xref: /freebsd/sys/kern/uipc_sockbuf.c (revision e4e9813eb92cd7c4d4b819a8fbed5cbd3d92f5d8)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_param.h"
36 
37 #include <sys/param.h>
38 #include <sys/aio.h> /* for aio_swake proto */
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mbuf.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/protosw.h>
45 #include <sys/resourcevar.h>
46 #include <sys/signalvar.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/sysctl.h>
50 
51 /*
52  * Function pointer set by the AIO routines so that the socket buffer code
53  * can call back into the AIO module if it is loaded.
54  */
55 void	(*aio_swake)(struct socket *, struct sockbuf *);
56 
57 /*
58  * Primitive routines for operating on socket buffers
59  */
60 
61 u_long	sb_max = SB_MAX;
62 static	u_long sb_max_adj =
63     SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
64 
65 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
66 
67 static void	sbdrop_internal(struct sockbuf *sb, int len);
68 static void	sbflush_internal(struct sockbuf *sb);
69 static void	sbrelease_internal(struct sockbuf *sb, struct socket *so);
70 
71 /*
72  * Socantsendmore indicates that no more data will be sent on the socket; it
73  * would normally be applied to a socket when the user informs the system
74  * that no more data is to be sent, by the protocol code (in case
75  * PRU_SHUTDOWN).  Socantrcvmore indicates that no more data will be
76  * received, and will normally be applied to the socket by a protocol when it
77  * detects that the peer will send no more data.  Data queued for reading in
78  * the socket may yet be read.
79  */
80 void
81 socantsendmore_locked(struct socket *so)
82 {
83 
84 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
85 
86 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
87 	sowwakeup_locked(so);
88 	mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
89 }
90 
91 void
92 socantsendmore(struct socket *so)
93 {
94 
95 	SOCKBUF_LOCK(&so->so_snd);
96 	socantsendmore_locked(so);
97 	mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
98 }
99 
100 void
101 socantrcvmore_locked(struct socket *so)
102 {
103 
104 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
105 
106 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
107 	sorwakeup_locked(so);
108 	mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
109 }
110 
111 void
112 socantrcvmore(struct socket *so)
113 {
114 
115 	SOCKBUF_LOCK(&so->so_rcv);
116 	socantrcvmore_locked(so);
117 	mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
118 }
119 
120 /*
121  * Wait for data to arrive at/drain from a socket buffer.
122  */
123 int
124 sbwait(struct sockbuf *sb)
125 {
126 
127 	SOCKBUF_LOCK_ASSERT(sb);
128 
129 	sb->sb_flags |= SB_WAIT;
130 	return (msleep(&sb->sb_cc, &sb->sb_mtx,
131 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
132 	    sb->sb_timeo));
133 }
134 
135 /*
136  * Lock a sockbuf already known to be locked; return any error returned from
137  * sleep (EINTR).
138  */
139 int
140 sb_lock(struct sockbuf *sb)
141 {
142 	int error;
143 
144 	SOCKBUF_LOCK_ASSERT(sb);
145 
146 	while (sb->sb_flags & SB_LOCK) {
147 		sb->sb_flags |= SB_WANT;
148 		error = msleep(&sb->sb_flags, &sb->sb_mtx,
149 		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
150 		    "sblock", 0);
151 		if (error)
152 			return (error);
153 	}
154 	sb->sb_flags |= SB_LOCK;
155 	return (0);
156 }
157 
158 /*
159  * Wakeup processes waiting on a socket buffer.  Do asynchronous notification
160  * via SIGIO if the socket has the SS_ASYNC flag set.
161  *
162  * Called with the socket buffer lock held; will release the lock by the end
163  * of the function.  This allows the caller to acquire the socket buffer lock
164  * while testing for the need for various sorts of wakeup and hold it through
165  * to the point where it's no longer required.  We currently hold the lock
166  * through calls out to other subsystems (with the exception of kqueue), and
167  * then release it to avoid lock order issues.  It's not clear that's
168  * correct.
