1 /* 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 34 * $FreeBSD$ 35 */ 36 37 #include "opt_param.h" 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/domain.h> 41 #include <sys/file.h> /* for maxfiles */ 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/proc.h> 48 #include <sys/protosw.h> 49 #include <sys/resourcevar.h> 50 #include <sys/stat.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/signalvar.h> 54 #include <sys/sysctl.h> 55 #include <sys/aio.h> /* for aio_swake proto */ 56 #include <sys/event.h> 57 58 int maxsockets; 59 60 void (*aio_swake)(struct socket *, struct sockbuf *); 61 62 /* 63 * Primitive routines for operating on sockets and socket buffers 64 */ 65 66 u_long sb_max = SB_MAX; /* XXX should be static */ 67 68 static u_long sb_efficiency = 8; /* parameter for sbreserve() */ 69 70 /* 71 * Procedures to manipulate state flags of socket 72 * and do appropriate wakeups. Normal sequence from the 73 * active (originating) side is that soisconnecting() is 74 * called during processing of connect() call, 75 * resulting in an eventual call to soisconnected() if/when the 76 * connection is established. When the connection is torn down 77 * soisdisconnecting() is called during processing of disconnect() call, 78 * and soisdisconnected() is called when the connection to the peer 79 * is totally severed. The semantics of these routines are such that 80 * connectionless protocols can call soisconnected() and soisdisconnected() 81 * only, bypassing the in-progress calls when setting up a ``connection'' 82 * takes no time. 83 * 84 * From the passive side, a socket is created with 85 * two queues of sockets: so_incomp for connections in progress 86 * and so_comp for connections already made and awaiting user acceptance. 87 * As a protocol is preparing incoming connections, it creates a socket 88 * structure queued on so_incomp by calling sonewconn(). When the connection 89 * is established, soisconnected() is called, and transfers the 90 * socket structure to so_comp, making it available to accept(). 91 * 92 * If a socket is closed with sockets on either 93 * so_incomp or so_comp, these sockets are dropped. 94 * 95 * If higher level protocols are implemented in 96 * the kernel, the wakeups done here will sometimes 97 * cause software-interrupt process scheduling. 98 */ 99 100 void 101 soisconnecting(so) 102 register struct socket *so; 103 { 104 105 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 106 so->so_state |= SS_ISCONNECTING; 107 } 108 109 void 110 soisconnected(so) 111 struct socket *so; 112 { 113 struct socket *head = so->so_head; 114 115 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 116 so->so_state |= SS_ISCONNECTED; 117 if (head && (so->so_state & SS_INCOMP)) { 118 if ((so->so_options & SO_ACCEPTFILTER) != 0) { 119 so->so_upcall = head->so_accf->so_accept_filter->accf_callback; 120 so->so_upcallarg = head->so_accf->so_accept_filter_arg; 121 so->so_rcv.sb_flags |= SB_UPCALL; 122 so->so_options &= ~SO_ACCEPTFILTER; 123 so->so_upcall(so, so->so_upcallarg, 0); 124 return; 125 } 126 TAILQ_REMOVE(&head->so_incomp, so, so_list); 127 head->so_incqlen--; 128 so->so_state &= ~SS_INCOMP; 129 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 130 so->so_state |= SS_COMP; 131 sorwakeup(head); 132 wakeup_one(&head->so_timeo); 133 } else { 134 wakeup(&so->so_timeo); 135 sorwakeup(so); 136 sowwakeup(so); 137 } 138 } 139 140 void 141 soisdisconnecting(so) 142 register struct socket *so; 143 { 144 145 so->so_state &= ~SS_ISCONNECTING; 146 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); 147 wakeup((caddr_t)&so->so_timeo); 148 sowwakeup(so); 149 sorwakeup(so); 150 } 151 152 void 153 soisdisconnected(so) 154 register struct socket *so; 155 { 156 157 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 158 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED); 159 wakeup((caddr_t)&so->so_timeo); 160 sowwakeup(so); 161 sorwakeup(so); 162 } 163 164 /* 165 * Return a random connection that hasn't been serviced yet and 166 * is eligible for discard. There is a one in qlen chance that 167 * we will return a null, saying that there are no dropable 168 * requests. In this case, the protocol specific code should drop 169 * the new request. This insures fairness. 