1 /* 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 34 * $FreeBSD$ 35 */ 36 37 #include "opt_param.h" 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/domain.h> 41 #include <sys/file.h> /* for maxfiles */ 42 #include <sys/kernel.h> 43 #include <sys/proc.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/protosw.h> 47 #include <sys/resourcevar.h> 48 #include <sys/stat.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/signalvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/aio.h> /* for aio_swake proto */ 54 55 int maxsockets; 56 57 /* 58 * Primitive routines for operating on sockets and socket buffers 59 */ 60 61 u_long sb_max = SB_MAX; /* XXX should be static */ 62 63 static u_long sb_efficiency = 8; /* parameter for sbreserve() */ 64 65 /* 66 * Procedures to manipulate state flags of socket 67 * and do appropriate wakeups. Normal sequence from the 68 * active (originating) side is that soisconnecting() is 69 * called during processing of connect() call, 70 * resulting in an eventual call to soisconnected() if/when the 71 * connection is established. When the connection is torn down 72 * soisdisconnecting() is called during processing of disconnect() call, 73 * and soisdisconnected() is called when the connection to the peer 74 * is totally severed. The semantics of these routines are such that 75 * connectionless protocols can call soisconnected() and soisdisconnected() 76 * only, bypassing the in-progress calls when setting up a ``connection'' 77 * takes no time. 78 * 79 * From the passive side, a socket is created with 80 * two queues of sockets: so_incomp for connections in progress 81 * and so_comp for connections already made and awaiting user acceptance. 82 * As a protocol is preparing incoming connections, it creates a socket 83 * structure queued on so_incomp by calling sonewconn(). When the connection 84 * is established, soisconnected() is called, and transfers the 85 * socket structure to so_comp, making it available to accept(). 86 * 87 * If a socket is closed with sockets on either 88 * so_incomp or so_comp, these sockets are dropped. 89 * 90 * If higher level protocols are implemented in 91 * the kernel, the wakeups done here will sometimes 92 * cause software-interrupt process scheduling. 93 */ 94 95 void 96 soisconnecting(so) 97 register struct socket *so; 98 { 99 100 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 101 so->so_state |= SS_ISCONNECTING; 102 } 103 104 void 105 soisconnected(so) 106 register struct socket *so; 107 { 108 register struct socket *head = so->so_head; 109 110 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 111 so->so_state |= SS_ISCONNECTED; 112 if (head && (so->so_state & SS_INCOMP)) { 113 TAILQ_REMOVE(&head->so_incomp, so, so_list); 114 head->so_incqlen--; 115 so->so_state &= ~SS_INCOMP; 116 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 117 so->so_state |= SS_COMP; 118 sorwakeup(head); 119 wakeup_one(&head->so_timeo); 120 } else { 121 wakeup(&so->so_timeo); 122 sorwakeup(so); 123 sowwakeup(so); 124 } 125 } 126 127 void 128 soisdisconnecting(so) 129 register struct socket *so; 130 { 131 132 so->so_state &= ~SS_ISCONNECTING; 133 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); 134 wakeup((caddr_t)&so->so_timeo); 135 sowwakeup(so); 136 sorwakeup(so); 137 } 138 139 void 140 soisdisconnected(so) 141 register struct socket *so; 142 { 143 144 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 145 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED); 146 wakeup((caddr_t)&so->so_timeo); 147 sowwakeup(so); 148 sorwakeup(so); 149 } 150 151 /* 152 * Return a random connection that hasn't been serviced yet and 153 * is eligible for discard. There is a one in qlen chance that 154 * we will return a null, saying that there are no dropable 155 * requests. In this case, the protocol specific code should drop 156 * the new request. This insures fairness. 