1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_kern_tls.h" 38 #include "opt_param.h" 39 40 #include <sys/param.h> 41 #include <sys/aio.h> /* for aio_swake proto */ 42 #include <sys/kernel.h> 43 #include <sys/ktls.h> 44 #include <sys/lock.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/mutex.h> 48 #include <sys/proc.h> 49 #include <sys/protosw.h> 50 #include <sys/resourcevar.h> 51 #include <sys/signalvar.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/sx.h> 55 #include <sys/sysctl.h> 56 57 /* 58 * Function pointer set by the AIO routines so that the socket buffer code 59 * can call back into the AIO module if it is loaded. 60 */ 61 void (*aio_swake)(struct socket *, struct sockbuf *); 62 63 /* 64 * Primitive routines for operating on socket buffers 65 */ 66 67 u_long sb_max = SB_MAX; 68 u_long sb_max_adj = 69 (quad_t)SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */ 70 71 static u_long sb_efficiency = 8; /* parameter for sbreserve() */ 72 73 #ifdef KERN_TLS 74 static void sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m, 75 struct mbuf *n); 76 #endif 77 static struct mbuf *sbcut_internal(struct sockbuf *sb, int len); 78 static void sbflush_internal(struct sockbuf *sb); 79 80 /* 81 * Our own version of m_clrprotoflags(), that can preserve M_NOTREADY. 82 */ 83 static void 84 sbm_clrprotoflags(struct mbuf *m, int flags) 85 { 86 int mask; 87 88 mask = ~M_PROTOFLAGS; 89 if (flags & PRUS_NOTREADY) 90 mask |= M_NOTREADY; 91 while (m) { 92 m->m_flags &= mask; 93 m = m->m_next; 94 } 95 } 96 97 /* 98 * Compress M_NOTREADY mbufs after they have been readied by sbready(). 99 * 100 * sbcompress() skips M_NOTREADY mbufs since the data is not available to 101 * be copied at the time of sbcompress(). This function combines small 102 * mbufs similar to sbcompress() once mbufs are ready. 'm0' is the first 103 * mbuf sbready() marked ready, and 'end' is the first mbuf still not 104 * ready. 105 */ 106 static void 107 sbready_compress(struct sockbuf *sb, struct mbuf *m0, struct mbuf *end) 108 { 109 struct mbuf *m, *n; 110 int ext_size; 111 112 SOCKBUF_LOCK_ASSERT(sb); 113 114 if ((sb->sb_flags & SB_NOCOALESCE) != 0) 115 return; 116 117 for (m = m0; m != end; m = m->m_next) { 118 MPASS((m->m_flags & M_NOTREADY) == 0); 119 /* 120 * NB: In sbcompress(), 'n' is the last mbuf in the 121 * socket buffer and 'm' is the new mbuf being copied 122 * into the trailing space of 'n'. Here, the roles 123 * are reversed and 'n' is the next mbuf after 'm' 124 * that is being copied into the trailing space of 125 * 'm'. 126 */ 127 n = m->m_next; 128 #ifdef KERN_TLS 129 /* Try to coalesce adjacent ktls mbuf hdr/trailers. */ 130 if ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 && 131 (m->m_flags & M_EXTPG) && 132 (n->m_flags & M_EXTPG) && 133 !mbuf_has_tls_session(m) && 134 !mbuf_has_tls_session(n)) { 135 int hdr_len, trail_len; 136 137 hdr_len = n->m_epg_hdrlen; 138 trail_len = m->m_epg_trllen; 139 if (trail_len != 0 && hdr_len != 0 && 140 trail_len + hdr_len <= MBUF_PEXT_TRAIL_LEN) { 141 /* copy n's header to m's trailer */ 142 memcpy(&m->m_epg_trail[trail_len], 143 n->m_epg_hdr, hdr_len); 144 m->m_epg_trllen += hdr_len; 145 m->m_len += hdr_len; 146 n->m_epg_hdrlen = 0; 147 n->m_len -= hdr_len; 148 } 149 } 150 #endif 151 152 /* Compress small unmapped mbufs into plain mbufs. */ 153 if ((m->m_flags & M_EXTPG) && m->m_len <= MLEN && 154 !mbuf_has_tls_session(m)) { 155 ext_size = m->m_ext.ext_size; 156 if (mb_unmapped_compress(m) == 0) 157 sb->sb_mbcnt -= ext_size; 158 } 159 160 while ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 && 161 M_WRITABLE(m) && 162 (m->m_flags & M_EXTPG) == 0 && 163 !mbuf_has_tls_session(n) && 164 !mbuf_has_tls_session(m) && 165 n->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ 166 n->m_len <= M_TRAILINGSPACE(m) && 167 m->m_type == n->m_type) { 168 KASSERT(sb->sb_lastrecord != n, 169 ("%s: merging start of record (%p) into previous mbuf (%p)", 170 __func__, n, m)); 171 m_copydata(n, 0, n->m_len, mtodo(m, m->m_len)); 172 m->m_len += n->m_len; 173 m->m_next = n->m_next; 174 m->m_flags |= n->m_flags & M_EOR; 175 if (sb->sb_mbtail == n) 176 sb->sb_mbtail = m; 177 178 sb->sb_mbcnt -= MSIZE; 179 if (n->m_flags & M_EXT) 180 sb->sb_mbcnt -= n->m_ext.ext_size; 181 m_free(n); 182 n = m->m_next; 183 } 184 } 185 SBLASTRECORDCHK(sb); 186 SBLASTMBUFCHK(sb); 187 } 188 189 /* 190 * Mark ready "count" units of I/O starting with "m". Most mbufs 191 * count as a single unit of I/O except for M_EXTPG mbufs which 192 * are backed by multiple pages. 193 */ 194 int 195 sbready(struct sockbuf *sb, struct mbuf *m0, int count) 196 { 197 struct mbuf *m; 198 u_int blocker; 199 200 SOCKBUF_LOCK_ASSERT(sb); 201 KASSERT(sb->sb_fnrdy != NULL, ("%s: sb %p NULL fnrdy", __func__, sb)); 202 KASSERT(count > 0, ("%s: invalid count %d", __func__, count)); 203 204 m = m0; 205 blocker = (sb->sb_fnrdy == m) ? M_BLOCKED : 0; 206 207 while (count > 0) { 208 KASSERT(m->m_flags & M_NOTREADY, 209 ("%s: m %p !M_NOTREADY", __func__, m)); 210 if ((m->m_flags & M_EXTPG) != 0 && m->m_epg_npgs != 0) { 211 if (count < m->m_epg_nrdy) { 212 m->m_epg_nrdy -= count; 213 count = 0; 214 break; 215 } 216 count -= m->m_epg_nrdy; 217 m->m_epg_nrdy = 0; 218 } else 219 count--; 220 221 m->m_flags &= ~(M_NOTREADY | blocker); 222 if (blocker) 223 sb->sb_acc += m->m_len; 224 m = m->m_next; 225 } 226 227 /* 228 * If the first mbuf is still not fully ready because only 229 * some of its backing pages were readied, no further progress 230 * can be made. 231 */ 232 if (m0 == m) { 233 MPASS(m->m_flags & M_NOTREADY); 234 return (EINPROGRESS); 235 } 236 237 if (!blocker) { 238 sbready_compress(sb, m0, m); 239 return (EINPROGRESS); 240 } 241 242 /* This one was blocking all the queue. */ 243 for (; m && (m->m_flags & M_NOTREADY) == 0; m = m->m_next) { 244 KASSERT(m->m_flags & M_BLOCKED, 245 ("%s: m %p !M_BLOCKED", __func__, m)); 246 m->m_flags &= ~M_BLOCKED; 247 sb->sb_acc += m->m_len; 248 } 249 250 sb->sb_fnrdy = m; 251 sbready_compress(sb, m0, m); 252 253 return (0); 254 } 255 256 /* 257 * Adjust sockbuf state reflecting allocation of m. 258 */ 259 void 260 sballoc(struct sockbuf *sb, struct mbuf *m) 261 { 262 263 SOCKBUF_LOCK_ASSERT(sb); 264 265 sb->sb_ccc += m->m_len; 266 267 if (sb->sb_fnrdy == NULL) { 268 if (m->m_flags & M_NOTREADY) 269 sb->sb_fnrdy = m; 270 else 271 sb->sb_acc += m->m_len; 272 } else 273 m->m_flags |= M_BLOCKED; 274 275 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA) 276 sb->sb_ctl += m->m_len; 277 278 sb->sb_mbcnt += MSIZE; 279 280 if (m->m_flags & M_EXT) 281 sb->sb_mbcnt += m->m_ext.ext_size; 282 } 283 284 /* 285 * Adjust sockbuf state reflecting freeing of m. 286 */ 287 void 288 sbfree(struct sockbuf *sb, struct mbuf *m) 289 { 290 291 #if 0 /* XXX: not yet: soclose() call path comes here w/o lock. */ 292 SOCKBUF_LOCK_ASSERT(sb); 293 #endif 294 295 sb->sb_ccc -= m->m_len; 296 297 if (!(m->m_flags & M_NOTAVAIL)) 298 sb->sb_acc -= m->m_len; 299 300 if (m == sb->sb_fnrdy) { 301 struct mbuf *n; 302 303 KASSERT(m->m_flags & M_NOTREADY, 304 ("%s: m %p !M_NOTREADY", __func__, m)); 305 306 n = m->m_next; 307 while (n != NULL && !(n->m_flags & M_NOTREADY)) { 308 n->m_flags &= ~M_BLOCKED; 309 sb->sb_acc += n->m_len; 310 n = n->m_next; 311 } 312 sb->sb_fnrdy = n; 313 } 314 315 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA) 316 sb->sb_ctl -= m->m_len; 317 318 sb->sb_mbcnt -= MSIZE; 319 if (m->m_flags & M_EXT) 320 sb->sb_mbcnt -= m->m_ext.ext_size; 321 322 if (sb->sb_sndptr == m) { 323 sb->sb_sndptr = NULL; 324 sb->sb_sndptroff = 0; 325 } 326 if (sb->sb_sndptroff != 0) 327 sb->sb_sndptroff -= m->m_len; 328 } 329 330 #ifdef KERN_TLS 331 /* 332 * Similar to sballoc/sbfree but does not adjust state associated with 333 * the sb_mb chain such as sb_fnrdy or sb_sndptr*. Also assumes mbufs 334 * are not ready. 335 */ 336 void 337 sballoc_ktls_rx(struct sockbuf *sb, struct mbuf *m) 338 { 339 340 SOCKBUF_LOCK_ASSERT(sb); 341 342 sb->sb_ccc += m->m_len; 343 sb->sb_tlscc += m->m_len; 344 345 sb->sb_mbcnt += MSIZE; 346 347 if (m->m_flags & M_EXT) 348 sb->sb_mbcnt += m->m_ext.ext_size; 349 } 350 351 void 352 sbfree_ktls_rx(struct sockbuf *sb, struct mbuf *m) 353 { 354 355 #if 0 /* XXX: not yet: soclose() call path comes here w/o lock. */ 356 SOCKBUF_LOCK_ASSERT(sb); 357 #endif 358 359 sb->sb_ccc -= m->m_len; 360 sb->sb_tlscc -= m->m_len; 361 362 sb->sb_mbcnt -= MSIZE; 363 364 if (m->m_flags & M_EXT) 365 sb->sb_mbcnt -= m->m_ext.ext_size; 366 } 367 #endif 368 369 /* 370 * Socantsendmore indicates that no more data will be sent on the socket; it 371 * would normally be applied to a socket when the user informs the system 372 * that no more data is to be sent, by the protocol code (in case 373 * PRU_SHUTDOWN). Socantrcvmore indicates that no more data will be 374 * received, and will normally be applied to the socket by a protocol when it 375 * detects that the peer will send no more data. Data queued for reading in 376 * the socket may yet be read. 377 */ 378 void 379 socantsendmore_locked(struct socket *so) 380 { 381 382 SOCK_SENDBUF_LOCK_ASSERT(so); 383 384 so->so_snd.sb_state |= SBS_CANTSENDMORE; 385 sowwakeup_locked(so); 386 SOCK_SENDBUF_UNLOCK_ASSERT(so); 387 } 388 389 void 390 socantsendmore(struct socket *so) 391 { 392 393 SOCK_SENDBUF_LOCK(so); 394 socantsendmore_locked(so); 395 SOCK_SENDBUF_UNLOCK_ASSERT(so); 396 } 397 398 void 399 socantrcvmore_locked(struct socket *so) 400 { 401 402 SOCK_RECVBUF_LOCK_ASSERT(so); 403 404 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 405 #ifdef KERN_TLS 406 if (so->so_rcv.sb_flags & SB_TLS_RX) 407 ktls_check_rx(&so->so_rcv); 408 #endif 409 sorwakeup_locked(so); 410 SOCK_RECVBUF_UNLOCK_ASSERT(so); 411 } 412 413 void 414 socantrcvmore(struct socket *so) 415 { 416 417 SOCK_RECVBUF_LOCK(so); 418 socantrcvmore_locked(so); 419 SOCK_RECVBUF_UNLOCK_ASSERT(so); 420 } 421 422 void 423 soroverflow_locked(struct socket *so) 424 { 425 426 SOCK_RECVBUF_LOCK_ASSERT(so); 427 428 if (so->so_options & SO_RERROR) { 429 so->so_rerror = ENOBUFS; 430 sorwakeup_locked(so); 431 } else 432 SOCK_RECVBUF_UNLOCK(so); 433 434 SOCK_RECVBUF_UNLOCK_ASSERT(so); 435 } 436 437 void 438 soroverflow(struct socket *so) 439 { 440 441 SOCK_RECVBUF_LOCK(so); 442 soroverflow_locked(so); 443 SOCK_RECVBUF_UNLOCK_ASSERT(so); 444 } 445 446 /* 447 * Wait for data to arrive at/drain from a socket buffer. 448 */ 449 int 450 sbwait(struct socket *so, sb_which which) 451 { 452 struct sockbuf *sb; 453 454 SOCK_BUF_LOCK_ASSERT(so, which); 455 456 sb = sobuf(so, which); 457 sb->sb_flags |= SB_WAIT; 458 return (msleep_sbt(&sb->sb_acc, soeventmtx(so, which), 459 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", 460 sb->sb_timeo, 0, 0)); 461 } 462 463 /* 464 * Wakeup processes waiting on a socket buffer. Do asynchronous notification 465 * via SIGIO if the socket has the SS_ASYNC flag set. 466 * 467 * Called with the socket buffer lock held; will release the lock by the end 468 * of the function. This allows the caller to acquire the socket buffer lock 469 * while testing for the need for various sorts of wakeup and hold it through 470 * to the point where it's no longer required. We currently hold the lock 471 * through calls out to other subsystems (with the exception of kqueue), and 472 * then release it to avoid lock order issues. It's not clear that's 473 * correct. 