1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_param.h" 38 39 #include <sys/param.h> 40 #include <sys/aio.h> /* for aio_swake proto */ 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/mutex.h> 46 #include <sys/proc.h> 47 #include <sys/protosw.h> 48 #include <sys/resourcevar.h> 49 #include <sys/signalvar.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sx.h> 53 #include <sys/sysctl.h> 54 55 /* 56 * Function pointer set by the AIO routines so that the socket buffer code 57 * can call back into the AIO module if it is loaded. 58 */ 59 void (*aio_swake)(struct socket *, struct sockbuf *); 60 61 /* 62 * Primitive routines for operating on socket buffers 63 */ 64 65 u_long sb_max = SB_MAX; 66 u_long sb_max_adj = 67 (quad_t)SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */ 68 69 static u_long sb_efficiency = 8; /* parameter for sbreserve() */ 70 71 static struct mbuf *sbcut_internal(struct sockbuf *sb, int len); 72 static void sbflush_internal(struct sockbuf *sb); 73 74 /* 75 * Our own version of m_clrprotoflags(), that can preserve M_NOTREADY. 76 */ 77 static void 78 sbm_clrprotoflags(struct mbuf *m, int flags) 79 { 80 int mask; 81 82 mask = ~M_PROTOFLAGS; 83 if (flags & PRUS_NOTREADY) 84 mask |= M_NOTREADY; 85 while (m) { 86 m->m_flags &= mask; 87 m = m->m_next; 88 } 89 } 90 91 /* 92 * Mark ready "count" mbufs starting with "m". 93 */ 94 int 95 sbready(struct sockbuf *sb, struct mbuf *m, int count) 96 { 97 u_int blocker; 98 99 SOCKBUF_LOCK_ASSERT(sb); 100 KASSERT(sb->sb_fnrdy != NULL, ("%s: sb %p NULL fnrdy", __func__, sb)); 101 102 blocker = (sb->sb_fnrdy == m) ? M_BLOCKED : 0; 103 104 for (int i = 0; i < count; i++, m = m->m_next) { 105 KASSERT(m->m_flags & M_NOTREADY, 106 ("%s: m %p !M_NOTREADY", __func__, m)); 107 m->m_flags &= ~(M_NOTREADY | blocker); 108 if (blocker) 109 sb->sb_acc += m->m_len; 110 } 111 112 if (!blocker) 113 return (EINPROGRESS); 114 115 /* This one was blocking all the queue. */ 116 for (; m && (m->m_flags & M_NOTREADY) == 0; m = m->m_next) { 117 KASSERT(m->m_flags & M_BLOCKED, 118 ("%s: m %p !M_BLOCKED", __func__, m)); 119 m->m_flags &= ~M_BLOCKED; 120 sb->sb_acc += m->m_len; 121 } 122 123 sb->sb_fnrdy = m; 124 125 return (0); 126 } 127 128 /* 129 * Adjust sockbuf state reflecting allocation of m. 130 */ 131 void 132 sballoc(struct sockbuf *sb, struct mbuf *m) 133 { 134 135 SOCKBUF_LOCK_ASSERT(sb); 136 137 sb->sb_ccc += m->m_len; 138 139 if (sb->sb_fnrdy == NULL) { 140 if (m->m_flags & M_NOTREADY) 141 sb->sb_fnrdy = m; 142 else 143 sb->sb_acc += m->m_len; 144 } else 145 m->m_flags |= M_BLOCKED; 146 147 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA) 148 sb->sb_ctl += m->m_len; 149 150 sb->sb_mbcnt += MSIZE; 151 sb->sb_mcnt += 1; 152 153 if (m->m_flags & M_EXT) { 154 sb->sb_mbcnt += m->m_ext.ext_size; 155 sb->sb_ccnt += 1; 156 } 157 } 158 159 /* 160 * Adjust sockbuf state reflecting freeing of m. 161 */ 162 void 163 sbfree(struct sockbuf *sb, struct mbuf *m) 164 { 165 166 #if 0 /* XXX: not yet: soclose() call path comes here w/o lock. */ 167 SOCKBUF_LOCK_ASSERT(sb); 168 #endif 169 170 sb->sb_ccc -= m->m_len; 171 172 if (!(m->m_flags & M_NOTAVAIL)) 173 sb->sb_acc -= m->m_len; 174 175 if (m == sb->sb_fnrdy) { 176 struct mbuf *n; 177 178 KASSERT(m->m_flags & M_NOTREADY, 179 ("%s: m %p !M_NOTREADY", __func__, m)); 180 181 n = m->m_next; 182 while (n != NULL && !(n->m_flags & M_NOTREADY)) { 183 n->m_flags &= ~M_BLOCKED; 184 sb->sb_acc += n->m_len; 185 n = n->m_next; 186 } 187 sb->sb_fnrdy = n; 188 } 189 190 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA) 191 sb->sb_ctl -= m->m_len; 192 193 sb->sb_mbcnt -= MSIZE; 194 sb->sb_mcnt -= 1; 195 if (m->m_flags & M_EXT) { 196 sb->sb_mbcnt -= m->m_ext.ext_size; 197 sb->sb_ccnt -= 1; 198 } 199 200 if (sb->sb_sndptr == m) { 201 sb->sb_sndptr = NULL; 202 sb->sb_sndptroff = 0; 203 } 204 if (sb->sb_sndptroff != 0) 205 sb->sb_sndptroff -= m->m_len; 206 } 207 208 /* 209 * Socantsendmore indicates that no more data will be sent on the socket; it 210 * would normally be applied to a socket when the user informs the system 211 * that no more data is to be sent, by the protocol code (in case 212 * PRU_SHUTDOWN). Socantrcvmore indicates that no more data will be 213 * received, and will normally be applied to the socket by a protocol when it 214 * detects that the peer will send no more data. Data queued for reading in 215 * the socket may yet be read. 216 */ 217 void 218 socantsendmore_locked(struct socket *so) 219 { 220 221 SOCKBUF_LOCK_ASSERT(&so->so_snd); 222 223 so->so_snd.sb_state |= SBS_CANTSENDMORE; 224 sowwakeup_locked(so); 225 mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED); 226 } 227 228 void 229 socantsendmore(struct socket *so) 230 { 231 232 SOCKBUF_LOCK(&so->so_snd); 233 socantsendmore_locked(so); 234 mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED); 235 } 236 237 void 238 socantrcvmore_locked(struct socket *so) 239 { 240 241 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 242 243 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 244 sorwakeup_locked(so); 245 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED); 246 } 247 248 void 249 socantrcvmore(struct socket *so) 250 { 251 252 SOCKBUF_LOCK(&so->so_rcv); 253 socantrcvmore_locked(so); 254 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED); 255 } 256 257 /* 258 * Wait for data to arrive at/drain from a socket buffer. 259 */ 260 int 261 sbwait(struct sockbuf *sb) 262 { 263 264 SOCKBUF_LOCK_ASSERT(sb); 265 266 sb->sb_flags |= SB_WAIT; 267 return (msleep_sbt(&sb->sb_acc, &sb->sb_mtx, 268 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", 269 sb->sb_timeo, 0, 0)); 270 } 271 272 int 273 sblock(struct sockbuf *sb, int flags) 274 { 275 276 KASSERT((flags & SBL_VALID) == flags, 277 ("sblock: flags invalid (0x%x)", flags)); 278 279 if (flags & SBL_WAIT) { 280 if ((sb->sb_flags & SB_NOINTR) || 281 (flags & SBL_NOINTR)) { 282 sx_xlock(&sb->sb_sx); 283 return (0); 284 } 285 return (sx_xlock_sig(&sb->sb_sx)); 286 } else { 287 if (sx_try_xlock(&sb->sb_sx) == 0) 288 return (EWOULDBLOCK); 289 return (0); 290 } 291 } 292 293 void 294 sbunlock(struct sockbuf *sb) 295 { 296 297 sx_xunlock(&sb->sb_sx); 298 } 299 300 /* 301 * Wakeup processes waiting on a socket buffer. Do asynchronous notification 302 * via SIGIO if the socket has the SS_ASYNC flag set. 303 * 304 * Called with the socket buffer lock held; will release the lock by the end 305 * of the function. This allows the caller to acquire the socket buffer lock 306 * while testing for the need for various sorts of wakeup and hold it through 307 * to the point where it's no longer required. We currently hold the lock 308 * through calls out to other subsystems (with the exception of kqueue), and 309 * then release it to avoid lock order issues. It's not clear that's 310 * correct. 311 */ 312 void 313 sowakeup(struct socket *so, struct sockbuf *sb) 314 { 315 int ret; 316 317 SOCKBUF_LOCK_ASSERT(sb); 318 319 selwakeuppri(sb->sb_sel, PSOCK); 320 if (!SEL_WAITING(sb->sb_sel)) 321 sb->sb_flags &= ~SB_SEL; 322 if (sb->sb_flags & SB_WAIT) { 323 sb->sb_flags &= ~SB_WAIT; 324 wakeup(&sb->sb_acc); 325 } 326 KNOTE_LOCKED(&sb->sb_sel->si_note, 0); 327 if (sb->sb_upcall != NULL) { 328 ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT); 329 if (ret == SU_ISCONNECTED) { 330 KASSERT(sb == &so->so_rcv, 331 ("SO_SND upcall returned SU_ISCONNECTED")); 332 soupcall_clear(so, SO_RCV); 333 } 334 } else 335 ret = SU_OK; 336 if (sb->sb_flags & SB_AIO) 337 sowakeup_aio(so, sb); 338 SOCKBUF_UNLOCK(sb); 339 if (ret == SU_ISCONNECTED) 340 soisconnected(so); 341 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL) 342 pgsigio(&so->so_sigio, SIGIO, 0); 343 mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED); 344 } 345 346 /* 347 * Socket buffer (struct sockbuf) utility routines. 348 * 349 * Each socket contains two socket buffers: one for sending data and one for 350 * receiving data. Each buffer contains a queue of mbufs, information about 351 * the number of mbufs and amount of data in the queue, and other fields 352 * allowing select() statements and notification on data availability to be 353 * implemented. 354 * 355 * Data stored in a socket buffer is maintained as a list of records. Each 356 * record is a list of mbufs chained together with the m_next field. Records 357 * are chained together with the m_nextpkt field. The upper level routine 358 * soreceive() expects the following conventions to be observed when placing 359 * information in the receive buffer: 360 * 361 * 1. If the protocol requires each message be preceded by the sender's name, 362 * then a record containing that name must be present before any 363 * associated data (mbuf's must be of type MT_SONAME). 364 * 2. If the protocol supports the exchange of ``access rights'' (really just 365 * additional data associated with the message), and there are ``rights'' 366 * to be received, then a record containing this data should be present 367 * (mbuf's must be of type MT_RIGHTS). 368 * 3. If a name or rights record exists, then it must be followed by a data 369 * record, perhaps of zero length. 