; 558 } 559 /* 560 * Put the first mbuf on the queue. 561 * Note this permits zero length records. 562 */ 563 sballoc(sb, m0); 564 m0->m_nextpkt = *mp; 565 *mp = m0; 566 m = m0->m_next; 567 m0->m_next = 0; 568 if (m && (m0->m_flags & M_EOR)) { 569 m0->m_flags &= ~M_EOR; 570 m->m_flags |= M_EOR; 571 } 572 sbcompress(sb, m, m0); 573 } 574 575 /* 576 * Append address and data, and optionally, control (ancillary) data 577 * to the receive queue of a socket. If present, 578 * m0 must include a packet header with total length. 579 * Returns 0 if no space in sockbuf or insufficient mbufs. 580 */ 581 int 582 sbappendaddr(sb, asa, m0, control) 583 register struct sockbuf *sb; 584 struct sockaddr *asa; 585 struct mbuf *m0, *control; 586 { 587 register struct mbuf *m, *n; 588 int space = asa->sa_len; 589 590 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 591 panic("sbappendaddr"); 592 if (m0) 593 space += m0->m_pkthdr.len; 594 for (n = control; n; n = n->m_next) { 595 space += n->m_len; 596 if (n->m_next == 0) /* keep pointer to last control buf */ 597 break; 598 } 599 if (space > sbspace(sb)) 600 return (0); 601 if (asa->sa_len > MLEN) 602 return (0); 603 MGET(m, M_DONTWAIT, MT_SONAME); 604 if (m == 0) 605 return (0); 606 m->m_len = asa->sa_len; 607 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len); 608 if (n) 609 n->m_next = m0; /* concatenate data to control */ 610 else 611 control = m0; 612 m->m_next = control; 613 for (n = m; n; n = n->m_next) 614 sballoc(sb, n); 615 n = sb->sb_mb; 616 if (n) { 617 while (n->m_nextpkt) 618 n = n->m_nextpkt; 619 n->m_nextpkt = m; 620 } else 621 sb->sb_mb = m; 622 return (1); 623 } 624 625 int 626 sbappendcontrol(sb, m0, control) 627 struct sockbuf *sb; 628 struct mbuf *control, *m0; 629 { 630 register struct mbuf *m, *n; 631 int space = 0; 632 633 if (control == 0) 634 panic("sbappendcontrol"); 635 for (m = control; ; m = m->m_next) { 636 space += m->m_len; 637 if (m->m_next == 0) 638 break; 639 } 640 n = m; /* save pointer to last control buffer */ 641 for (m = m0; m; m = m->m_next) 642 space += m->m_len; 643 if (space > sbspace(sb)) 644 return (0); 645 n->m_next = m0; /* concatenate data to control */ 646 for (m = control; m; m = m->m_next) 647 sballoc(sb, m); 648 n = sb->sb_mb; 649 if (n) { 650 while (n->m_nextpkt) 651 n = n->m_nextpkt; 652 n->m_nextpkt = control; 653 } else 654 sb->sb_mb = control; 655 return (1); 656 } 657 658 /* 659 * Compress mbuf chain m into the socket 660 * buffer sb following mbuf n. If n 661 * is null, the buffer is presumed empty. 662 */ 663 void 664 sbcompress(sb, m, n) 665 register struct sockbuf *sb; 666 register struct mbuf *m, *n; 667 { 668 register int eor = 0; 669 register struct mbuf *o; 670 671 while (m) { 672 eor |= m->m_flags & M_EOR; 673 if (m->m_len == 0 && 674 (eor == 0 || 675 (((o = m->m_next) || (o = n)) && 676 o->m_type == m->m_type))) { 677 m = m_free(m); 678 continue; 679 } 680 if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 && 681 (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] && 682 n->m_type == m->m_type) { 683 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, 684 (unsigned)m->m_len); 685 n->m_len += m->m_len; 686 sb->sb_cc += m->m_len; 687 m = m_free(m); 688 continue; 689 } 690 if (n) 691 n->m_next = m; 692 else 693 sb->sb_mb = m; 694 sballoc(sb, m); 695 n = m; 696 m->m_flags &= ~M_EOR; 697 m = m->m_next; 698 n->m_next = 0; 699 } 700 if (eor) { 701 if (n) 702 n->m_flags |= eor; 703 else 704 printf("semi-panic: sbcompress\n"); 705 } 706 } 707 708 /* 709 * Free all mbufs in a sockbuf. 710 * Check that all resources are reclaimed. 711 */ 712 void 713 sbflush(sb) 714 register struct sockbuf *sb; 715 { 716 717 if (sb->sb_flags & SB_LOCK) 718 panic("sbflush"); 719 while (sb->sb_mbcnt) 720 sbdrop(sb, (int)sb->sb_cc); 721 if (sb->sb_cc || sb->sb_mb) 722 panic("sbflush 2"); 723 } 724 725 /* 726 * Drop data from (the front of) a sockbuf. 