474 */ 475 static __always_inline void 476 sowakeup(struct socket *so, const sb_which which) 477 { 478 struct sockbuf *sb; 479 int ret; 480 481 SOCK_BUF_LOCK_ASSERT(so, which); 482 483 sb = sobuf(so, which); 484 selwakeuppri(sb->sb_sel, PSOCK); 485 if (!SEL_WAITING(sb->sb_sel)) 486 sb->sb_flags &= ~SB_SEL; 487 if (sb->sb_flags & SB_WAIT) { 488 sb->sb_flags &= ~SB_WAIT; 489 wakeup(&sb->sb_acc); 490 } 491 KNOTE_LOCKED(&sb->sb_sel->si_note, 0); 492 if (sb->sb_upcall != NULL) { 493 ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT); 494 if (ret == SU_ISCONNECTED) { 495 KASSERT(sb == &so->so_rcv, 496 ("SO_SND upcall returned SU_ISCONNECTED")); 497 soupcall_clear(so, SO_RCV); 498 } 499 } else 500 ret = SU_OK; 501 if (sb->sb_flags & SB_AIO) 502 sowakeup_aio(so, which); 503 SOCK_BUF_UNLOCK(so, which); 504 if (ret == SU_ISCONNECTED) 505 soisconnected(so); 506 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL) 507 pgsigio(&so->so_sigio, SIGIO, 0); 508 SOCK_BUF_UNLOCK_ASSERT(so, which); 509 } 510 511 /* 512 * Do we need to notify the other side when I/O is possible? 513 */ 514 static __always_inline bool 515 sb_notify(const struct sockbuf *sb) 516 { 517 return ((sb->sb_flags & (SB_WAIT | SB_SEL | SB_ASYNC | 518 SB_UPCALL | SB_AIO | SB_KNOTE)) != 0); 519 } 520 521 void 522 sorwakeup_locked(struct socket *so) 523 { 524 SOCK_RECVBUF_LOCK_ASSERT(so); 525 if (sb_notify(&so->so_rcv)) 526 sowakeup(so, SO_RCV); 527 else 528 SOCK_RECVBUF_UNLOCK(so); 529 } 530 531 void 532 sowwakeup_locked(struct socket *so) 533 { 534 SOCK_SENDBUF_LOCK_ASSERT(so); 535 if (sb_notify(&so->so_snd)) 536 sowakeup(so, SO_SND); 537 else 538 SOCK_SENDBUF_UNLOCK(so); 539 } 540 541 /* 542 * Socket buffer (struct sockbuf) utility routines. 543 * 544 * Each socket contains two socket buffers: one for sending data and one for 545 * receiving data. Each buffer contains a queue of mbufs, information about 546 * the number of mbufs and amount of data in the queue, and other fields 547 * allowing select() statements and notification on data availability to be 548 * implemented. 549 * 550 * Data stored in a socket buffer is maintained as a list of records. Each 551 * record is a list of mbufs chained together with the m_next field. Records 552 * are chained together with the m_nextpkt field. The upper level routine 553 * soreceive() expects the following conventions to be observed when placing 554 * information in the receive buffer: 555 * 556 * 1. If the protocol requires each message be preceded by the sender's name, 557 * then a record containing that name must be present before any 558 * associated data (mbuf's must be of type MT_SONAME). 559 * 2. If the protocol supports the exchange of ``access rights'' (really just 560 * additional data associated with the message), and there are ``rights'' 561 * to be received, then a record containing this data should be present 562 * (mbuf's must be of type MT_RIGHTS). 563 * 3. If a name or rights record exists, then it must be followed by a data 564 * record, perhaps of zero length. 565 * 566 * Before using a new socket structure it is first necessary to reserve 567 * buffer space to the socket, by calling sbreserve(). This should commit 568 * some of the available buffer space in the system buffer pool for the 569 * socket (currently, it does nothing but enforce limits). The space should 570 * be released by calling sbrelease() when the socket is destroyed. 571 */ 572 int 573 soreserve(struct socket *so, u_long sndcc, u_long rcvcc) 574 { 575 struct thread *td = curthread; 576 577 SOCK_SENDBUF_LOCK(so); 578 SOCK_RECVBUF_LOCK(so); 579 if (sbreserve_locked(so, SO_SND, sndcc, td) == 0) 580 goto bad; 581 if (sbreserve_locked(so, SO_RCV, rcvcc, td) == 0) 582 goto bad2; 583 if (so->so_rcv.sb_lowat == 0) 584 so->so_rcv.sb_lowat = 1; 585 if (so->so_snd.sb_lowat == 0) 586 so->so_snd.sb_lowat = MCLBYTES; 587 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 588 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 589 SOCK_RECVBUF_UNLOCK(so); 590 SOCK_SENDBUF_UNLOCK(so); 591 return (0); 592 bad2: 593 sbrelease_locked(so, SO_SND); 594 bad: 595 SOCK_RECVBUF_UNLOCK(so); 596 SOCK_SENDBUF_UNLOCK(so); 597 return (ENOBUFS); 598 } 599 600 static int 601 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS) 602 { 603 int error = 0; 604 u_long tmp_sb_max = sb_max; 605 606 error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req); 607 if (error || !req->newptr) 608 return (error); 609 if (tmp_sb_max < MSIZE + MCLBYTES) 610 return (EINVAL); 611 sb_max = tmp_sb_max; 612 sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES); 613 return (0); 614 } 615 616 /* 617 * Allot mbufs to a sockbuf. Attempt to scale mbmax so that mbcnt doesn't 618 * become limiting if buffering efficiency is near the normal case. 619 */ 620 bool 621 sbreserve_locked(struct socket *so, sb_which which, u_long cc, 622 struct thread *td) 623 { 624 struct sockbuf *sb = sobuf(so, which); 625 rlim_t sbsize_limit; 626 627 SOCK_BUF_LOCK_ASSERT(so, which); 628 629 /* 630 * When a thread is passed, we take into account the thread's socket 631 * buffer size limit. The caller will generally pass curthread, but 632 * in the TCP input path, NULL will be passed to indicate that no 633 * appropriate thread resource limits are available. In that case, 634 * we don't apply a process limit. 635 */ 636 if (cc > sb_max_adj) 637 return (false); 638 if (td != NULL) { 639 sbsize_limit = lim_cur(td, RLIMIT_SBSIZE); 640 } else 641 sbsize_limit = RLIM_INFINITY; 642 if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc, 643 sbsize_limit)) 644 return (false); 645 sb->sb_mbmax = min(cc * sb_efficiency, sb_max); 646 if (sb->sb_lowat > sb->sb_hiwat) 647 sb->sb_lowat = sb->sb_hiwat; 648 return (true); 649 } 650 651 int 652 sbsetopt(struct socket *so, int cmd, u_long cc) 653 { 654 struct sockbuf *sb; 655 sb_which wh; 656 short *flags; 657 u_int *hiwat, *lowat; 658 int error; 659 660 sb = NULL; 661 SOCK_LOCK(so); 662 if (SOLISTENING(so)) { 663 switch (cmd) { 664 case SO_SNDLOWAT: 665 case SO_SNDBUF: 666 lowat = &so->sol_sbsnd_lowat; 667 hiwat = &so->sol_sbsnd_hiwat; 668 flags = &so->sol_sbsnd_flags; 669 break; 670 case SO_RCVLOWAT: 671 case SO_RCVBUF: 672 lowat = &so->sol_sbrcv_lowat; 673 hiwat = &so->sol_sbrcv_hiwat; 674 flags = &so->sol_sbrcv_flags; 675 break; 676 } 677 } else { 678 switch (cmd) { 679 case SO_SNDLOWAT: 680 case SO_SNDBUF: 681 sb = &so->so_snd; 682 wh = SO_SND; 683 break; 684 case SO_RCVLOWAT: 685 case SO_RCVBUF: 686 sb = &so->so_rcv; 687 wh = SO_RCV; 688 break; 689 } 690 flags = &sb->sb_flags; 691 hiwat = &sb->sb_hiwat; 692 lowat = &sb->sb_lowat; 693 SOCK_BUF_LOCK(so, wh); 694 } 695 696 error = 0; 697 switch (cmd) { 698 case SO_SNDBUF: 699 case SO_RCVBUF: 700 if (SOLISTENING(so)) { 701 if (cc > sb_max_adj) { 702 error = ENOBUFS; 703 break; 704 } 705 *hiwat = cc; 706 if (*lowat > *hiwat) 707 *lowat = *hiwat; 708 } else { 709 if (!sbreserve_locked(so, wh, cc, curthread)) 710 error = ENOBUFS; 711 } 712 if (error == 0) 713 *flags &= ~SB_AUTOSIZE; 714 break; 715 case SO_SNDLOWAT: 716 case SO_RCVLOWAT: 717 /* 718 * Make sure the low-water is never greater than the 719 * high-water. 