170 * 171 * This may be used in conjunction with protocol specific queue 172 * congestion routines. 173 */ 174 struct socket * 175 sodropablereq(head) 176 register struct socket *head; 177 { 178 register struct socket *so; 179 unsigned int i, j, qlen; 180 static int rnd; 181 static struct timeval old_runtime; 182 static unsigned int cur_cnt, old_cnt; 183 struct timeval tv; 184 185 getmicrouptime(&tv); 186 if ((i = (tv.tv_sec - old_runtime.tv_sec)) != 0) { 187 old_runtime = tv; 188 old_cnt = cur_cnt / i; 189 cur_cnt = 0; 190 } 191 192 so = TAILQ_FIRST(&head->so_incomp); 193 if (!so) 194 return (so); 195 196 qlen = head->so_incqlen; 197 if (++cur_cnt > qlen || old_cnt > qlen) { 198 rnd = (314159 * rnd + 66329) & 0xffff; 199 j = ((qlen + 1) * rnd) >> 16; 200 201 while (j-- && so) 202 so = TAILQ_NEXT(so, so_list); 203 } 204 205 return (so); 206 } 207 208 /* 209 * When an attempt at a new connection is noted on a socket 210 * which accepts connections, sonewconn is called. If the 211 * connection is possible (subject to space constraints, etc.) 212 * then we allocate a new structure, propoerly linked into the 213 * data structure of the original socket, and return this. 214 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. 215 * 216 * note: the ref count on the socket is 0 on return 217 */ 218 struct socket * 219 sonewconn(head, connstatus) 220 register struct socket *head; 221 int connstatus; 222 { 223 register struct socket *so; 224 225 if (head->so_qlen > 3 * head->so_qlimit / 2) 226 return ((struct socket *)0); 227 so = soalloc(0); 228 if (so == NULL) 229 return ((struct socket *)0); 230 if ((head->so_options & SO_ACCEPTFILTER) != 0) 231 connstatus = 0; 232 so->so_head = head; 233 so->so_type = head->so_type; 234 so->so_options = head->so_options &~ SO_ACCEPTCONN; 235 so->so_linger = head->so_linger; 236 so->so_state = head->so_state | SS_NOFDREF; 237 so->so_proto = head->so_proto; 238 so->so_timeo = head->so_timeo; 239 so->so_cred = crhold(head->so_cred); 240 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) || 241 (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 242 sotryfree(so); 243 return ((struct socket *)0); 244 } 245 246 if (connstatus) { 247 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 248 so->so_state |= SS_COMP; 249 } else { 250 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 251 so->so_state |= SS_INCOMP; 252 head->so_incqlen++; 253 } 254 head->so_qlen++; 255 if (connstatus) { 256 sorwakeup(head); 257 wakeup((caddr_t)&head->so_timeo); 258 so->so_state |= connstatus; 259 } 260 return (so); 261 } 262 263 /* 264 * Socantsendmore indicates that no more data will be sent on the 265 * socket; it would normally be applied to a socket when the user 266 * informs the system that no more data is to be sent, by the protocol 267 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 268 * will be received, and will normally be applied to the socket by a 269 * protocol when it detects that the peer will send no more data. 270 * Data queued for reading in the socket may yet be read. 271 */ 272 273 void 274 socantsendmore(so) 275 struct socket *so; 276 { 277 278 so->so_state |= SS_CANTSENDMORE; 279 sowwakeup(so); 280 } 281 282 void 283 socantrcvmore(so) 284 struct socket *so; 285 { 286 287 so->so_state |= SS_CANTRCVMORE; 288 sorwakeup(so); 289 } 290 291 /* 292 * Wait for data to arrive at/drain from a socket buffer. 