727 */ 728 void 729 sbdrop(sb, len) 730 register struct sockbuf *sb; 731 register int len; 732 { 733 register struct mbuf *m, *mn; 734 struct mbuf *next; 735 736 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 737 while (len > 0) { 738 if (m == 0) { 739 if (next == 0) 740 panic("sbdrop"); 741 m = next; 742 next = m->m_nextpkt; 743 continue; 744 } 745 if (m->m_len > len) { 746 m->m_len -= len; 747 m->m_data += len; 748 sb->sb_cc -= len; 749 break; 750 } 751 len -= m->m_len; 752 sbfree(sb, m); 753 MFREE(m, mn); 754 m = mn; 755 } 756 while (m && m->m_len == 0) { 757 sbfree(sb, m); 758 MFREE(m, mn); 759 m = mn; 760 } 761 if (m) { 762 sb->sb_mb = m; 763 m->m_nextpkt = next; 764 } else 765 sb->sb_mb = next; 766 } 767 768 /* 769 * Drop a record off the front of a sockbuf 770 * and move the next record to the front. 771 */ 772 void 773 sbdroprecord(sb) 774 register struct sockbuf *sb; 775 { 776 register struct mbuf *m, *mn; 777 778 m = sb->sb_mb; 779 if (m) { 780 sb->sb_mb = m->m_nextpkt; 781 do { 782 sbfree(sb, m); 783 MFREE(m, mn); 784 m = mn; 785 } while (m); 786 } 787 } 788 789 /* 790 * Create a "control" mbuf containing the specified data 791 * with the specified type for presentation on a socket buffer. 792 */ 793 struct mbuf * 794 sbcreatecontrol(p, size, type, level) 795 caddr_t p; 796 register int size; 797 int type, level; 798 { 799 register struct cmsghdr *cp; 800 struct mbuf *m; 801 802 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) 803 return ((struct mbuf *) NULL); 804 cp = mtod(m, struct cmsghdr *); 805 /* XXX check size? */ 806 (void)memcpy(CMSG_DATA(cp), p, size); 807 size += sizeof(*cp); 808 m->m_len = size; 809 cp->cmsg_len = size; 810 cp->cmsg_level = level; 811 cp->cmsg_type = type; 812 return (m); 813 } 814 815 /* 816 * Some routines that return EOPNOTSUPP for entry points that are not 817 * supported by a protocol. Fill in as needed. 818 */ 819 int 820 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 821 { 822 return EOPNOTSUPP; 823 } 824 825 int 826 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p) 827 { 828 return EOPNOTSUPP; 829 } 830 831 int 832 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 833 { 834 return EOPNOTSUPP; 835 } 836 837 int 838 pru_control_notsupp(struct socket *so, int cmd, caddr_t data, 839 struct ifnet *ifp, struct proc *p) 840 { 841 return EOPNOTSUPP; 842 } 843 844 int 845 pru_listen_notsupp(struct socket *so, struct proc *p) 846 { 847 return EOPNOTSUPP; 848 } 849 850 int 851 pru_rcvd_notsupp(struct socket *so, int flags) 852 { 853 return EOPNOTSUPP; 854 } 855 856 int 857 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 858 { 859 return EOPNOTSUPP; 860 } 861 862 /* 863 * This isn't really a ``null'' operation, but it's the default one 864 * and doesn't do anything destructive. 865 */ 866 int 867 pru_sense_null(struct socket *so, struct stat *sb) 868 { 869 sb->st_blksize = so->so_snd.sb_hiwat; 870 return 0; 871 } 872 873 /* 874 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 875 */ 876 struct sockaddr * 877 dup_sockaddr(sa, canwait) 878 struct sockaddr *sa; 879 int canwait; 880 { 881 struct sockaddr *sa2; 882 883 MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME, 884 canwait ? M_WAITOK : M_NOWAIT); 885 if (sa2) 886 bcopy(sa, sa2, sa->sa_len); 887 return sa2; 888 } 889 890 /* 891 * Here is the definition of some of the basic objects in the kern.ipc 892 * branch of the MIB. 893 */ 894 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 895 896 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */ 897 static int dummy; 898 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, ""); 899 900 SYSCTL_INT(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW, &sb_max, 0, ""); 901 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW, 902 &sb_efficiency, 0, ""); 903 904