720 */ 721 *lowat = (cc > *hiwat) ? *hiwat : cc; 722 break; 723 } 724 725 if (!SOLISTENING(so)) 726 SOCK_BUF_UNLOCK(so, wh); 727 SOCK_UNLOCK(so); 728 return (error); 729 } 730 731 /* 732 * Free mbufs held by a socket, and reserved mbuf space. 733 */ 734 static void 735 sbrelease_internal(struct socket *so, sb_which which) 736 { 737 struct sockbuf *sb = sobuf(so, which); 738 739 sbflush_internal(sb); 740 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0, 741 RLIM_INFINITY); 742 sb->sb_mbmax = 0; 743 } 744 745 void 746 sbrelease_locked(struct socket *so, sb_which which) 747 { 748 749 SOCK_BUF_LOCK_ASSERT(so, which); 750 751 sbrelease_internal(so, which); 752 } 753 754 void 755 sbrelease(struct socket *so, sb_which which) 756 { 757 758 SOCK_BUF_LOCK(so, which); 759 sbrelease_locked(so, which); 760 SOCK_BUF_UNLOCK(so, which); 761 } 762 763 void 764 sbdestroy(struct socket *so, sb_which which) 765 { 766 #ifdef KERN_TLS 767 struct sockbuf *sb = sobuf(so, which); 768 769 if (sb->sb_tls_info != NULL) 770 ktls_free(sb->sb_tls_info); 771 sb->sb_tls_info = NULL; 772 #endif 773 sbrelease_internal(so, which); 774 } 775 776 /* 777 * Routines to add and remove data from an mbuf queue. 778 * 779 * The routines sbappend() or sbappendrecord() are normally called to append 780 * new mbufs to a socket buffer, after checking that adequate space is 781 * available, comparing the function sbspace() with the amount of data to be 782 * added. sbappendrecord() differs from sbappend() in that data supplied is 783 * treated as the beginning of a new record. To place a sender's address, 784 * optional access rights, and data in a socket receive buffer, 785 * sbappendaddr() should be used. To place access rights and data in a 786 * socket receive buffer, sbappendrights() should be used. In either case, 787 * the new data begins a new record. Note that unlike sbappend() and 788 * sbappendrecord(), these routines check for the caller that there will be 789 * enough space to store the data. Each fails if there is not enough space, 790 * or if it cannot find mbufs to store additional information in. 791 * 792 * Reliable protocols may use the socket send buffer to hold data awaiting 793 * acknowledgement. Data is normally copied from a socket send buffer in a 794 * protocol with m_copy for output to a peer, and then removing the data from 795 * the socket buffer with sbdrop() or sbdroprecord() when the data is 796 * acknowledged by the peer. 797 */ 798 #ifdef SOCKBUF_DEBUG 799 void 800 sblastrecordchk(struct sockbuf *sb, const char *file, int line) 801 { 802 struct mbuf *m = sb->sb_mb; 803 804 SOCKBUF_LOCK_ASSERT(sb); 805 806 while (m && m->m_nextpkt) 807 m = m->m_nextpkt; 808 809 if (m != sb->sb_lastrecord) { 810 printf("%s: sb_mb %p sb_lastrecord %p last %p\n", 811 __func__, sb->sb_mb, sb->sb_lastrecord, m); 812 printf("packet chain:\n"); 813 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) 814 printf("\t%p\n", m); 815 panic("%s from %s:%u", __func__, file, line); 816 } 817 } 818 819 void 820 sblastmbufchk(struct sockbuf *sb, const char *file, int line) 821 { 822 struct mbuf *m = sb->sb_mb; 823 struct mbuf *n; 824 825 SOCKBUF_LOCK_ASSERT(sb); 826 827 while (m && m->m_nextpkt) 828 m = m->m_nextpkt; 829 830 while (m && m->m_next) 831 m = m->m_next; 832 833 if (m != sb->sb_mbtail) { 834 printf("%s: sb_mb %p sb_mbtail %p last %p\n", 835 __func__, sb->sb_mb, sb->sb_mbtail, m); 836 printf("packet tree:\n"); 837 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) { 838 printf("\t"); 839 for (n = m; n != NULL; n = n->m_next) 840 printf("%p ", n); 841 printf("\n"); 842 } 843 panic("%s from %s:%u", __func__, file, line); 844 } 845 846 #ifdef KERN_TLS 847 m = sb->sb_mtls; 848 while (m && m->m_next) 849 m = m->m_next; 850 851 if (m != sb->sb_mtlstail) { 852 printf("%s: sb_mtls %p sb_mtlstail %p last %p\n", 853 __func__, sb->sb_mtls, sb->sb_mtlstail, m); 854 printf("TLS packet tree:\n"); 855 printf("\t"); 856 for (m = sb->sb_mtls; m != NULL; m = m->m_next) { 857 printf("%p ", m); 858 } 859 printf("\n"); 860 panic("%s from %s:%u", __func__, file, line); 861 } 862 #endif 863 } 864 #endif /* SOCKBUF_DEBUG */ 865 866 #define SBLINKRECORD(sb, m0) do { \ 867 SOCKBUF_LOCK_ASSERT(sb); \ 868 if ((sb)->sb_lastrecord != NULL) \ 869 (sb)->sb_lastrecord->m_nextpkt = (m0); \ 870 else \ 871 (sb)->sb_mb = (m0); \ 872 (sb)->sb_lastrecord = (m0); \ 873 } while (/*CONSTCOND*/0) 874 875 /* 876 * Append mbuf chain m to the last record in the socket buffer sb. The 877 * additional space associated the mbuf chain is recorded in sb. Empty mbufs 878 * are discarded and mbufs are compacted where possible. 879 */ 880 void 881 sbappend_locked(struct sockbuf *sb, struct mbuf *m, int flags) 882 { 883 struct mbuf *n; 884 885 SOCKBUF_LOCK_ASSERT(sb); 886 887 if (m == NULL) 888 return; 889 sbm_clrprotoflags(m, flags); 890 SBLASTRECORDCHK(sb); 891 n = sb->sb_mb; 892 if (n) { 893 while (n->m_nextpkt) 894 n = n->m_nextpkt; 895 do { 896 if (n->m_flags & M_EOR) { 897 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */ 898 return; 899 } 900 } while (n->m_next && (n = n->m_next)); 901 } else { 902 /* 903 * XXX Would like to simply use sb_mbtail here, but 904 * XXX I need to verify that I won't miss an EOR that 905 * XXX way. 906 */ 907 if ((n = sb->sb_lastrecord) != NULL) { 908 do { 909 if (n->m_flags & M_EOR) { 910 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */ 911 return; 912 } 913 } while (n->m_next && (n = n->m_next)); 914 } else { 915 /* 916 * If this is the first record in the socket buffer, 917 * it's also the last record. 