293 */ 294 int 295 sbwait(sb) 296 struct sockbuf *sb; 297 { 298 299 sb->sb_flags |= SB_WAIT; 300 return (tsleep((caddr_t)&sb->sb_cc, 301 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", 302 sb->sb_timeo)); 303 } 304 305 /* 306 * Lock a sockbuf already known to be locked; 307 * return any error returned from sleep (EINTR). 308 */ 309 int 310 sb_lock(sb) 311 register struct sockbuf *sb; 312 { 313 int error; 314 315 while (sb->sb_flags & SB_LOCK) { 316 sb->sb_flags |= SB_WANT; 317 error = tsleep((caddr_t)&sb->sb_flags, 318 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH, 319 "sblock", 0); 320 if (error) 321 return (error); 322 } 323 sb->sb_flags |= SB_LOCK; 324 return (0); 325 } 326 327 /* 328 * Wakeup processes waiting on a socket buffer. 329 * Do asynchronous notification via SIGIO 330 * if the socket has the SS_ASYNC flag set. 331 */ 332 void 333 sowakeup(so, sb) 334 register struct socket *so; 335 register struct sockbuf *sb; 336 { 337 selwakeup(&sb->sb_sel); 338 sb->sb_flags &= ~SB_SEL; 339 if (sb->sb_flags & SB_WAIT) { 340 sb->sb_flags &= ~SB_WAIT; 341 wakeup((caddr_t)&sb->sb_cc); 342 } 343 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL) 344 pgsigio(so->so_sigio, SIGIO, 0); 345 if (sb->sb_flags & SB_UPCALL) 346 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT); 347 if (sb->sb_flags & SB_AIO) 348 aio_swake(so, sb); 349 KNOTE(&sb->sb_sel.si_note, 0); 350 } 351 352 /* 353 * Socket buffer (struct sockbuf) utility routines. 354 * 355 * Each socket contains two socket buffers: one for sending data and 356 * one for receiving data. Each buffer contains a queue of mbufs, 357 * information about the number of mbufs and amount of data in the 358 * queue, and other fields allowing select() statements and notification 359 * on data availability to be implemented. 360 * 361 * Data stored in a socket buffer is maintained as a list of records. 362 * Each record is a list of mbufs chained together with the m_next 363 * field. Records are chained together with the m_nextpkt field. The upper 364 * level routine soreceive() expects the following conventions to be 365 * observed when placing information in the receive buffer: 366 * 367 * 1. If the protocol requires each message be preceded by the sender's 368 * name, then a record containing that name must be present before 369 * any associated data (mbuf's must be of type MT_SONAME). 370 * 2. If the protocol supports the exchange of ``access rights'' (really 371 * just additional data associated with the message), and there are 372 * ``rights'' to be received, then a record containing this data 373 * should be present (mbuf's must be of type MT_RIGHTS). 374 * 3. If a name or rights record exists, then it must be followed by 375 * a data record, perhaps of zero length. 376 * 377 * Before using a new socket structure it is first necessary to reserve 378 * buffer space to the socket, by calling sbreserve(). This should commit 379 * some of the available buffer space in the system buffer pool for the 380 * socket (currently, it does nothing but enforce limits). The space 381 * should be released by calling sbrelease() when the socket is destroyed. 382 */ 383 384 int 385 soreserve(so, sndcc, rcvcc) 386 register struct socket *so; 387 u_long sndcc, rcvcc; 388 { 389 struct thread *td = curthread; 390 391 if (sbreserve(&so->so_snd, sndcc, so, td) == 0) 392 goto bad; 393 if (sbreserve(&so->so_rcv, rcvcc, so, td) == 0) 394 goto bad2; 395 if (so->so_rcv.sb_lowat == 0) 396 so->so_rcv.sb_lowat = 1; 397 if (so->so_snd.sb_lowat == 0) 398 so->so_snd.sb_lowat = MCLBYTES; 399 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 400 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 401 return (0); 402 bad2: 403 sbrelease(&so->so_snd, so); 404 bad: 405 return (ENOBUFS); 406 } 407 408 /* 409 * Allot mbufs to a sockbuf. 