169  */
170 void
171 sowakeup(struct socket *so, struct sockbuf *sb)
172 {
173 
174 	SOCKBUF_LOCK_ASSERT(sb);
175 
176 	selwakeuppri(&sb->sb_sel, PSOCK);
177 	sb->sb_flags &= ~SB_SEL;
178 	if (sb->sb_flags & SB_WAIT) {
179 		sb->sb_flags &= ~SB_WAIT;
180 		wakeup(&sb->sb_cc);
181 	}
182 	KNOTE_LOCKED(&sb->sb_sel.si_note, 0);
183 	SOCKBUF_UNLOCK(sb);
184 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
185 		pgsigio(&so->so_sigio, SIGIO, 0);
186 	if (sb->sb_flags & SB_UPCALL)
187 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
188 	if (sb->sb_flags & SB_AIO)
189 		aio_swake(so, sb);
190 	mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED);
191 }
192 
193 /*
194  * Socket buffer (struct sockbuf) utility routines.
195  *
196  * Each socket contains two socket buffers: one for sending data and one for
197  * receiving data.  Each buffer contains a queue of mbufs, information about
198  * the number of mbufs and amount of data in the queue, and other fields
199  * allowing select() statements and notification on data availability to be
200  * implemented.
201  *
202  * Data stored in a socket buffer is maintained as a list of records.  Each
203  * record is a list of mbufs chained together with the m_next field.  Records
204  * are chained together with the m_nextpkt field. The upper level routine
205  * soreceive() expects the following conventions to be observed when placing
206  * information in the receive buffer:
207  *
208  * 1. If the protocol requires each message be preceded by the sender's name,
209  *    then a record containing that name must be present before any
210  *    associated data (mbuf's must be of type MT_SONAME).
211  * 2. If the protocol supports the exchange of ``access rights'' (really just
212  *    additional data associated with the message), and there are ``rights''
213  *    to be received, then a record containing this data should be present
214  *    (mbuf's must be of type MT_RIGHTS).
215  * 3. If a name or rights record exists, then it must be followed by a data
216  *    record, perhaps of zero length.
217  *
218  * Before using a new socket structure it is first necessary to reserve
219  * buffer space to the socket, by calling sbreserve().  This should commit
220  * some of the available buffer space in the system buffer pool for the
221  * socket (currently, it does nothing but enforce limits).  The space should
222  * be released by calling sbrelease() when the socket is destroyed.
223  */
224 int
225 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
226 {
227 	struct thread *td = curthread;
228 
229 	SOCKBUF_LOCK(&so->so_snd);
230 	SOCKBUF_LOCK(&so->so_rcv);
231 	if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0)
232 		goto bad;
233 	if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0)
234 		goto bad2;
235 	if (so->so_rcv.sb_lowat == 0)
236 		so->so_rcv.sb_lowat = 1;
237 	if (so->so_snd.sb_lowat == 0)
238 		so->so_snd.sb_lowat = MCLBYTES;
239 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
240 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
241 	SOCKBUF_UNLOCK(&so->so_rcv);
242 	SOCKBUF_UNLOCK(&so->so_snd);
243 	return (0);
244 bad2:
245 	sbrelease_locked(&so->so_snd, so);
246 bad:
247 	SOCKBUF_UNLOCK(&so->so_rcv);
248 	SOCKBUF_UNLOCK(&so->so_snd);
249 	return (ENOBUFS);
250 }
251 
252 static int
253 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
254 {
255 	int error = 0;
256 	u_long old_sb_max = sb_max;
257 
258 	error = SYSCTL_OUT(req, arg1, sizeof(u_long));
259 	if (error || !req->newptr)
260 		return (error);
261 	error = SYSCTL_IN(req, arg1, sizeof(u_long));
262 	if (error)
263 		return (error);
264 	if (sb_max < MSIZE + MCLBYTES) {
265 		sb_max = old_sb_max;
266 		return (EINVAL);
267 	}
268 	sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
269 	return (0);
270 }
271 
272 /*
273  * Allot mbufs to a sockbuf.  Attempt to scale mbmax so that mbcnt doesn't
274  * become limiting if buffering efficiency is near the normal case.
275  */
276 int
277 sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so,
278     struct thread *td)
279 {
280 	rlim_t sbsize_limit;
281 
282 	SOCKBUF_LOCK_ASSERT(sb);
283 
284 	/*
285 	 * td will only be NULL when we're in an interrupt (e.g. in
286 	 * tcp_input()).