918 */ 919 sb->sb_lastrecord = m; 920 } 921 } 922 sbcompress(sb, m, n); 923 SBLASTRECORDCHK(sb); 924 } 925 926 /* 927 * Append mbuf chain m to the last record in the socket buffer sb. The 928 * additional space associated the mbuf chain is recorded in sb. Empty mbufs 929 * are discarded and mbufs are compacted where possible. 930 */ 931 void 932 sbappend(struct sockbuf *sb, struct mbuf *m, int flags) 933 { 934 935 SOCKBUF_LOCK(sb); 936 sbappend_locked(sb, m, flags); 937 SOCKBUF_UNLOCK(sb); 938 } 939 940 #ifdef KERN_TLS 941 /* 942 * Append an mbuf containing encrypted TLS data. The data 943 * is marked M_NOTREADY until it has been decrypted and 944 * stored as a TLS record. 945 */ 946 static void 947 sbappend_ktls_rx(struct sockbuf *sb, struct mbuf *m) 948 { 949 struct mbuf *n; 950 951 SBLASTMBUFCHK(sb); 952 953 /* Remove all packet headers and mbuf tags to get a pure data chain. */ 954 m_demote(m, 1, 0); 955 956 for (n = m; n != NULL; n = n->m_next) 957 n->m_flags |= M_NOTREADY; 958 sbcompress_ktls_rx(sb, m, sb->sb_mtlstail); 959 ktls_check_rx(sb); 960 } 961 #endif 962 963 /* 964 * This version of sbappend() should only be used when the caller absolutely 965 * knows that there will never be more than one record in the socket buffer, 966 * that is, a stream protocol (such as TCP). 967 */ 968 void 969 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags) 970 { 971 SOCKBUF_LOCK_ASSERT(sb); 972 973 KASSERT(m->m_nextpkt == NULL,("sbappendstream 0")); 974 975 #ifdef KERN_TLS 976 /* 977 * Decrypted TLS records are appended as records via 978 * sbappendrecord(). TCP passes encrypted TLS records to this 979 * function which must be scheduled for decryption. 980 */ 981 if (sb->sb_flags & SB_TLS_RX) { 982 sbappend_ktls_rx(sb, m); 983 return; 984 } 985 #endif 986 987 KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1")); 988 989 SBLASTMBUFCHK(sb); 990 991 #ifdef KERN_TLS 992 if (sb->sb_tls_info != NULL) 993 ktls_seq(sb, m); 994 #endif 995 996 /* Remove all packet headers and mbuf tags to get a pure data chain. */ 997 m_demote(m, 1, flags & PRUS_NOTREADY ? M_NOTREADY : 0); 998 999 sbcompress(sb, m, sb->sb_mbtail); 1000 1001 sb->sb_lastrecord = sb->sb_mb; 1002 SBLASTRECORDCHK(sb); 1003 } 1004 1005 /* 1006 * This version of sbappend() should only be used when the caller absolutely 1007 * knows that there will never be more than one record in the socket buffer, 1008 * that is, a stream protocol (such as TCP). 1009 */ 1010 void 1011 sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags) 1012 { 1013 1014 SOCKBUF_LOCK(sb); 1015 sbappendstream_locked(sb, m, flags); 1016 SOCKBUF_UNLOCK(sb); 1017 } 1018 1019 #ifdef SOCKBUF_DEBUG 1020 void 1021 sbcheck(struct sockbuf *sb, const char *file, int line) 1022 { 1023 struct mbuf *m, *n, *fnrdy; 1024 u_long acc, ccc, mbcnt; 1025 #ifdef KERN_TLS 1026 u_long tlscc; 1027 #endif 1028 1029 SOCKBUF_LOCK_ASSERT(sb); 1030 1031 acc = ccc = mbcnt = 0; 1032 fnrdy = NULL; 1033 1034 for (m = sb->sb_mb; m; m = n) { 1035 n = m->m_nextpkt; 1036 for (; m; m = m->m_next) { 1037 if (m->m_len == 0) { 1038 printf("sb %p empty mbuf %p\n", sb, m); 1039 goto fail; 1040 } 1041 if ((m->m_flags & M_NOTREADY) && fnrdy == NULL) { 1042 if (m != sb->sb_fnrdy) { 1043 printf("sb %p: fnrdy %p != m %p\n", 1044 sb, sb->sb_fnrdy, m); 1045 goto fail; 1046 } 1047 fnrdy = m; 1048 } 1049 if (fnrdy) { 1050 if (!(m->m_flags & M_NOTAVAIL)) { 1051 printf("sb %p: fnrdy %p, m %p is avail\n", 1052 sb, sb->sb_fnrdy, m); 1053 goto fail; 1054 } 1055 } else 1056 acc += m->m_len; 1057 ccc += m->m_len; 1058 mbcnt += MSIZE; 1059 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ 1060 mbcnt += m->m_ext.ext_size; 1061 } 1062 } 1063 #ifdef KERN_TLS 1064 /* 1065 * Account for mbufs "detached" by ktls_detach_record() while 1066 * they are decrypted by ktls_decrypt(). tlsdcc gives a count 1067 * of the detached bytes that are included in ccc. The mbufs 1068 * and clusters are not included in the socket buffer 1069 * accounting. 1070 */ 1071 ccc += sb->sb_tlsdcc; 1072 1073 tlscc = 0; 1074 for (m = sb->sb_mtls; m; m = m->m_next) { 1075 if (m->m_nextpkt != NULL) { 1076 printf("sb %p TLS mbuf %p with nextpkt\n", sb, m); 1077 goto fail; 1078 } 1079 if ((m->m_flags & M_NOTREADY) == 0) { 1080 printf("sb %p TLS mbuf %p ready\n", sb, m); 1081 goto fail; 1082 } 1083 tlscc += m->m_len; 1084 ccc += m->m_len; 1085 mbcnt += MSIZE; 1086 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ 1087 mbcnt += m->m_ext.ext_size; 1088 } 1089 1090 if (sb->sb_tlscc != tlscc) { 1091 printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc, 1092 sb->sb_tlsdcc); 1093 goto fail; 1094 } 1095 #endif 1096 if (acc != sb->sb_acc || ccc != sb->sb_ccc || mbcnt != sb->sb_mbcnt) { 1097 printf("acc %ld/%u ccc %ld/%u mbcnt %ld/%u\n", 1098 acc, sb->sb_acc, ccc, sb->sb_ccc, mbcnt, sb->sb_mbcnt); 1099 #ifdef KERN_TLS 1100 printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc, 1101 sb->sb_tlsdcc); 1102 #endif 1103 goto fail; 1104 } 1105 return; 1106 fail: 1107 panic("%s from %s:%u", __func__, file, line); 1108 } 1109 #endif 1110 1111 /* 1112 * As above, except the mbuf chain begins a new record. 1113 */ 1114 void 1115 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0) 1116 { 1117 struct mbuf *m; 1118 1119 SOCKBUF_LOCK_ASSERT(sb); 1120 1121 if (m0 == NULL) 1122 return; 1123 m_clrprotoflags(m0); 1124 /* 1125 * Put the first mbuf on the queue. Note this permits zero length 1126 * records. 