370 * 371 * Before using a new socket structure it is first necessary to reserve 372 * buffer space to the socket, by calling sbreserve(). This should commit 373 * some of the available buffer space in the system buffer pool for the 374 * socket (currently, it does nothing but enforce limits). The space should 375 * be released by calling sbrelease() when the socket is destroyed. 376 */ 377 int 378 soreserve(struct socket *so, u_long sndcc, u_long rcvcc) 379 { 380 struct thread *td = curthread; 381 382 SOCKBUF_LOCK(&so->so_snd); 383 SOCKBUF_LOCK(&so->so_rcv); 384 if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0) 385 goto bad; 386 if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0) 387 goto bad2; 388 if (so->so_rcv.sb_lowat == 0) 389 so->so_rcv.sb_lowat = 1; 390 if (so->so_snd.sb_lowat == 0) 391 so->so_snd.sb_lowat = MCLBYTES; 392 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 393 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 394 SOCKBUF_UNLOCK(&so->so_rcv); 395 SOCKBUF_UNLOCK(&so->so_snd); 396 return (0); 397 bad2: 398 sbrelease_locked(&so->so_snd, so); 399 bad: 400 SOCKBUF_UNLOCK(&so->so_rcv); 401 SOCKBUF_UNLOCK(&so->so_snd); 402 return (ENOBUFS); 403 } 404 405 static int 406 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS) 407 { 408 int error = 0; 409 u_long tmp_sb_max = sb_max; 410 411 error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req); 412 if (error || !req->newptr) 413 return (error); 414 if (tmp_sb_max < MSIZE + MCLBYTES) 415 return (EINVAL); 416 sb_max = tmp_sb_max; 417 sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES); 418 return (0); 419 } 420 421 /* 422 * Allot mbufs to a sockbuf. Attempt to scale mbmax so that mbcnt doesn't 423 * become limiting if buffering efficiency is near the normal case. 424 */ 425 int 426 sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so, 427 struct thread *td) 428 { 429 rlim_t sbsize_limit; 430 431 SOCKBUF_LOCK_ASSERT(sb); 432 433 /* 434 * When a thread is passed, we take into account the thread's socket 435 * buffer size limit. The caller will generally pass curthread, but 436 * in the TCP input path, NULL will be passed to indicate that no 437 * appropriate thread resource limits are available. In that case, 438 * we don't apply a process limit. 439 */ 440 if (cc > sb_max_adj) 441 return (0); 442 if (td != NULL) { 443 sbsize_limit = lim_cur(td, RLIMIT_SBSIZE); 444 } else 445 sbsize_limit = RLIM_INFINITY; 446 if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc, 447 sbsize_limit)) 448 return (0); 449 sb->sb_mbmax = min(cc * sb_efficiency, sb_max); 450 if (sb->sb_lowat > sb->sb_hiwat) 451 sb->sb_lowat = sb->sb_hiwat; 452 return (1); 453 } 454 455 int 456 sbsetopt(struct socket *so, int cmd, u_long cc) 457 { 458 struct sockbuf *sb; 459 short *flags; 460 u_int *hiwat, *lowat; 461 int error; 462 463 SOCK_LOCK(so); 464 if (SOLISTENING(so)) { 465 switch (cmd) { 466 case SO_SNDLOWAT: 467 case SO_SNDBUF: 468 lowat = &so->sol_sbsnd_lowat; 469 hiwat = &so->sol_sbsnd_hiwat; 470 flags = &so->sol_sbsnd_flags; 471 break; 472 case SO_RCVLOWAT: 473 case SO_RCVBUF: 474 lowat = &so->sol_sbrcv_lowat; 475 hiwat = &so->sol_sbrcv_hiwat; 476 flags = &so->sol_sbrcv_flags; 477 break; 478 } 479 } else { 480 switch (cmd) { 481 case SO_SNDLOWAT: 482 case SO_SNDBUF: 483 sb = &so->so_snd; 484 break; 485 case SO_RCVLOWAT: 486 case SO_RCVBUF: 487 sb = &so->so_rcv; 488 break; 489 } 490 flags = &sb->sb_flags; 491 hiwat = &sb->sb_hiwat; 492 lowat = &sb->sb_lowat; 493 SOCKBUF_LOCK(sb); 494 } 495 496 error = 0; 497 switch (cmd) { 498 case SO_SNDBUF: 499 case SO_RCVBUF: 500 if (SOLISTENING(so)) { 501 if (cc > sb_max_adj) { 502 error = ENOBUFS; 503 break; 504 } 505 *hiwat = cc; 506 if (*lowat > *hiwat) 507 *lowat = *hiwat; 508 } else { 509 if (!sbreserve_locked(sb, cc, so, curthread)) 510 error = ENOBUFS; 511 } 512 if (error == 0) 513 *flags &= ~SB_AUTOSIZE; 514 break; 515 case SO_SNDLOWAT: 516 case SO_RCVLOWAT: 517 /* 518 * Make sure the low-water is never greater than the 519 * high-water. 520 */ 521 *lowat = (cc > *hiwat) ? *hiwat : cc; 522 break; 523 } 524 525 if (!SOLISTENING(so)) 526 SOCKBUF_UNLOCK(sb); 527 SOCK_UNLOCK(so); 528 return (error); 529 } 530 531 /* 532 * Free mbufs held by a socket, and reserved mbuf space. 533 */ 534 void 535 sbrelease_internal(struct sockbuf *sb, struct socket *so) 536 { 537 538 sbflush_internal(sb); 539 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0, 540 RLIM_INFINITY); 541 sb->sb_mbmax = 0; 542 } 543 544 void 545 sbrelease_locked(struct sockbuf *sb, struct socket *so) 546 { 547 548 SOCKBUF_LOCK_ASSERT(sb); 549 550 sbrelease_internal(sb, so); 551 } 552 553 void 554 sbrelease(struct sockbuf *sb, struct socket *so) 555 { 556 557 SOCKBUF_LOCK(sb); 558 sbrelease_locked(sb, so); 559 SOCKBUF_UNLOCK(sb); 560 } 561 562 void 563 sbdestroy(struct sockbuf *sb, struct socket *so) 564 { 565 566 sbrelease_internal(sb, so); 567 } 568 569 /* 570 * Routines to add and remove data from an mbuf queue. 