287 	 *
288 	 * XXXRW: This comment needs updating, as might the code.
289 	 */
290 	if (cc > sb_max_adj)
291 		return (0);
292 	if (td != NULL) {
293 		PROC_LOCK(td->td_proc);
294 		sbsize_limit = lim_cur(td->td_proc, RLIMIT_SBSIZE);
295 		PROC_UNLOCK(td->td_proc);
296 	} else
297 		sbsize_limit = RLIM_INFINITY;
298 	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
299 	    sbsize_limit))
300 		return (0);
301 	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
302 	if (sb->sb_lowat > sb->sb_hiwat)
303 		sb->sb_lowat = sb->sb_hiwat;
304 	return (1);
305 }
306 
307 int
308 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so,
309     struct thread *td)
310 {
311 	int error;
312 
313 	SOCKBUF_LOCK(sb);
314 	error = sbreserve_locked(sb, cc, so, td);
315 	SOCKBUF_UNLOCK(sb);
316 	return (error);
317 }
318 
319 /*
320  * Free mbufs held by a socket, and reserved mbuf space.
321  */
322 static void
323 sbrelease_internal(struct sockbuf *sb, struct socket *so)
324 {
325 
326 	sbflush_internal(sb);
327 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
328 	    RLIM_INFINITY);
329 	sb->sb_mbmax = 0;
330 }
331 
332 void
333 sbrelease_locked(struct sockbuf *sb, struct socket *so)
334 {
335 
336 	SOCKBUF_LOCK_ASSERT(sb);
337 
338 	sbrelease_internal(sb, so);
339 }
340 
341 void
342 sbrelease(struct sockbuf *sb, struct socket *so)
343 {
344 
345 	SOCKBUF_LOCK(sb);
346 	sbrelease_locked(sb, so);
347 	SOCKBUF_UNLOCK(sb);
348 }
349 
350 void
351 sbdestroy(struct sockbuf *sb, struct socket *so)
352 {
353 
354 	sbrelease_internal(sb, so);
355 }
356 
357 
358 /*
359  * Routines to add and remove data from an mbuf queue.
360  *
361  * The routines sbappend() or sbappendrecord() are normally called to append
362  * new mbufs to a socket buffer, after checking that adequate space is
363  * available, comparing the function sbspace() with the amount of data to be
364  * added.  sbappendrecord() differs from sbappend() in that data supplied is
365  * treated as the beginning of a new record.  To place a sender's address,
366  * optional access rights, and data in a socket receive buffer,
367  * sbappendaddr() should be used.  To place access rights and data in a
368  * socket receive buffer, sbappendrights() should be used.  In either case,
369  * the new data begins a new record.  Note that unlike sbappend() and
370  * sbappendrecord(), these routines check for the caller that there will be
371  * enough space to store the data.  Each fails if there is not enough space,
372  * or if it cannot find mbufs to store additional information in.
373  *
374  * Reliable protocols may use the socket send buffer to hold data awaiting
375  * acknowledgement.  Data is normally copied from a socket send buffer in a
376  * protocol with m_copy for output to a peer, and then removing the data from
377  * the socket buffer with sbdrop() or sbdroprecord() when the data is
378  * acknowledged by the peer.