1127 */ 1128 sballoc(sb, m0); 1129 SBLASTRECORDCHK(sb); 1130 SBLINKRECORD(sb, m0); 1131 sb->sb_mbtail = m0; 1132 m = m0->m_next; 1133 m0->m_next = 0; 1134 if (m && (m0->m_flags & M_EOR)) { 1135 m0->m_flags &= ~M_EOR; 1136 m->m_flags |= M_EOR; 1137 } 1138 /* always call sbcompress() so it can do SBLASTMBUFCHK() */ 1139 sbcompress(sb, m, m0); 1140 } 1141 1142 /* 1143 * As above, except the mbuf chain begins a new record. 1144 */ 1145 void 1146 sbappendrecord(struct sockbuf *sb, struct mbuf *m0) 1147 { 1148 1149 SOCKBUF_LOCK(sb); 1150 sbappendrecord_locked(sb, m0); 1151 SOCKBUF_UNLOCK(sb); 1152 } 1153 1154 /* Helper routine that appends data, control, and address to a sockbuf. */ 1155 static int 1156 sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa, 1157 struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last) 1158 { 1159 struct mbuf *m, *n, *nlast; 1160 #if MSIZE <= 256 1161 if (asa->sa_len > MLEN) 1162 return (0); 1163 #endif 1164 m = m_get(M_NOWAIT, MT_SONAME); 1165 if (m == NULL) 1166 return (0); 1167 m->m_len = asa->sa_len; 1168 bcopy(asa, mtod(m, caddr_t), asa->sa_len); 1169 if (m0) { 1170 M_ASSERT_NO_SND_TAG(m0); 1171 m_clrprotoflags(m0); 1172 m_tag_delete_chain(m0, NULL); 1173 /* 1174 * Clear some persistent info from pkthdr. 1175 * We don't use m_demote(), because some netgraph consumers 1176 * expect M_PKTHDR presence. 1177 */ 1178 m0->m_pkthdr.rcvif = NULL; 1179 m0->m_pkthdr.flowid = 0; 1180 m0->m_pkthdr.csum_flags = 0; 1181 m0->m_pkthdr.fibnum = 0; 1182 m0->m_pkthdr.rsstype = 0; 1183 } 1184 if (ctrl_last) 1185 ctrl_last->m_next = m0; /* concatenate data to control */ 1186 else 1187 control = m0; 1188 m->m_next = control; 1189 for (n = m; n->m_next != NULL; n = n->m_next) 1190 sballoc(sb, n); 1191 sballoc(sb, n); 1192 nlast = n; 1193 SBLINKRECORD(sb, m); 1194 1195 sb->sb_mbtail = nlast; 1196 SBLASTMBUFCHK(sb); 1197 1198 SBLASTRECORDCHK(sb); 1199 return (1); 1200 } 1201 1202 /* 1203 * Append address and data, and optionally, control (ancillary) data to the 1204 * receive queue of a socket. If present, m0 must include a packet header 1205 * with total length. Returns 0 if no space in sockbuf or insufficient 1206 * mbufs. 1207 */ 1208 int 1209 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa, 1210 struct mbuf *m0, struct mbuf *control) 1211 { 1212 struct mbuf *ctrl_last; 1213 int space = asa->sa_len; 1214 1215 SOCKBUF_LOCK_ASSERT(sb); 1216 1217 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 1218 panic("sbappendaddr_locked"); 1219 if (m0) 1220 space += m0->m_pkthdr.len; 1221 space += m_length(control, &ctrl_last); 1222 1223 if (space > sbspace(sb)) 1224 return (0); 1225 return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last)); 1226 } 1227 1228 /* 1229 * Append address and data, and optionally, control (ancillary) data to the 1230 * receive queue of a socket. If present, m0 must include a packet header 1231 * with total length. Returns 0 if insufficient mbufs. Does not validate space 1232 * on the receiving sockbuf. 1233 */ 1234 int 1235 sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa, 1236 struct mbuf *m0, struct mbuf *control) 1237 { 1238 struct mbuf *ctrl_last; 1239 1240 SOCKBUF_LOCK_ASSERT(sb); 1241 1242 ctrl_last = (control == NULL) ? NULL : m_last(control); 1243 return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last)); 1244 } 1245 1246 /* 1247 * Append address and data, and optionally, control (ancillary) data to the 1248 * receive queue of a socket. If present, m0 must include a packet header 1249 * with total length. Returns 0 if no space in sockbuf or insufficient 1250 * mbufs. 1251 */ 1252 int 1253 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, 1254 struct mbuf *m0, struct mbuf *control) 1255 { 1256 int retval; 1257 1258 SOCKBUF_LOCK(sb); 1259 retval = sbappendaddr_locked(sb, asa, m0, control); 1260 SOCKBUF_UNLOCK(sb); 1261 return (retval); 1262 } 1263 1264 void 1265 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0, 1266 struct mbuf *control, int flags) 1267 { 1268 struct mbuf *m, *mlast; 1269 1270 sbm_clrprotoflags(m0, flags); 1271 m_last(control)->m_next = m0; 1272 1273 SBLASTRECORDCHK(sb); 1274 1275 for (m = control; m->m_next; m = m->m_next) 1276 sballoc(sb, m); 1277 sballoc(sb, m); 1278 mlast = m; 1279 SBLINKRECORD(sb, control); 1280 1281 sb->sb_mbtail = mlast; 1282 SBLASTMBUFCHK(sb); 1283 1284 SBLASTRECORDCHK(sb); 1285 } 1286 1287 void 1288 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control, 1289 int flags) 1290 { 1291 1292 SOCKBUF_LOCK(sb); 1293 sbappendcontrol_locked(sb, m0, control, flags); 1294 SOCKBUF_UNLOCK(sb); 1295 } 1296 1297 /* 1298 * Append the data in mbuf chain (m) into the socket buffer sb following mbuf 1299 * (n). If (n) is NULL, the buffer is presumed empty. 1300 * 1301 * When the data is compressed, mbufs in the chain may be handled in one of 1302 * three ways: 1303 * 1304 * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no 1305 * record boundary, and no change in data type). 1306 * 1307 * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into 1308 * an mbuf already in the socket buffer. This can occur if an 1309 * appropriate mbuf exists, there is room, both mbufs are not marked as 1310 * not ready, and no merging of data types will occur. 1311 * 1312 * (3) The mbuf may be appended to the end of the existing mbuf chain. 1313 * 1314 * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as 1315 * end-of-record. 1316 */ 1317 void 1318 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n) 1319 { 1320 int eor = 0; 1321 struct mbuf *o; 1322 1323 SOCKBUF_LOCK_ASSERT(sb); 1324 1325 while (m) { 1326 eor |= m->m_flags & M_EOR; 1327 if (m->m_len == 0 && 1328 (eor == 0 || 1329 (((o = m->m_next) || (o = n)) && 1330 o->m_type == m->m_type))) { 1331 if (sb->sb_lastrecord == m) 1332 sb->sb_lastrecord = m->m_next; 1333 m = m_free(m); 1334 continue; 1335 } 1336 if (n && (n->m_flags & M_EOR) == 0 && 1337 M_WRITABLE(n) && 1338 ((sb->sb_flags & SB_NOCOALESCE) == 0) && 1339 !(m->m_flags & M_NOTREADY) && 1340 !