571 * 572 * The routines sbappend() or sbappendrecord() are normally called to append 573 * new mbufs to a socket buffer, after checking that adequate space is 574 * available, comparing the function sbspace() with the amount of data to be 575 * added. sbappendrecord() differs from sbappend() in that data supplied is 576 * treated as the beginning of a new record. To place a sender's address, 577 * optional access rights, and data in a socket receive buffer, 578 * sbappendaddr() should be used. To place access rights and data in a 579 * socket receive buffer, sbappendrights() should be used. In either case, 580 * the new data begins a new record. Note that unlike sbappend() and 581 * sbappendrecord(), these routines check for the caller that there will be 582 * enough space to store the data. Each fails if there is not enough space, 583 * or if it cannot find mbufs to store additional information in. 584 * 585 * Reliable protocols may use the socket send buffer to hold data awaiting 586 * acknowledgement. Data is normally copied from a socket send buffer in a 587 * protocol with m_copy for output to a peer, and then removing the data from 588 * the socket buffer with sbdrop() or sbdroprecord() when the data is 589 * acknowledged by the peer. 590 */ 591 #ifdef SOCKBUF_DEBUG 592 void 593 sblastrecordchk(struct sockbuf *sb, const char *file, int line) 594 { 595 struct mbuf *m = sb->sb_mb; 596 597 SOCKBUF_LOCK_ASSERT(sb); 598 599 while (m && m->m_nextpkt) 600 m = m->m_nextpkt; 601 602 if (m != sb->sb_lastrecord) { 603 printf("%s: sb_mb %p sb_lastrecord %p last %p\n", 604 __func__, sb->sb_mb, sb->sb_lastrecord, m); 605 printf("packet chain:\n"); 606 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) 607 printf("\t%p\n", m); 608 panic("%s from %s:%u", __func__, file, line); 609 } 610 } 611 612 void 613 sblastmbufchk(struct sockbuf *sb, const char *file, int line) 614 { 615 struct mbuf *m = sb->sb_mb; 616 struct mbuf *n; 617 618 SOCKBUF_LOCK_ASSERT(sb); 619 620 while (m && m->m_nextpkt) 621 m = m->m_nextpkt; 622 623 while (m && m->m_next) 624 m = m->m_next; 625 626 if (m != sb->sb_mbtail) { 627 printf("%s: sb_mb %p sb_mbtail %p last %p\n", 628 __func__, sb->sb_mb, sb->sb_mbtail, m); 629 printf("packet tree:\n"); 630 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) { 631 printf("\t"); 632 for (n = m; n != NULL; n = n->m_next) 633 printf("%p ", n); 634 printf("\n"); 635 } 636 panic("%s from %s:%u", __func__, file, line); 637 } 638 } 639 #endif /* SOCKBUF_DEBUG */ 640 641 #define SBLINKRECORD(sb, m0) do { \ 642 SOCKBUF_LOCK_ASSERT(sb); \ 643 if ((sb)->sb_lastrecord != NULL) \ 644 (sb)->sb_lastrecord->m_nextpkt = (m0); \ 645 else \ 646 (sb)->sb_mb = (m0); \ 647 (sb)->sb_lastrecord = (m0); \ 648 } while (/*CONSTCOND*/0) 649 650 /* 651 * Append mbuf chain m to the last record in the socket buffer sb. The 652 * additional space associated the mbuf chain is recorded in sb. Empty mbufs 653 * are discarded and mbufs are compacted where possible. 654 */ 655 void 656 sbappend_locked(struct sockbuf *sb, struct mbuf *m, int flags) 657 { 658 struct mbuf *n; 659 660 SOCKBUF_LOCK_ASSERT(sb); 661 662 if (m == NULL) 663 return; 664 sbm_clrprotoflags(m, flags); 665 SBLASTRECORDCHK(sb); 666 n = sb->sb_mb; 667 if (n) { 668 while (n->m_nextpkt) 669 n = n->m_nextpkt; 670 do { 671 if (n->m_flags & M_EOR) { 672 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */ 673 return; 674 } 675 } while (n->m_next && (n = n->m_next)); 676 } else { 677 /* 678 * XXX Would like to simply use sb_mbtail here, but 679 * XXX I need to verify that I won't miss an EOR that 680 * XXX way. 681 */ 682 if ((n = sb->sb_lastrecord) != NULL) { 683 do { 684 if (n->m_flags & M_EOR) { 685 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */ 686 return; 687 } 688 } while (n->m_next && (n = n->m_next)); 689 } else { 690 /* 691 * If this is the first record in the socket buffer, 692 * it's also the last record. 693 */ 694 sb->sb_lastrecord = m; 695 } 696 } 697 sbcompress(sb, m, n); 698 SBLASTRECORDCHK(sb); 699 } 700 701 /* 702 * Append mbuf chain m to the last record in the socket buffer sb. The 703 * additional space associated the mbuf chain is recorded in sb. Empty mbufs 704 * are discarded and mbufs are compacted where possible. 705 */ 706 void 707 sbappend(struct sockbuf *sb, struct mbuf *m, int flags) 708 { 709 710 SOCKBUF_LOCK(sb); 711 sbappend_locked(sb, m, flags); 712 SOCKBUF_UNLOCK(sb); 713 } 714 715 /* 716 * This version of sbappend() should only be used when the caller absolutely 717 * knows that there will never be more than one record in the socket buffer, 718 * that is, a stream protocol (such as TCP). 