379  */
380 #ifdef SOCKBUF_DEBUG
381 void
382 sblastrecordchk(struct sockbuf *sb, const char *file, int line)
383 {
384 	struct mbuf *m = sb->sb_mb;
385 
386 	SOCKBUF_LOCK_ASSERT(sb);
387 
388 	while (m && m->m_nextpkt)
389 		m = m->m_nextpkt;
390 
391 	if (m != sb->sb_lastrecord) {
392 		printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
393 			__func__, sb->sb_mb, sb->sb_lastrecord, m);
394 		printf("packet chain:\n");
395 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
396 			printf("\t%p\n", m);
397 		panic("%s from %s:%u", __func__, file, line);
398 	}
399 }
400 
401 void
402 sblastmbufchk(struct sockbuf *sb, const char *file, int line)
403 {
404 	struct mbuf *m = sb->sb_mb;
405 	struct mbuf *n;
406 
407 	SOCKBUF_LOCK_ASSERT(sb);
408 
409 	while (m && m->m_nextpkt)
410 		m = m->m_nextpkt;
411 
412 	while (m && m->m_next)
413 		m = m->m_next;
414 
415 	if (m != sb->sb_mbtail) {
416 		printf("%s: sb_mb %p sb_mbtail %p last %p\n",
417 			__func__, sb->sb_mb, sb->sb_mbtail, m);
418 		printf("packet tree:\n");
419 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
420 			printf("\t");
421 			for (n = m; n != NULL; n = n->m_next)
422 				printf("%p ", n);
423 			printf("\n");
424 		}
425 		panic("%s from %s:%u", __func__, file, line);
426 	}
427 }
428 #endif /* SOCKBUF_DEBUG */
429 
430 #define SBLINKRECORD(sb, m0) do {					\
431 	SOCKBUF_LOCK_ASSERT(sb);					\
432 	if ((sb)->sb_lastrecord != NULL)				\
433 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
434 	else								\
435 		(sb)->sb_mb = (m0);					\
436 	(sb)->sb_lastrecord = (m0);					\
437 } while (/*CONSTCOND*/0)
438 
439 /*
440  * Append mbuf chain m to the last record in the socket buffer sb.  The
441  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
442  * are discarded and mbufs are compacted where possible.
443  */
444 void
445 sbappend_locked(struct sockbuf *sb, struct mbuf *m)
446 {
447 	struct mbuf *n;
448 
449 	SOCKBUF_LOCK_ASSERT(sb);
450 
451 	if (m == 0)
452 		return;
453 
454 	SBLASTRECORDCHK(sb);
455 	n = sb->sb_mb;
456 	if (n) {
457 		while (n->m_nextpkt)
458 			n = n->m_nextpkt;
459 		do {
460 			if (n->m_flags & M_EOR) {
461 				sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
462 				return;
463 			}
464 		} while (n->m_next && (n = n->m_next));
465 	} else {
466 		/*
467 		 * XXX Would like to simply use sb_mbtail here, but
468 		 * XXX I need to verify that I won't miss an EOR that
469 		 * XXX way.
470 		 */
471 		if ((n = sb->sb_lastrecord) != NULL) {
472 			do {
473 				if (n->m_flags & M_EOR) {
474 					sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
475 					return;
476 				}
477 			} while (n->m_next && (n = n->m_next));
478 		} else {
479 			/*
480 			 * If this is the first record in the socket buffer,
481 			 * it's also the last record.
482 			 */
483 			sb->sb_lastrecord = m;
484 		}
485 	}
486 	sbcompress(sb, m, n);
487 	SBLASTRECORDCHK(sb);
488 }
489 
490 /*
491  * Append mbuf chain m to the last record in the socket buffer sb.  The
492  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
493  * are discarded and mbufs are compacted where possible.
494  */
495 void
496 sbappend(struct sockbuf *sb, struct mbuf *m)
497 {
498 
499 	SOCKBUF_LOCK(sb);
500 	sbappend_locked(sb, m);
501 	SOCKBUF_UNLOCK(sb);
502 }
503 
504 /*
505  * This version of sbappend() should only be used when the caller absolutely
506  * knows that there will never be more than one record in the socket buffer,
507  * that is, a stream protocol (such as TCP).
508  */
509 void
510 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m)
511 {
512 	SOCKBUF_LOCK_ASSERT(sb);
513 
514 	KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
515 	KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
516 
517 	SBLASTMBUFCHK(sb);
518 
519 	sbcompress(sb, m, sb->sb_mbtail);
520 
521 	sb->sb_lastrecord = sb->sb_mb;
522 	SBLASTRECORDCHK(sb);
523 }
524 
525 /*
526  * This version of sbappend() should only be used when the caller absolutely
527  * knows that there will never be more than one record in the socket buffer,
528  * that is, a stream protocol (such as TCP).