410 * Attempt to scale mbmax so that mbcnt doesn't become limiting 411 * if buffering efficiency is near the normal case. 412 */ 413 int 414 sbreserve(sb, cc, so, td) 415 struct sockbuf *sb; 416 u_long cc; 417 struct socket *so; 418 struct thread *td; 419 { 420 421 /* 422 * td will only be NULL when we're in an interrupt 423 * (e.g. in tcp_input()) 424 */ 425 if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES)) 426 return (0); 427 if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc, 428 td ? td->td_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur : RLIM_INFINITY)) { 429 return (0); 430 } 431 sb->sb_mbmax = min(cc * sb_efficiency, sb_max); 432 if (sb->sb_lowat > sb->sb_hiwat) 433 sb->sb_lowat = sb->sb_hiwat; 434 return (1); 435 } 436 437 /* 438 * Free mbufs held by a socket, and reserved mbuf space. 439 */ 440 void 441 sbrelease(sb, so) 442 struct sockbuf *sb; 443 struct socket *so; 444 { 445 446 sbflush(sb); 447 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0, 448 RLIM_INFINITY); 449 sb->sb_mbmax = 0; 450 } 451 452 /* 453 * Routines to add and remove 454 * data from an mbuf queue. 455 * 456 * The routines sbappend() or sbappendrecord() are normally called to 457 * append new mbufs to a socket buffer, after checking that adequate 458 * space is available, comparing the function sbspace() with the amount 459 * of data to be added. sbappendrecord() differs from sbappend() in 460 * that data supplied is treated as the beginning of a new record. 461 * To place a sender's address, optional access rights, and data in a 462 * socket receive buffer, sbappendaddr() should be used. To place 463 * access rights and data in a socket receive buffer, sbappendrights() 464 * should be used. In either case, the new data begins a new record. 465 * Note that unlike sbappend() and sbappendrecord(), these routines check 466 * for the caller that there will be enough space to store the data. 467 * Each fails if there is not enough space, or if it cannot find mbufs 468 * to store additional information in. 469 * 470 * Reliable protocols may use the socket send buffer to hold data 471 * awaiting acknowledgement. Data is normally copied from a socket 472 * send buffer in a protocol with m_copy for output to a peer, 473 * and then removing the data from the socket buffer with sbdrop() 474 * or sbdroprecord() when the data is acknowledged by the peer. 475 */ 476 477 /* 478 * Append mbuf chain m to the last record in the 479 * socket buffer sb. The additional space associated 480 * the mbuf chain is recorded in sb. Empty mbufs are 481 * discarded and mbufs are compacted where possible. 482 */ 483 void 484 sbappend(sb, m) 485 struct sockbuf *sb; 486 struct mbuf *m; 487 { 488 register struct mbuf *n; 489 490 if (m == 0) 491 return; 492 n = sb->sb_mb; 493 if (n) { 494 while (n->m_nextpkt) 495 n = n->m_nextpkt; 496 do { 497 if (n->m_flags & M_EOR) { 498 sbappendrecord(sb, m); /* XXXXXX!!!! */ 499 return; 500 } 501 } while (n->m_next && (n = n->m_next)); 502 } 503 sbcompress(sb, m, n); 504 } 505 506 #ifdef SOCKBUF_DEBUG 507 void 508 sbcheck(sb) 509 register struct sockbuf *sb; 510 { 511 register struct mbuf *m; 512 register struct mbuf *n = 0; 513 register u_long len = 0, mbcnt = 0; 514 515 for (m = sb->sb_mb; m; m = n) { 516 n = m->m_nextpkt; 517 for (; m; m = m->m_next) { 518 len += m->m_len; 519 mbcnt += MSIZE; 520 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ 521 mbcnt += m->m_ext.ext_size; 522 } 523 } 524 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 525 printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc, 526 mbcnt, sb->sb_mbcnt); 527 panic("sbcheck"); 528 } 529 } 530 #endif 531 532 /* 533 * As above, except the mbuf chain 534 * begins a new record. 535 */ 536 void 537 sbappendrecord(sb, m0) 538 register struct sockbuf *sb; 539 register struct mbuf *m0; 540 { 541 register struct mbuf *m; 542 543 if (m0 == 0) 544 return; 545 m = sb->sb_mb; 546 if (m) 547 while (m->m_nextpkt) 548 m = m->m_nextpkt; 549 /* 550 * Put the first mbuf on the queue. 