719 */ 720 void 721 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags) 722 { 723 SOCKBUF_LOCK_ASSERT(sb); 724 725 KASSERT(m->m_nextpkt == NULL,("sbappendstream 0")); 726 KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1")); 727 728 SBLASTMBUFCHK(sb); 729 730 /* Remove all packet headers and mbuf tags to get a pure data chain. */ 731 m_demote(m, 1, flags & PRUS_NOTREADY ? M_NOTREADY : 0); 732 733 sbcompress(sb, m, sb->sb_mbtail); 734 735 sb->sb_lastrecord = sb->sb_mb; 736 SBLASTRECORDCHK(sb); 737 } 738 739 /* 740 * This version of sbappend() should only be used when the caller absolutely 741 * knows that there will never be more than one record in the socket buffer, 742 * that is, a stream protocol (such as TCP). 743 */ 744 void 745 sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags) 746 { 747 748 SOCKBUF_LOCK(sb); 749 sbappendstream_locked(sb, m, flags); 750 SOCKBUF_UNLOCK(sb); 751 } 752 753 #ifdef SOCKBUF_DEBUG 754 void 755 sbcheck(struct sockbuf *sb, const char *file, int line) 756 { 757 struct mbuf *m, *n, *fnrdy; 758 u_long acc, ccc, mbcnt; 759 760 SOCKBUF_LOCK_ASSERT(sb); 761 762 acc = ccc = mbcnt = 0; 763 fnrdy = NULL; 764 765 for (m = sb->sb_mb; m; m = n) { 766 n = m->m_nextpkt; 767 for (; m; m = m->m_next) { 768 if (m->m_len == 0) { 769 printf("sb %p empty mbuf %p\n", sb, m); 770 goto fail; 771 } 772 if ((m->m_flags & M_NOTREADY) && fnrdy == NULL) { 773 if (m != sb->sb_fnrdy) { 774 printf("sb %p: fnrdy %p != m %p\n", 775 sb, sb->sb_fnrdy, m); 776 goto fail; 777 } 778 fnrdy = m; 779 } 780 if (fnrdy) { 781 if (!(m->m_flags & M_NOTAVAIL)) { 782 printf("sb %p: fnrdy %p, m %p is avail\n", 783 sb, sb->sb_fnrdy, m); 784 goto fail; 785 } 786 } else 787 acc += m->m_len; 788 ccc += m->m_len; 789 mbcnt += MSIZE; 790 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ 791 mbcnt += m->m_ext.ext_size; 792 } 793 } 794 if (acc != sb->sb_acc || ccc != sb->sb_ccc || mbcnt != sb->sb_mbcnt) { 795 printf("acc %ld/%u ccc %ld/%u mbcnt %ld/%u\n", 796 acc, sb->sb_acc, ccc, sb->sb_ccc, mbcnt, sb->sb_mbcnt); 797 goto fail; 798 } 799 return; 800 fail: 801 panic("%s from %s:%u", __func__, file, line); 802 } 803 #endif 804 805 /* 806 * As above, except the mbuf chain begins a new record. 807 */ 808 void 809 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0) 810 { 811 struct mbuf *m; 812 813 SOCKBUF_LOCK_ASSERT(sb); 814 815 if (m0 == NULL) 816 return; 817 m_clrprotoflags(m0); 818 /* 819 * Put the first mbuf on the queue. Note this permits zero length 820 * records. 821 */ 822 sballoc(sb, m0); 823 SBLASTRECORDCHK(sb); 824 SBLINKRECORD(sb, m0); 825 sb->sb_mbtail = m0; 826 m = m0->m_next; 827 m0->m_next = 0; 828 if (m && (m0->m_flags & M_EOR)) { 829 m0->m_flags &= ~M_EOR; 830 m->m_flags |= M_EOR; 831 } 832 /* always call sbcompress() so it can do SBLASTMBUFCHK() */ 833 sbcompress(sb, m, m0); 834 } 835 836 /* 837 * As above, except the mbuf chain begins a new record. 838 */ 839 void 840 sbappendrecord(struct sockbuf *sb, struct mbuf *m0) 841 { 842 843 SOCKBUF_LOCK(sb); 844 sbappendrecord_locked(sb, m0); 845 SOCKBUF_UNLOCK(sb); 846 } 847 848 /* Helper routine that appends data, control, and address to a sockbuf. */ 849 static int 850 sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa, 851 struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last) 852 { 853 struct mbuf *m, *n, *nlast; 854 #if MSIZE <= 256 855 if (asa->sa_len > MLEN) 856 return (0); 857 #endif 858 m = m_get(M_NOWAIT, MT_SONAME); 859 if (m == NULL) 860 return (0); 861 m->m_len = asa->sa_len; 862 bcopy(asa, mtod(m, caddr_t), asa->sa_len); 863 if (m0) { 864 m_clrprotoflags(m0); 865 m_tag_delete_chain(m0, NULL); 866 /* 867 * Clear some persistent info from pkthdr. 868 * We don't use m_demote(), because some netgraph consumers 869 * expect M_PKTHDR presence. 870 */ 871 m0->m_pkthdr.rcvif = NULL; 872 m0->m_pkthdr.flowid = 0; 873 m0->m_pkthdr.csum_flags = 0; 874 m0->m_pkthdr.fibnum = 0; 875 m0->m_pkthdr.rsstype = 0; 876 } 877 if (ctrl_last) 878 ctrl_last->m_next = m0; /* concatenate data to control */ 879 else 880 control = m0; 881 m->m_next = control; 882 for (n = m; n->m_next != NULL; n = n->m_next) 883 sballoc(sb, n); 884 sballoc(sb, n); 885 nlast = n; 886 SBLINKRECORD(sb, m); 887 888 sb->sb_mbtail = nlast; 889 SBLASTMBUFCHK(sb); 890 891 SBLASTRECORDCHK(sb); 892 return (1); 893 } 894 895 /* 896 * Append address and data, and optionally, control (ancillary) data to the 897 * receive queue of a socket. If present, m0 must include a packet header 898 * with total length. Returns 0 if no space in sockbuf or insufficient 899 * mbufs. 