529  */
530 void
531 sbappendstream(struct sockbuf *sb, struct mbuf *m)
532 {
533 
534 	SOCKBUF_LOCK(sb);
535 	sbappendstream_locked(sb, m);
536 	SOCKBUF_UNLOCK(sb);
537 }
538 
539 #ifdef SOCKBUF_DEBUG
540 void
541 sbcheck(struct sockbuf *sb)
542 {
543 	struct mbuf *m;
544 	struct mbuf *n = 0;
545 	u_long len = 0, mbcnt = 0;
546 
547 	SOCKBUF_LOCK_ASSERT(sb);
548 
549 	for (m = sb->sb_mb; m; m = n) {
550 	    n = m->m_nextpkt;
551 	    for (; m; m = m->m_next) {
552 		len += m->m_len;
553 		mbcnt += MSIZE;
554 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
555 			mbcnt += m->m_ext.ext_size;
556 	    }
557 	}
558 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
559 		printf("cc %ld != %u || mbcnt %ld != %u\n", len, sb->sb_cc,
560 		    mbcnt, sb->sb_mbcnt);
561 		panic("sbcheck");
562 	}
563 }
564 #endif
565 
566 /*
567  * As above, except the mbuf chain begins a new record.
568  */
569 void
570 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
571 {
572 	struct mbuf *m;
573 
574 	SOCKBUF_LOCK_ASSERT(sb);
575 
576 	if (m0 == 0)
577 		return;
578 	m = sb->sb_mb;
579 	if (m)
580 		while (m->m_nextpkt)
581 			m = m->m_nextpkt;
582 	/*
583 	 * Put the first mbuf on the queue.  Note this permits zero length
584 	 * records.
585 	 */
586 	sballoc(sb, m0);
587 	SBLASTRECORDCHK(sb);
588 	SBLINKRECORD(sb, m0);
589 	if (m)
590 		m->m_nextpkt = m0;
591 	else
592 		sb->sb_mb = m0;
593 	m = m0->m_next;
594 	m0->m_next = 0;
595 	if (m && (m0->m_flags & M_EOR)) {
596 		m0->m_flags &= ~M_EOR;
597 		m->m_flags |= M_EOR;
598 	}
599 	sbcompress(sb, m, m0);
600 }
601 
602 /*
603  * As above, except the mbuf chain begins a new record.
604  */
605 void
606 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
607 {
608 
609 	SOCKBUF_LOCK(sb);
610 	sbappendrecord_locked(sb, m0);
611 	SOCKBUF_UNLOCK(sb);
612 }
613 
614 /*
615  * Append address and data, and optionally, control (ancillary) data to the
616  * receive queue of a socket.  If present, m0 must include a packet header
617  * with total length.  Returns 0 if no space in sockbuf or insufficient
618  * mbufs.
619  */
620 int
621 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
622     struct mbuf *m0, struct mbuf *control)
623 {
624 	struct mbuf *m, *n, *nlast;
625 	int space = asa->sa_len;
626 
627 	SOCKBUF_LOCK_ASSERT(sb);
628 
629 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
630 		panic("sbappendaddr_locked");
631 	if (m0)
632 		space += m0->m_pkthdr.len;
633 	space += m_length(control, &n);
634 
635 	if (space > sbspace(sb))
636 		return (0);
637 #if MSIZE <= 256
638 	if (asa->sa_len > MLEN)
639 		return (0);
640 #endif
641 	MGET(m, M_DONTWAIT, MT_SONAME);
642 	if (m == 0)
643 		return (0);
644 	m->m_len = asa->sa_len;
645 	bcopy(asa, mtod(m, caddr_t), asa->sa_len);
646 	if (n)
647 		n->m_next = m0;		/* concatenate data to control */
648 	else
649 		control = m0;
650 	m->m_next = control;
651 	for (n = m; n->m_next != NULL; n = n->m_next)
652 		sballoc(sb, n);
653 	sballoc(sb, n);
654 	nlast = n;
655 	SBLINKRECORD(sb, m);
656 
657 	sb->sb_mbtail = nlast;
658 	SBLASTMBUFCHK(sb);
659 
660 	SBLASTRECORDCHK(sb);
661 	return (1);
662 }
663 
664 /*
665  * Append address and data, and optionally, control (ancillary) data to the
666  * receive queue of a socket.  If present, m0 must include a packet header
667  * with total length.  Returns 0 if no space in sockbuf or insufficient
668  * mbufs.