(n->m_flags & (M_NOTREADY | M_EXTPG)) && 1341 !mbuf_has_tls_session(m) && 1342 !mbuf_has_tls_session(n) && 1343 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ 1344 m->m_len <= M_TRAILINGSPACE(n) && 1345 n->m_type == m->m_type) { 1346 m_copydata(m, 0, m->m_len, mtodo(n, n->m_len)); 1347 n->m_len += m->m_len; 1348 sb->sb_ccc += m->m_len; 1349 if (sb->sb_fnrdy == NULL) 1350 sb->sb_acc += m->m_len; 1351 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA) 1352 /* XXX: Probably don't need.*/ 1353 sb->sb_ctl += m->m_len; 1354 m = m_free(m); 1355 continue; 1356 } 1357 if (m->m_len <= MLEN && (m->m_flags & M_EXTPG) && 1358 (m->m_flags & M_NOTREADY) == 0 && 1359 !mbuf_has_tls_session(m)) 1360 (void)mb_unmapped_compress(m); 1361 if (n) 1362 n->m_next = m; 1363 else 1364 sb->sb_mb = m; 1365 sb->sb_mbtail = m; 1366 sballoc(sb, m); 1367 n = m; 1368 m->m_flags &= ~M_EOR; 1369 m = m->m_next; 1370 n->m_next = 0; 1371 } 1372 if (eor) { 1373 KASSERT(n != NULL, ("sbcompress: eor && n == NULL")); 1374 n->m_flags |= eor; 1375 } 1376 SBLASTMBUFCHK(sb); 1377 } 1378 1379 #ifdef KERN_TLS 1380 /* 1381 * A version of sbcompress() for encrypted TLS RX mbufs. These mbufs 1382 * are appended to the 'sb_mtls' chain instead of 'sb_mb' and are also 1383 * a bit simpler (no EOR markers, always MT_DATA, etc.). 1384 */ 1385 static void 1386 sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m, struct mbuf *n) 1387 { 1388 1389 SOCKBUF_LOCK_ASSERT(sb); 1390 1391 while (m) { 1392 KASSERT((m->m_flags & M_EOR) == 0, 1393 ("TLS RX mbuf %p with EOR", m)); 1394 KASSERT(m->m_type == MT_DATA, 1395 ("TLS RX mbuf %p is not MT_DATA", m)); 1396 KASSERT((m->m_flags & M_NOTREADY) != 0, 1397 ("TLS RX mbuf %p ready", m)); 1398 KASSERT((m->m_flags & M_EXTPG) == 0, 1399 ("TLS RX mbuf %p unmapped", m)); 1400 1401 if (m->m_len == 0) { 1402 m = m_free(m); 1403 continue; 1404 } 1405 1406 /* 1407 * Even though both 'n' and 'm' are NOTREADY, it's ok 1408 * to coalesce the data. 1409 */ 1410 if (n && 1411 M_WRITABLE(n) && 1412 ((sb->sb_flags & SB_NOCOALESCE) == 0) && 1413 !(n->m_flags & (M_EXTPG)) && 1414 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ 1415 m->m_len <= M_TRAILINGSPACE(n)) { 1416 m_copydata(m, 0, m->m_len, mtodo(n, n->m_len)); 1417 n->m_len += m->m_len; 1418 sb->sb_ccc += m->m_len; 1419 sb->sb_tlscc += m->m_len; 1420 m = m_free(m); 1421 continue; 1422 } 1423 if (n) 1424 n->m_next = m; 1425 else 1426 sb->sb_mtls = m; 1427 sb->sb_mtlstail = m; 1428 sballoc_ktls_rx(sb, m); 1429 n = m; 1430 m = m->m_next; 1431 n->m_next = NULL; 1432 } 1433 SBLASTMBUFCHK(sb); 1434 } 1435 #endif 1436 1437 /* 1438 * Free all mbufs in a sockbuf. Check that all resources are reclaimed. 1439 */ 1440 static void 1441 sbflush_internal(struct sockbuf *sb) 1442 { 1443 1444 while (sb->sb_mbcnt || sb->sb_tlsdcc) { 1445 /* 1446 * Don't call sbcut(sb, 0) if the leading mbuf is non-empty: 1447 * we would loop forever. Panic instead. 1448 */ 1449 if (sb->sb_ccc == 0 && (sb->sb_mb == NULL || sb->sb_mb->m_len)) 1450 break; 1451 m_freem(sbcut_internal(sb, (int)sb->sb_ccc)); 1452 } 1453 KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0, 1454 ("%s: ccc %u mb %p mbcnt %u", __func__, 1455 sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt)); 1456 } 1457 1458 void 1459 sbflush_locked(struct sockbuf *sb) 1460 { 1461 1462 SOCKBUF_LOCK_ASSERT(sb); 1463 sbflush_internal(sb); 1464 } 1465 1466 void 1467 sbflush(struct sockbuf *sb) 1468 { 1469 1470 SOCKBUF_LOCK(sb); 1471 sbflush_locked(sb); 1472 SOCKBUF_UNLOCK(sb); 1473 } 1474 1475 /* 1476 * Cut data from (the front of) a sockbuf. 1477 */ 1478 static struct mbuf * 1479 sbcut_internal(struct sockbuf *sb, int len) 1480 { 1481 struct mbuf *m, *next, *mfree; 1482 bool is_tls; 1483 1484 KASSERT(len >= 0, ("%s: len is %d but it is supposed to be >= 0", 1485 __func__, len)); 1486 KASSERT(len <= sb->sb_ccc, ("%s: len: %d is > ccc: %u", 1487 __func__, len, sb->sb_ccc)); 1488 1489 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 1490 is_tls = false; 1491 mfree = NULL; 1492 1493 while (len > 0) { 1494 if (m == NULL) { 1495 #ifdef KERN_TLS 1496 if (next == NULL && !is_tls) { 1497 if (sb->sb_tlsdcc != 0) { 1498 MPASS(len >= sb->sb_tlsdcc); 1499 len -= sb->sb_tlsdcc; 1500 sb->sb_ccc -= sb->sb_tlsdcc; 1501 sb->sb_tlsdcc = 0; 1502 if (len == 0) 1503 break; 1504 } 1505 next = sb->sb_mtls; 1506 is_tls = true; 1507 } 1508 #endif 1509 KASSERT(next, ("%s: no next, len %d", __func__, len)); 1510 m = next; 1511 next = m->m_nextpkt; 1512 } 1513 if (m->m_len > len) { 1514 KASSERT(!(m->m_flags & M_NOTAVAIL), 1515 ("%s: m %p M_NOTAVAIL", __func__, m)); 1516 m->m_len -= len; 1517 m->m_data += len; 1518 sb->sb_ccc -= len; 1519 sb->sb_acc -= len; 1520 if (sb->sb_sndptroff != 0) 1521 sb->sb_sndptroff -= len; 1522 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA) 1523 sb->sb_ctl -= len; 1524 break; 1525 } 1526 len -= m->m_len; 1527 #ifdef KERN_TLS 1528 if (is_tls) 1529 sbfree_ktls_rx(sb, m); 1530 else 1531 #endif 1532 sbfree(sb, m); 1533 /* 1534 * Do not put M_NOTREADY buffers to the free list, they 1535 * are referenced from outside. 1536 */ 1537 if (m->m_flags & M_NOTREADY && !is_tls) 1538 m = m->m_next; 1539 else { 1540 struct mbuf *n; 1541 1542 n = m->m_next; 1543 m->m_next = mfree; 1544 mfree = m; 1545 m = n; 1546 } 1547 } 1548 /* 1549 * Free any zero-length mbufs from the buffer. 1550 * For SOCK_DGRAM sockets such mbufs represent empty records. 1551 * XXX: For SOCK_STREAM sockets such mbufs can appear in the buffer, 1552 * when sosend_generic() needs to send only control data. 1553 */ 1554 while (m && m->m_len == 0) { 1555 struct mbuf *n; 1556 1557 sbfree(sb, m); 1558 n = m->m_next; 1559 m->m_next = mfree; 1560 mfree = m; 1561 m = n; 1562 } 1563 #ifdef KERN_TLS 1564 if (is_tls) { 1565 sb->sb_mb = NULL; 1566 sb->sb_mtls = m; 1567 if (m == NULL) 1568 sb->sb_mtlstail = NULL; 1569 } else 1570 #endif 1571 if (m) { 1572 sb->sb_mb = m; 1573 m->m_nextpkt = next; 1574 } else 1575 sb->sb_mb = next; 1576 /* 1577 * First part is an inline SB_EMPTY_FIXUP(). Second part makes sure 1578 * sb_lastrecord is up-to-date if we dropped part of the last record. 