900 */ 901 int 902 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa, 903 struct mbuf *m0, struct mbuf *control) 904 { 905 struct mbuf *ctrl_last; 906 int space = asa->sa_len; 907 908 SOCKBUF_LOCK_ASSERT(sb); 909 910 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 911 panic("sbappendaddr_locked"); 912 if (m0) 913 space += m0->m_pkthdr.len; 914 space += m_length(control, &ctrl_last); 915 916 if (space > sbspace(sb)) 917 return (0); 918 return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last)); 919 } 920 921 /* 922 * Append address and data, and optionally, control (ancillary) data to the 923 * receive queue of a socket. If present, m0 must include a packet header 924 * with total length. Returns 0 if insufficient mbufs. Does not validate space 925 * on the receiving sockbuf. 926 */ 927 int 928 sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa, 929 struct mbuf *m0, struct mbuf *control) 930 { 931 struct mbuf *ctrl_last; 932 933 SOCKBUF_LOCK_ASSERT(sb); 934 935 ctrl_last = (control == NULL) ? NULL : m_last(control); 936 return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last)); 937 } 938 939 /* 940 * Append address and data, and optionally, control (ancillary) data to the 941 * receive queue of a socket. If present, m0 must include a packet header 942 * with total length. Returns 0 if no space in sockbuf or insufficient 943 * mbufs. 944 */ 945 int 946 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, 947 struct mbuf *m0, struct mbuf *control) 948 { 949 int retval; 950 951 SOCKBUF_LOCK(sb); 952 retval = sbappendaddr_locked(sb, asa, m0, control); 953 SOCKBUF_UNLOCK(sb); 954 return (retval); 955 } 956 957 int 958 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0, 959 struct mbuf *control) 960 { 961 struct mbuf *m, *n, *mlast; 962 int space; 963 964 SOCKBUF_LOCK_ASSERT(sb); 965 966 if (control == NULL) 967 panic("sbappendcontrol_locked"); 968 space = m_length(control, &n) + m_length(m0, NULL); 969 970 if (space > sbspace(sb)) 971 return (0); 972 m_clrprotoflags(m0); 973 n->m_next = m0; /* concatenate data to control */ 974 975 SBLASTRECORDCHK(sb); 976 977 for (m = control; m->m_next; m = m->m_next) 978 sballoc(sb, m); 979 sballoc(sb, m); 980 mlast = m; 981 SBLINKRECORD(sb, control); 982 983 sb->sb_mbtail = mlast; 984 SBLASTMBUFCHK(sb); 985 986 SBLASTRECORDCHK(sb); 987 return (1); 988 } 989 990 int 991 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control) 992 { 993 int retval; 994 995 SOCKBUF_LOCK(sb); 996 retval = sbappendcontrol_locked(sb, m0, control); 997 SOCKBUF_UNLOCK(sb); 998 return (retval); 999 } 1000 1001 /* 1002 * Append the data in mbuf chain (m) into the socket buffer sb following mbuf 1003 * (n). If (n) is NULL, the buffer is presumed empty. 1004 * 1005 * When the data is compressed, mbufs in the chain may be handled in one of 1006 * three ways: 1007 * 1008 * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no 1009 * record boundary, and no change in data type). 1010 * 1011 * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into 1012 * an mbuf already in the socket buffer. This can occur if an 1013 * appropriate mbuf exists, there is room, both mbufs are not marked as 1014 * not ready, and no merging of data types will occur. 1015 * 1016 * (3) The mbuf may be appended to the end of the existing mbuf chain. 1017 * 1018 * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as 1019 * end-of-record. 1020 */ 1021 void 1022 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n) 1023 { 1024 int eor = 0; 1025 struct mbuf *o; 1026 1027 SOCKBUF_LOCK_ASSERT(sb); 1028 1029 while (m) { 1030 eor |= m->m_flags & M_EOR; 1031 if (m->m_len == 0 && 1032 (eor == 0 || 1033 (((o = m->m_next) || (o = n)) && 1034 o->m_type == m->m_type))) { 1035 if (sb->sb_lastrecord == m) 1036 sb->sb_lastrecord = m->m_next; 1037 m = m_free(m); 1038 continue; 1039 } 1040 if (n && (n->m_flags & M_EOR) == 0 && 1041 M_WRITABLE(n) && 1042 ((sb->sb_flags & SB_NOCOALESCE) == 0) && 1043 !(m->m_flags & M_NOTREADY) && 1044 !(n->m_flags & M_NOTREADY) && 1045 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ 1046 m->m_len <= M_TRAILINGSPACE(n) && 1047 n->m_type == m->m_type) { 1048 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, 1049 (unsigned)m->m_len); 1050 n->m_len += m->m_len; 1051 sb->sb_ccc += m->m_len; 1052 if (sb->sb_fnrdy == NULL) 1053 sb->sb_acc += m->m_len; 1054 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA) 1055 /* XXX: Probably don't need.