669  */
670 int
671 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
672     struct mbuf *m0, struct mbuf *control)
673 {
674 	int retval;
675 
676 	SOCKBUF_LOCK(sb);
677 	retval = sbappendaddr_locked(sb, asa, m0, control);
678 	SOCKBUF_UNLOCK(sb);
679 	return (retval);
680 }
681 
682 int
683 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
684     struct mbuf *control)
685 {
686 	struct mbuf *m, *n, *mlast;
687 	int space;
688 
689 	SOCKBUF_LOCK_ASSERT(sb);
690 
691 	if (control == 0)
692 		panic("sbappendcontrol_locked");
693 	space = m_length(control, &n) + m_length(m0, NULL);
694 
695 	if (space > sbspace(sb))
696 		return (0);
697 	n->m_next = m0;			/* concatenate data to control */
698 
699 	SBLASTRECORDCHK(sb);
700 
701 	for (m = control; m->m_next; m = m->m_next)
702 		sballoc(sb, m);
703 	sballoc(sb, m);
704 	mlast = m;
705 	SBLINKRECORD(sb, control);
706 
707 	sb->sb_mbtail = mlast;
708 	SBLASTMBUFCHK(sb);
709 
710 	SBLASTRECORDCHK(sb);
711 	return (1);
712 }
713 
714 int
715 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
716 {
717 	int retval;
718 
719 	SOCKBUF_LOCK(sb);
720 	retval = sbappendcontrol_locked(sb, m0, control);
721 	SOCKBUF_UNLOCK(sb);
722 	return (retval);
723 }
724 
725 /*
726  * Append the data in mbuf chain (m) into the socket buffer sb following mbuf
727  * (n).  If (n) is NULL, the buffer is presumed empty.
728  *
729  * When the data is compressed, mbufs in the chain may be handled in one of
730  * three ways:
731  *
732  * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
733  *     record boundary, and no change in data type).
734  *
735  * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
736  *     an mbuf already in the socket buffer.  This can occur if an
737  *     appropriate mbuf exists, there is room, and no merging of data types
738  *     will occur.
739  *
740  * (3) The mbuf may be appended to the end of the existing mbuf chain.
741  *
742  * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
743  * end-of-record.
744  */
745 void
746 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
747 {
748 	int eor = 0;
749 	struct mbuf *o;
750 
751 	SOCKBUF_LOCK_ASSERT(sb);
752 
753 	while (m) {
754 		eor |= m->m_flags & M_EOR;
755 		if (m->m_len == 0 &&
756 		    (eor == 0 ||
757 		     (((o = m->m_next) || (o = n)) &&
758 		      o->m_type == m->m_type))) {
759 			if (sb->sb_lastrecord == m)
760 				sb->sb_lastrecord = m->m_next;
761 			m = m_free(m);
762 			continue;
763 		}
764 		if (n && (n->m_flags & M_EOR) == 0 &&
765 		    M_WRITABLE(n) &&
766 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
767 		    m->m_len <= M_TRAILINGSPACE(n) &&
768 		    n->m_type == m->m_type) {
769 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
770 			    (unsigned)m->m_len);
771 			n->m_len += m->m_len;
772 			sb->sb_cc += m->m_len;
773 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
774 				/* XXX: Probably don't need.*/
775 				sb->sb_ctl += m->m_len;
776 			m = m_free(m);
777 			continue;
778 		}
779 		if (n)
780 			n->m_next = m;
781 		else
782 			sb->sb_mb = m;
783 		sb->sb_mbtail = m;
784 		sballoc(sb, m);
785 		n = m;
786 		m->m_flags &= ~M_EOR;
787 		m = m->m_next;
788 		n->m_next = 0;
789 	}
790 	if (eor) {
791 		KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
792 		n->m_flags |= eor;
793 	}
794 	SBLASTMBUFCHK(sb);
795 }
796 
797 /*
798  * Free all mbufs in a sockbuf.  Check that all resources are reclaimed.
799  */
800 static void
801 sbflush_internal(struct sockbuf *sb)
802 {
803 
804 	if (sb->sb_flags & SB_LOCK)
805 		panic("sbflush_internal: locked");
806 	while (sb->sb_mbcnt) {
807 		/*
808 		 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
809 		 * we would loop forever. Panic instead.