551 * Note this permits zero length records. 552 */ 553 sballoc(sb, m0); 554 if (m) 555 m->m_nextpkt = m0; 556 else 557 sb->sb_mb = m0; 558 m = m0->m_next; 559 m0->m_next = 0; 560 if (m && (m0->m_flags & M_EOR)) { 561 m0->m_flags &= ~M_EOR; 562 m->m_flags |= M_EOR; 563 } 564 sbcompress(sb, m, m0); 565 } 566 567 /* 568 * As above except that OOB data 569 * is inserted at the beginning of the sockbuf, 570 * but after any other OOB data. 571 */ 572 void 573 sbinsertoob(sb, m0) 574 register struct sockbuf *sb; 575 register struct mbuf *m0; 576 { 577 register struct mbuf *m; 578 register struct mbuf **mp; 579 580 if (m0 == 0) 581 return; 582 for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) { 583 m = *mp; 584 again: 585 switch (m->m_type) { 586 587 case MT_OOBDATA: 588 continue; /* WANT next train */ 589 590 case MT_CONTROL: 591 m = m->m_next; 592 if (m) 593 goto again; /* inspect THIS train further */ 594 } 595 break; 596 } 597 /* 598 * Put the first mbuf on the queue. 599 * Note this permits zero length records. 600 */ 601 sballoc(sb, m0); 602 m0->m_nextpkt = *mp; 603 *mp = m0; 604 m = m0->m_next; 605 m0->m_next = 0; 606 if (m && (m0->m_flags & M_EOR)) { 607 m0->m_flags &= ~M_EOR; 608 m->m_flags |= M_EOR; 609 } 610 sbcompress(sb, m, m0); 611 } 612 613 /* 614 * Append address and data, and optionally, control (ancillary) data 615 * to the receive queue of a socket. If present, 616 * m0 must include a packet header with total length. 617 * Returns 0 if no space in sockbuf or insufficient mbufs. 618 */ 619 int 620 sbappendaddr(sb, asa, m0, control) 621 register struct sockbuf *sb; 622 struct sockaddr *asa; 623 struct mbuf *m0, *control; 624 { 625 register struct mbuf *m, *n; 626 int space = asa->sa_len; 627 628 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 629 panic("sbappendaddr"); 630 if (m0) 631 space += m0->m_pkthdr.len; 632 for (n = control; n; n = n->m_next) { 633 space += n->m_len; 634 if (n->m_next == 0) /* keep pointer to last control buf */ 635 break; 636 } 637 if (space > sbspace(sb)) 638 return (0); 639 if (asa->sa_len > MLEN) 640 return (0); 641 MGET(m, M_DONTWAIT, MT_SONAME); 642 if (m == 0) 643 return (0); 644 m->m_len = asa->sa_len; 645 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len); 646 if (n) 647 n->m_next = m0; /* concatenate data to control */ 648 else 649 control = m0; 650 m->m_next = control; 651 for (n = m; n; n = n->m_next) 652 sballoc(sb, n); 653 n = sb->sb_mb; 654 if (n) { 655 while (n->m_nextpkt) 656 n = n->m_nextpkt; 657 n->m_nextpkt = m; 658 } else 659 sb->sb_mb = m; 660 return (1); 661 } 662 663 int 664 sbappendcontrol(sb, m0, control) 665 struct sockbuf *sb; 666 struct mbuf *control, *m0; 667 { 668 register struct mbuf *m, *n; 669 int space = 0; 670 671 if (control == 0) 672 panic("sbappendcontrol"); 673 for (m = control; ; m = m->m_next) { 674 space += m->m_len; 675 if (m->m_next == 0) 676 break; 677 } 678 n = m; /* save pointer to last control buffer */ 679 for (m = m0; m; m = m->m_next) 680 space += m->m_len; 681 if (space > sbspace(sb)) 682 return (0); 683 n->m_next = m0; /* concatenate data to control */ 684 for (m = control; m; m = m->m_next) 685 sballoc(sb, m); 686 n = sb->sb_mb; 687 if (n) { 688 while (n->m_nextpkt) 689 n = n->m_nextpkt; 690 n->m_nextpkt = control; 691 } else 692 sb->sb_mb = control; 693 return (1); 694 } 695 696 /* 697 * Compress mbuf chain m into the socket 698 * buffer sb following mbuf n. If n 699 * is null, the buffer is presumed empty. 