*/ 1056 sb->sb_ctl += m->m_len; 1057 m = m_free(m); 1058 continue; 1059 } 1060 if (n) 1061 n->m_next = m; 1062 else 1063 sb->sb_mb = m; 1064 sb->sb_mbtail = m; 1065 sballoc(sb, m); 1066 n = m; 1067 m->m_flags &= ~M_EOR; 1068 m = m->m_next; 1069 n->m_next = 0; 1070 } 1071 if (eor) { 1072 KASSERT(n != NULL, ("sbcompress: eor && n == NULL")); 1073 n->m_flags |= eor; 1074 } 1075 SBLASTMBUFCHK(sb); 1076 } 1077 1078 /* 1079 * Free all mbufs in a sockbuf. Check that all resources are reclaimed. 1080 */ 1081 static void 1082 sbflush_internal(struct sockbuf *sb) 1083 { 1084 1085 while (sb->sb_mbcnt) { 1086 /* 1087 * Don't call sbcut(sb, 0) if the leading mbuf is non-empty: 1088 * we would loop forever. Panic instead. 1089 */ 1090 if (sb->sb_ccc == 0 && (sb->sb_mb == NULL || sb->sb_mb->m_len)) 1091 break; 1092 m_freem(sbcut_internal(sb, (int)sb->sb_ccc)); 1093 } 1094 KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0, 1095 ("%s: ccc %u mb %p mbcnt %u", __func__, 1096 sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt)); 1097 } 1098 1099 void 1100 sbflush_locked(struct sockbuf *sb) 1101 { 1102 1103 SOCKBUF_LOCK_ASSERT(sb); 1104 sbflush_internal(sb); 1105 } 1106 1107 void 1108 sbflush(struct sockbuf *sb) 1109 { 1110 1111 SOCKBUF_LOCK(sb); 1112 sbflush_locked(sb); 1113 SOCKBUF_UNLOCK(sb); 1114 } 1115 1116 /* 1117 * Cut data from (the front of) a sockbuf. 1118 */ 1119 static struct mbuf * 1120 sbcut_internal(struct sockbuf *sb, int len) 1121 { 1122 struct mbuf *m, *next, *mfree; 1123 1124 KASSERT(len >= 0, ("%s: len is %d but it is supposed to be >= 0", 1125 __func__, len)); 1126 KASSERT(len <= sb->sb_ccc, ("%s: len: %d is > ccc: %u", 1127 __func__, len, sb->sb_ccc)); 1128 1129 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 1130 mfree = NULL; 1131 1132 while (len > 0) { 1133 if (m == NULL) { 1134 KASSERT(next, ("%s: no next, len %d", __func__, len)); 1135 m = next; 1136 next = m->m_nextpkt; 1137 } 1138 if (m->m_len > len) { 1139 KASSERT(!(m->m_flags & M_NOTAVAIL), 1140 ("%s: m %p M_NOTAVAIL", __func__, m)); 1141 m->m_len -= len; 1142 m->m_data += len; 1143 sb->sb_ccc -= len; 1144 sb->sb_acc -= len; 1145 if (sb->sb_sndptroff != 0) 1146 sb->sb_sndptroff -= len; 1147 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA) 1148 sb->sb_ctl -= len; 1149 break; 1150 } 1151 len -= m->m_len; 1152 sbfree(sb, m); 1153 /* 1154 * Do not put M_NOTREADY buffers to the free list, they 1155 * are referenced from outside. 1156 */ 1157 if (m->m_flags & M_NOTREADY) 1158 m = m->m_next; 1159 else { 1160 struct mbuf *n; 1161 1162 n = m->m_next; 1163 m->m_next = mfree; 1164 mfree = m; 1165 m = n; 1166 } 1167 } 1168 /* 1169 * Free any zero-length mbufs from the buffer. 1170 * For SOCK_DGRAM sockets such mbufs represent empty records. 1171 * XXX: For SOCK_STREAM sockets such mbufs can appear in the buffer, 1172 * when sosend_generic() needs to send only control data. 1173 */ 1174 while (m && m->m_len == 0) { 1175 struct mbuf *n; 1176 1177 sbfree(sb, m); 1178 n = m->m_next; 1179 m->m_next = mfree; 1180 mfree = m; 1181 m = n; 1182 } 1183 if (m) { 1184 sb->sb_mb = m; 1185 m->m_nextpkt = next; 1186 } else 1187 sb->sb_mb = next; 1188 /* 1189 * First part is an inline SB_EMPTY_FIXUP(). Second part makes sure 1190 * sb_lastrecord is up-to-date if we dropped part of the last record. 1191 */ 1192 m = sb->sb_mb; 1193 if (m == NULL) { 1194 sb->sb_mbtail = NULL; 1195 sb->sb_lastrecord = NULL; 1196 } else if (m->m_nextpkt == NULL) { 1197 sb->sb_lastrecord = m; 1198 } 1199 1200 return (mfree); 1201 } 1202 1203 /* 1204 * Drop data from (the front of) a sockbuf. 1205 */ 1206 void 1207 sbdrop_locked(struct sockbuf *sb, int len) 1208 { 1209 1210 SOCKBUF_LOCK_ASSERT(sb); 1211 m_freem(sbcut_internal(sb, len)); 1212 } 1213 1214 /* 1215 * Drop data from (the front of) a sockbuf, 1216 * and return it to caller. 1217 */ 1218 struct mbuf * 1219 sbcut_locked(struct sockbuf *sb, int len) 1220 { 1221 1222 SOCKBUF_LOCK_ASSERT(sb); 1223 return (sbcut_internal(sb, len)); 1224 } 1225 1226 void 1227 sbdrop(struct sockbuf *sb, int len) 1228 { 1229 struct mbuf *mfree; 1230 1231 SOCKBUF_LOCK(sb); 1232 mfree = sbcut_internal(sb, len); 1233 SOCKBUF_UNLOCK(sb); 1234 1235 m_freem(mfree); 1236 } 1237 1238 /* 1239 * Maintain a pointer and offset pair into the socket buffer mbuf chain to 1240 * avoid traversal of the entire socket buffer for larger offsets. 1241 */ 1242 struct mbuf * 1243 sbsndptr(struct sockbuf *sb, u_int off, u_int len, u_int *moff) 1244 { 1245 struct mbuf *m, *ret; 1246 1247 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__)); 1248 KASSERT(off + len <= sb->sb_acc, ("%s: beyond sb", __func__)); 1249 KASSERT(sb->sb_sndptroff <= sb->sb_acc, ("%s: sndptroff broken", __func__)); 1250 1251 /* 1252 * Is off below stored offset? Happens on retransmits. 