810 		 */
811 		if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
812 			break;
813 		sbdrop_internal(sb, (int)sb->sb_cc);
814 	}
815 	if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt)
816 		panic("sbflush_internal: cc %u || mb %p || mbcnt %u",
817 		    sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt);
818 }
819 
820 void
821 sbflush_locked(struct sockbuf *sb)
822 {
823 
824 	SOCKBUF_LOCK_ASSERT(sb);
825 	sbflush_internal(sb);
826 }
827 
828 void
829 sbflush(struct sockbuf *sb)
830 {
831 
832 	SOCKBUF_LOCK(sb);
833 	sbflush_locked(sb);
834 	SOCKBUF_UNLOCK(sb);
835 }
836 
837 /*
838  * Drop data from (the front of) a sockbuf.
839  */
840 static void
841 sbdrop_internal(struct sockbuf *sb, int len)
842 {
843 	struct mbuf *m;
844 	struct mbuf *next;
845 
846 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
847 	while (len > 0) {
848 		if (m == 0) {
849 			if (next == 0)
850 				panic("sbdrop");
851 			m = next;
852 			next = m->m_nextpkt;
853 			continue;
854 		}
855 		if (m->m_len > len) {
856 			m->m_len -= len;
857 			m->m_data += len;
858 			sb->sb_cc -= len;
859 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
860 				sb->sb_ctl -= len;
861 			break;
862 		}
863 		len -= m->m_len;
864 		sbfree(sb, m);
865 		m = m_free(m);
866 	}
867 	while (m && m->m_len == 0) {
868 		sbfree(sb, m);
869 		m = m_free(m);
870 	}
871 	if (m) {
872 		sb->sb_mb = m;
873 		m->m_nextpkt = next;
874 	} else
875 		sb->sb_mb = next;
876 	/*
877 	 * First part is an inline SB_EMPTY_FIXUP().  Second part makes sure
878 	 * sb_lastrecord is up-to-date if we dropped part of the last record.
879 	 */
880 	m = sb->sb_mb;
881 	if (m == NULL) {
882 		sb->sb_mbtail = NULL;
883 		sb->sb_lastrecord = NULL;
884 	} else if (m->m_nextpkt == NULL) {
885 		sb->sb_lastrecord = m;
886 	}
887 }
888 
889 /*
890  * Drop data from (the front of) a sockbuf.
891  */
892 void
893 sbdrop_locked(struct sockbuf *sb, int len)
894 {
895 
896 	SOCKBUF_LOCK_ASSERT(sb);
897 
898 	sbdrop_internal(sb, len);
899 }
900 
901 void
902 sbdrop(struct sockbuf *sb, int len)
903 {
904 
905 	SOCKBUF_LOCK(sb);
906 	sbdrop_locked(sb, len);
907 	SOCKBUF_UNLOCK(sb);
908 }
909 
910 /*
911  * Drop a record off the front of a sockbuf and move the next record to the
912  * front.
913  */
914 void
915 sbdroprecord_locked(struct sockbuf *sb)
916 {
917 	struct mbuf *m;
918 
919 	SOCKBUF_LOCK_ASSERT(sb);
920 
921 	m = sb->sb_mb;
922 	if (m) {
923 		sb->sb_mb = m->m_nextpkt;
924 		do {
925 			sbfree(sb, m);
926 			m = m_free(m);
927 		} while (m);
928 	}
929 	SB_EMPTY_FIXUP(sb);
930 }
931 
932 /*
933  * Drop a record off the front of a sockbuf and move the next record to the
934  * front.
935  */
936 void
937 sbdroprecord(struct sockbuf *sb)
938 {
939 
940 	SOCKBUF_LOCK(sb);
941 	sbdroprecord_locked(sb);
942 	SOCKBUF_UNLOCK(sb);
943 }
944 
945 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
946 static int dummy;
947 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
948 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_ULONG|CTLFLAG_RW,
949     &sb_max, 0, sysctl_handle_sb_max, "LU", "Maximum socket buffer size");
950 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
951     &sb_efficiency, 0, "");
952