700 */ 701 void 702 sbcompress(sb, m, n) 703 register struct sockbuf *sb; 704 register struct mbuf *m, *n; 705 { 706 register int eor = 0; 707 register struct mbuf *o; 708 709 while (m) { 710 eor |= m->m_flags & M_EOR; 711 if (m->m_len == 0 && 712 (eor == 0 || 713 (((o = m->m_next) || (o = n)) && 714 o->m_type == m->m_type))) { 715 m = m_free(m); 716 continue; 717 } 718 if (n && (n->m_flags & M_EOR) == 0 && 719 M_WRITABLE(n) && 720 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ 721 m->m_len <= M_TRAILINGSPACE(n) && 722 n->m_type == m->m_type) { 723 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, 724 (unsigned)m->m_len); 725 n->m_len += m->m_len; 726 sb->sb_cc += m->m_len; 727 m = m_free(m); 728 continue; 729 } 730 if (n) 731 n->m_next = m; 732 else 733 sb->sb_mb = m; 734 sballoc(sb, m); 735 n = m; 736 m->m_flags &= ~M_EOR; 737 m = m->m_next; 738 n->m_next = 0; 739 } 740 if (eor) { 741 if (n) 742 n->m_flags |= eor; 743 else 744 printf("semi-panic: sbcompress\n"); 745 } 746 } 747 748 /* 749 * Free all mbufs in a sockbuf. 750 * Check that all resources are reclaimed. 751 */ 752 void 753 sbflush(sb) 754 register struct sockbuf *sb; 755 { 756 757 if (sb->sb_flags & SB_LOCK) 758 panic("sbflush: locked"); 759 while (sb->sb_mbcnt) { 760 /* 761 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty: 762 * we would loop forever. Panic instead. 763 */ 764 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len)) 765 break; 766 sbdrop(sb, (int)sb->sb_cc); 767 } 768 if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt) 769 panic("sbflush: cc %ld || mb %p || mbcnt %ld", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt); 770 } 771 772 /* 773 * Drop data from (the front of) a sockbuf. 774 */ 775 void 776 sbdrop(sb, len) 777 register struct sockbuf *sb; 778 register int len; 779 { 780 register struct mbuf *m; 781 struct mbuf *next; 782 783 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 784 while (len > 0) { 785 if (m == 0) { 786 if (next == 0) 787 panic("sbdrop"); 788 m = next; 789 next = m->m_nextpkt; 790 continue; 791 } 792 if (m->m_len > len) { 793 m->m_len -= len; 794 m->m_data += len; 795 sb->sb_cc -= len; 796 break; 797 } 798 len -= m->m_len; 799 sbfree(sb, m); 800 m = m_free(m); 801 } 802 while (m && m->m_len == 0) { 803 sbfree(sb, m); 804 m = m_free(m); 805 } 806 if (m) { 807 sb->sb_mb = m; 808 m->m_nextpkt = next; 809 } else 810 sb->sb_mb = next; 811 } 812 813 /* 814 * Drop a record off the front of a sockbuf 815 * and move the next record to the front. 816 */ 817 void 818 sbdroprecord(sb) 819 register struct sockbuf *sb; 820 { 821 register struct mbuf *m; 822 823 m = sb->sb_mb; 824 if (m) { 825 sb->sb_mb = m->m_nextpkt; 826 do { 827 sbfree(sb, m); 828 m = m_free(m); 829 } while (m); 830 } 831 } 832 833 /* 834 * Create a "control" mbuf containing the specified data 835 * with the specified type for presentation on a socket buffer. 836 */ 837 struct mbuf * 838 sbcreatecontrol(p, size, type, level) 839 caddr_t p; 840 register int size; 841 int type, level; 842 { 843 register struct cmsghdr *cp; 844 struct mbuf *m; 845 846 if (CMSG_SPACE((u_int)size) > MCLBYTES) 847 return ((struct mbuf *) NULL); 848 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) 849 return ((struct mbuf *) NULL); 850 if (CMSG_SPACE((u_int)size) > MLEN) { 851 MCLGET(m, M_DONTWAIT); 852 if ((m->m_flags & M_EXT) == 0) { 853 m_free(m); 854 return ((struct mbuf *) NULL); 855 } 856 } 857 cp = mtod(m, struct cmsghdr *); 858 m->m_len = 0; 859 KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m), 860 ("sbcreatecontrol: short mbuf")); 861 if (p != NULL) 862 (void)memcpy(CMSG_DATA(cp), p, size); 863 m->m_len = CMSG_SPACE(size); 864 cp->cmsg_len = CMSG_LEN(size); 865 cp->cmsg_level = level; 866 cp->cmsg_type = type; 867 return (m); 868 } 869 870 /* 871 * Some routines that return EOPNOTSUPP for entry points that are not 872 * supported by a protocol. Fill in as needed. 