1253 * Just return, we can't help here. 1254 */ 1255 if (sb->sb_sndptroff > off) { 1256 *moff = off; 1257 return (sb->sb_mb); 1258 } 1259 1260 /* Return closest mbuf in chain for current offset. */ 1261 *moff = off - sb->sb_sndptroff; 1262 m = ret = sb->sb_sndptr ? sb->sb_sndptr : sb->sb_mb; 1263 if (*moff == m->m_len) { 1264 *moff = 0; 1265 sb->sb_sndptroff += m->m_len; 1266 m = ret = m->m_next; 1267 KASSERT(ret->m_len > 0, 1268 ("mbuf %p in sockbuf %p chain has no valid data", ret, sb)); 1269 } 1270 1271 /* Advance by len to be as close as possible for the next transmit. */ 1272 for (off = off - sb->sb_sndptroff + len - 1; 1273 off > 0 && m != NULL && off >= m->m_len; 1274 m = m->m_next) { 1275 sb->sb_sndptroff += m->m_len; 1276 off -= m->m_len; 1277 } 1278 if (off > 0 && m == NULL) 1279 panic("%s: sockbuf %p and mbuf %p clashing", __func__, sb, ret); 1280 sb->sb_sndptr = m; 1281 1282 return (ret); 1283 } 1284 1285 /* 1286 * Return the first mbuf and the mbuf data offset for the provided 1287 * send offset without changing the "sb_sndptroff" field. 1288 */ 1289 struct mbuf * 1290 sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff) 1291 { 1292 struct mbuf *m; 1293 1294 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__)); 1295 1296 /* 1297 * If the "off" is below the stored offset, which happens on 1298 * retransmits, just use "sb_mb": 1299 */ 1300 if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) { 1301 m = sb->sb_mb; 1302 } else { 1303 m = sb->sb_sndptr; 1304 off -= sb->sb_sndptroff; 1305 } 1306 while (off > 0 && m != NULL) { 1307 if (off < m->m_len) 1308 break; 1309 off -= m->m_len; 1310 m = m->m_next; 1311 } 1312 *moff = off; 1313 return (m); 1314 } 1315 1316 /* 1317 * Drop a record off the front of a sockbuf and move the next record to the 1318 * front. 1319 */ 1320 void 1321 sbdroprecord_locked(struct sockbuf *sb) 1322 { 1323 struct mbuf *m; 1324 1325 SOCKBUF_LOCK_ASSERT(sb); 1326 1327 m = sb->sb_mb; 1328 if (m) { 1329 sb->sb_mb = m->m_nextpkt; 1330 do { 1331 sbfree(sb, m); 1332 m = m_free(m); 1333 } while (m); 1334 } 1335 SB_EMPTY_FIXUP(sb); 1336 } 1337 1338 /* 1339 * Drop a record off the front of a sockbuf and move the next record to the 1340 * front. 1341 */ 1342 void 1343 sbdroprecord(struct sockbuf *sb) 1344 { 1345 1346 SOCKBUF_LOCK(sb); 1347 sbdroprecord_locked(sb); 1348 SOCKBUF_UNLOCK(sb); 1349 } 1350 1351 /* 1352 * Create a "control" mbuf containing the specified data with the specified 1353 * type for presentation on a socket buffer. 1354 */ 1355 struct mbuf * 1356 sbcreatecontrol(caddr_t p, int size, int type, int level) 1357 { 1358 struct cmsghdr *cp; 1359 struct mbuf *m; 1360 1361 if (CMSG_SPACE((u_int)size) > MCLBYTES) 1362 return ((struct mbuf *) NULL); 1363 if (CMSG_SPACE((u_int)size) > MLEN) 1364 m = m_getcl(M_NOWAIT, MT_CONTROL, 0); 1365 else 1366 m = m_get(M_NOWAIT, MT_CONTROL); 1367 if (m == NULL) 1368 return ((struct mbuf *) NULL); 1369 cp = mtod(m, struct cmsghdr *); 1370 m->m_len = 0; 1371 KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m), 1372 ("sbcreatecontrol: short mbuf")); 1373 /* 1374 * Don't leave the padding between the msg header and the 1375 * cmsg data and the padding after the cmsg data un-initialized. 1376 */ 1377 bzero(cp, CMSG_SPACE((u_int)size)); 1378 if (p != NULL) 1379 (void)memcpy(CMSG_DATA(cp), p, size); 1380 m->m_len = CMSG_SPACE(size); 1381 cp->cmsg_len = CMSG_LEN(size); 1382 cp->cmsg_level = level; 1383 cp->cmsg_type = type; 1384 return (m); 1385 } 1386 1387 /* 1388 * This does the same for socket buffers that sotoxsocket does for sockets: 1389 * generate an user-format data structure describing the socket buffer. Note 1390 * that the xsockbuf structure, since it is always embedded in a socket, does 1391 * not include a self pointer nor a length. We make this entry point public 1392 * in case some other mechanism needs it. 1393 */ 1394 void 1395 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb) 1396 { 1397 1398 xsb->sb_cc = sb->sb_ccc; 1399 xsb->sb_hiwat = sb->sb_hiwat; 1400 xsb->sb_mbcnt = sb->sb_mbcnt; 1401 xsb->sb_mcnt = sb->sb_mcnt; 1402 xsb->sb_ccnt = sb->sb_ccnt; 1403 xsb->sb_mbmax = sb->sb_mbmax; 1404 xsb->sb_lowat = sb->sb_lowat; 1405 xsb->sb_flags = sb->sb_flags; 1406 xsb->sb_timeo = sb->sb_timeo; 1407 } 1408 1409 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */ 1410 static int dummy; 1411 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, ""); 1412 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_ULONG|CTLFLAG_RW, 1413 &sb_max, 0, sysctl_handle_sb_max, "LU", "Maximum socket buffer size"); 1414 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW, 1415 &sb_efficiency, 0, "Socket buffer size waste factor"); 1416