1579 */ 1580 m = sb->sb_mb; 1581 if (m == NULL) { 1582 sb->sb_mbtail = NULL; 1583 sb->sb_lastrecord = NULL; 1584 } else if (m->m_nextpkt == NULL) { 1585 sb->sb_lastrecord = m; 1586 } 1587 1588 return (mfree); 1589 } 1590 1591 /* 1592 * Drop data from (the front of) a sockbuf. 1593 */ 1594 void 1595 sbdrop_locked(struct sockbuf *sb, int len) 1596 { 1597 1598 SOCKBUF_LOCK_ASSERT(sb); 1599 m_freem(sbcut_internal(sb, len)); 1600 } 1601 1602 /* 1603 * Drop data from (the front of) a sockbuf, 1604 * and return it to caller. 1605 */ 1606 struct mbuf * 1607 sbcut_locked(struct sockbuf *sb, int len) 1608 { 1609 1610 SOCKBUF_LOCK_ASSERT(sb); 1611 return (sbcut_internal(sb, len)); 1612 } 1613 1614 void 1615 sbdrop(struct sockbuf *sb, int len) 1616 { 1617 struct mbuf *mfree; 1618 1619 SOCKBUF_LOCK(sb); 1620 mfree = sbcut_internal(sb, len); 1621 SOCKBUF_UNLOCK(sb); 1622 1623 m_freem(mfree); 1624 } 1625 1626 struct mbuf * 1627 sbsndptr_noadv(struct sockbuf *sb, uint32_t off, uint32_t *moff) 1628 { 1629 struct mbuf *m; 1630 1631 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__)); 1632 if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) { 1633 *moff = off; 1634 if (sb->sb_sndptr == NULL) { 1635 sb->sb_sndptr = sb->sb_mb; 1636 sb->sb_sndptroff = 0; 1637 } 1638 return (sb->sb_mb); 1639 } else { 1640 m = sb->sb_sndptr; 1641 off -= sb->sb_sndptroff; 1642 } 1643 *moff = off; 1644 return (m); 1645 } 1646 1647 void 1648 sbsndptr_adv(struct sockbuf *sb, struct mbuf *mb, uint32_t len) 1649 { 1650 /* 1651 * A small copy was done, advance forward the sb_sbsndptr to cover 1652 * it. 1653 */ 1654 struct mbuf *m; 1655 1656 if (mb != sb->sb_sndptr) { 1657 /* Did not copyout at the same mbuf */ 1658 return; 1659 } 1660 m = mb; 1661 while (m && (len > 0)) { 1662 if (len >= m->m_len) { 1663 len -= m->m_len; 1664 if (m->m_next) { 1665 sb->sb_sndptroff += m->m_len; 1666 sb->sb_sndptr = m->m_next; 1667 } 1668 m = m->m_next; 1669 } else { 1670 len = 0; 1671 } 1672 } 1673 } 1674 1675 /* 1676 * Return the first mbuf and the mbuf data offset for the provided 1677 * send offset without changing the "sb_sndptroff" field. 1678 */ 1679 struct mbuf * 1680 sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff) 1681 { 1682 struct mbuf *m; 1683 1684 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__)); 1685 1686 /* 1687 * If the "off" is below the stored offset, which happens on 1688 * retransmits, just use "sb_mb": 1689 */ 1690 if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) { 1691 m = sb->sb_mb; 1692 } else { 1693 m = sb->sb_sndptr; 1694 off -= sb->sb_sndptroff; 1695 } 1696 while (off > 0 && m != NULL) { 1697 if (off < m->m_len) 1698 break; 1699 off -= m->m_len; 1700 m = m->m_next; 1701 } 1702 *moff = off; 1703 return (m); 1704 } 1705 1706 /* 1707 * Drop a record off the front of a sockbuf and move the next record to the 1708 * front. 1709 */ 1710 void 1711 sbdroprecord_locked(struct sockbuf *sb) 1712 { 1713 struct mbuf *m; 1714 1715 SOCKBUF_LOCK_ASSERT(sb); 1716 1717 m = sb->sb_mb; 1718 if (m) { 1719 sb->sb_mb = m->m_nextpkt; 1720 do { 1721 sbfree(sb, m); 1722 m = m_free(m); 1723 } while (m); 1724 } 1725 SB_EMPTY_FIXUP(sb); 1726 } 1727 1728 /* 1729 * Drop a record off the front of a sockbuf and move the next record to the 1730 * front. 1731 */ 1732 void 1733 sbdroprecord(struct sockbuf *sb) 1734 { 1735 1736 SOCKBUF_LOCK(sb); 1737 sbdroprecord_locked(sb); 1738 SOCKBUF_UNLOCK(sb); 1739 } 1740 1741 /* 1742 * Create a "control" mbuf containing the specified data with the specified 1743 * type for presentation on a socket buffer. 1744 */ 1745 struct mbuf * 1746 sbcreatecontrol(const void *p, u_int size, int type, int level, int wait) 1747 { 1748 struct cmsghdr *cp; 1749 struct mbuf *m; 1750 1751 MBUF_CHECKSLEEP(wait); 1752 1753 if (wait == M_NOWAIT) { 1754 if (CMSG_SPACE(size) > MCLBYTES) 1755 return (NULL); 1756 } else 1757 KASSERT(CMSG_SPACE(size) <= MCLBYTES, 1758 ("%s: passed CMSG_SPACE(%u) > MCLBYTES", __func__, size)); 1759 1760 if (CMSG_SPACE(size) > MLEN) 1761 m = m_getcl(wait, MT_CONTROL, 0); 1762 else 1763 m = m_get(wait, MT_CONTROL); 1764 if (m == NULL) 1765 return (NULL); 1766 1767 KASSERT(CMSG_SPACE(size) <= M_TRAILINGSPACE(m), 1768 ("sbcreatecontrol: short mbuf")); 1769 /* 1770 * Don't leave the padding between the msg header and the 1771 * cmsg data and the padding after the cmsg data un-initialized. 1772 */ 1773 cp = mtod(m, struct cmsghdr *); 1774 bzero(cp, CMSG_SPACE(size)); 1775 if (p != NULL) 1776 (void)memcpy(CMSG_DATA(cp), p, size); 1777 m->m_len = CMSG_SPACE(size); 1778 cp->cmsg_len = CMSG_LEN(size); 1779 cp->cmsg_level = level; 1780 cp->cmsg_type = type; 1781 return (m); 1782 } 1783 1784 /* 1785 * This does the same for socket buffers that sotoxsocket does for sockets: 1786 * generate an user-format data structure describing the socket buffer. Note 1787 * that the xsockbuf structure, since it is always embedded in a socket, does 1788 * not include a self pointer nor a length. We make this entry point public 1789 * in case some other mechanism needs it. 1790 */ 1791 void 1792 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb) 1793 { 1794 1795 xsb->sb_cc = sb->sb_ccc; 1796 xsb->sb_hiwat = sb->sb_hiwat; 1797 xsb->sb_mbcnt = sb->sb_mbcnt; 1798 xsb->sb_mbmax = sb->sb_mbmax; 1799 xsb->sb_lowat = sb->sb_lowat; 1800 xsb->sb_flags = sb->sb_flags; 1801 xsb->sb_timeo = sb->sb_timeo; 1802 } 1803 1804 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */ 1805 static int dummy; 1806 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW | CTLFLAG_SKIP, &dummy, 0, ""); 1807 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, 1808 CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, &sb_max, 0, 1809 sysctl_handle_sb_max, "LU", 1810 "Maximum socket buffer size"); 1811 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW, 1812 &sb_efficiency, 0, "Socket buffer size waste factor"); 1813