873 */ 874 int 875 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 876 { 877 return EOPNOTSUPP; 878 } 879 880 int 881 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 882 { 883 return EOPNOTSUPP; 884 } 885 886 int 887 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 888 { 889 return EOPNOTSUPP; 890 } 891 892 int 893 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 894 struct ifnet *ifp, struct thread *td) 895 { 896 return EOPNOTSUPP; 897 } 898 899 int 900 pru_listen_notsupp(struct socket *so, struct thread *td) 901 { 902 return EOPNOTSUPP; 903 } 904 905 int 906 pru_rcvd_notsupp(struct socket *so, int flags) 907 { 908 return EOPNOTSUPP; 909 } 910 911 int 912 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 913 { 914 return EOPNOTSUPP; 915 } 916 917 /* 918 * This isn't really a ``null'' operation, but it's the default one 919 * and doesn't do anything destructive. 920 */ 921 int 922 pru_sense_null(struct socket *so, struct stat *sb) 923 { 924 sb->st_blksize = so->so_snd.sb_hiwat; 925 return 0; 926 } 927 928 /* 929 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 930 */ 931 struct sockaddr * 932 dup_sockaddr(sa, canwait) 933 struct sockaddr *sa; 934 int canwait; 935 { 936 struct sockaddr *sa2; 937 938 MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME, 939 canwait ? M_WAITOK : M_NOWAIT); 940 if (sa2) 941 bcopy(sa, sa2, sa->sa_len); 942 return sa2; 943 } 944 945 /* 946 * Create an external-format (``xsocket'') structure using the information 947 * in the kernel-format socket structure pointed to by so. This is done 948 * to reduce the spew of irrelevant information over this interface, 949 * to isolate user code from changes in the kernel structure, and 950 * potentially to provide information-hiding if we decide that 951 * some of this information should be hidden from users. 952 */ 953 void 954 sotoxsocket(struct socket *so, struct xsocket *xso) 955 { 956 xso->xso_len = sizeof *xso; 957 xso->xso_so = so; 958 xso->so_type = so->so_type; 959 xso->so_options = so->so_options; 960 xso->so_linger = so->so_linger; 961 xso->so_state = so->so_state; 962 xso->so_pcb = so->so_pcb; 963 xso->xso_protocol = so->so_proto->pr_protocol; 964 xso->xso_family = so->so_proto->pr_domain->dom_family; 965 xso->so_qlen = so->so_qlen; 966 xso->so_incqlen = so->so_incqlen; 967 xso->so_qlimit = so->so_qlimit; 968 xso->so_timeo = so->so_timeo; 969 xso->so_error = so->so_error; 970 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 971 xso->so_oobmark = so->so_oobmark; 972 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 973 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 974 xso->so_uid = so->so_cred->cr_uid; 975 } 976 977 /* 978 * This does the same for sockbufs. Note that the xsockbuf structure, 979 * since it is always embedded in a socket, does not include a self 980 * pointer nor a length. We make this entry point public in case 981 * some other mechanism needs it. 982 */ 983 void 984 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb) 985 { 986 xsb->sb_cc = sb->sb_cc; 987 xsb->sb_hiwat = sb->sb_hiwat; 988 xsb->sb_mbcnt = sb->sb_mbcnt; 989 xsb->sb_mbmax = sb->sb_mbmax; 990 xsb->sb_lowat = sb->sb_lowat; 991 xsb->sb_flags = sb->sb_flags; 992 xsb->sb_timeo = sb->sb_timeo; 993 } 994 995 /* 996 * Here is the definition of some of the basic objects in the kern.ipc 997 * branch of the MIB. 998 */ 999 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 1000 1001 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */ 1002 static int dummy; 1003 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, ""); 1004 1005 SYSCTL_INT(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW, 1006 &sb_max, 0, "Maximum socket buffer size"); 1007 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD, 1008 &maxsockets, 0, "Maximum number of sockets avaliable"); 1009 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW, 1010 &sb_efficiency, 0, ""); 1011 1012 /* 1013 * Initialise maxsockets 1014 */ 1015 static void init_maxsockets(void *ignored) 1016 { 1017 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 1018 maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters)); 1019 } 1020 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 1021