157 * 158 * This may be used in conjunction with protocol specific queue 159 * congestion routines. 160 */ 161 struct socket * 162 sodropablereq(head) 163 register struct socket *head; 164 { 165 register struct socket *so; 166 unsigned int i, j, qlen; 167 static int rnd; 168 static struct timeval old_runtime; 169 static unsigned int cur_cnt, old_cnt; 170 struct timeval tv; 171 172 getmicrouptime(&tv); 173 if ((i = (tv.tv_sec - old_runtime.tv_sec)) != 0) { 174 old_runtime = tv; 175 old_cnt = cur_cnt / i; 176 cur_cnt = 0; 177 } 178 179 so = TAILQ_FIRST(&head->so_incomp); 180 if (!so) 181 return (so); 182 183 qlen = head->so_incqlen; 184 if (++cur_cnt > qlen || old_cnt > qlen) { 185 rnd = (314159 * rnd + 66329) & 0xffff; 186 j = ((qlen + 1) * rnd) >> 16; 187 188 while (j-- && so) 189 so = TAILQ_NEXT(so, so_list); 190 } 191 192 return (so); 193 } 194 195 /* 196 * When an attempt at a new connection is noted on a socket 197 * which accepts connections, sonewconn is called. If the 198 * connection is possible (subject to space constraints, etc.) 199 * then we allocate a new structure, propoerly linked into the 200 * data structure of the original socket, and return this. 201 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. 202 */ 203 struct socket * 204 sonewconn(head, connstatus) 205 register struct socket *head; 206 int connstatus; 207 { 208 209 return (sonewconn3(head, connstatus, NULL)); 210 } 211 212 struct socket * 213 sonewconn3(head, connstatus, p) 214 register struct socket *head; 215 int connstatus; 216 struct proc *p; 217 { 218 register struct socket *so; 219 220 if (head->so_qlen > 3 * head->so_qlimit / 2) 221 return ((struct socket *)0); 222 so = soalloc(0); 223 if (so == NULL) 224 return ((struct socket *)0); 225 so->so_head = head; 226 so->so_type = head->so_type; 227 so->so_options = head->so_options &~ SO_ACCEPTCONN; 228 so->so_linger = head->so_linger; 229 so->so_state = head->so_state | SS_NOFDREF; 230 so->so_proto = head->so_proto; 231 so->so_timeo = head->so_timeo; 232 so->so_cred = p ? p->p_ucred : head->so_cred; 233 crhold(so->so_cred); 234 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) || 235 (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 236 sodealloc(so); 237 return ((struct socket *)0); 238 } 239 240 if (connstatus) { 241 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 242 so->so_state |= SS_COMP; 243 } else { 244 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 245 so->so_state |= SS_INCOMP; 246 head->so_incqlen++; 247 } 248 head->so_qlen++; 249 if (connstatus) { 250 sorwakeup(head); 251 wakeup((caddr_t)&head->so_timeo); 252 so->so_state |= connstatus; 253 } 254 return (so); 255 } 256 257 /* 258 * Socantsendmore indicates that no more data will be sent on the 259 * socket; it would normally be applied to a socket when the user 260 * informs the system that no more data is to be sent, by the protocol 261 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 262 * will be received, and will normally be applied to the socket by a 263 * protocol when it detects that the peer will send no more data. 264 * Data queued for reading in the socket may yet be read. 265 */ 266 267 void 268 socantsendmore(so) 269 struct socket *so; 270 { 271 272 so->so_state |= SS_CANTSENDMORE; 273 sowwakeup(so); 274 } 275 276 void 277 socantrcvmore(so) 278 struct socket *so; 279 { 280 281 so->so_state |= SS_CANTRCVMORE; 282 sorwakeup(so); 283 } 284 285 /* 286 * Wait for data to arrive at/drain from a socket buffer. 287 */ 288 int 289 sbwait(sb) 290 struct sockbuf *sb; 291 { 292 293 sb->sb_flags |= SB_WAIT; 294 return (tsleep((caddr_t)&sb->sb_cc, 295 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", 296 sb->sb_timeo)); 297 } 298 299 /* 300 * Lock a sockbuf already known to be locked; 301 * return any error returned from sleep (EINTR). 302 */ 303 int 304 sb_lock(sb) 305 register struct sockbuf *sb; 306 { 307 int error; 308 309 while (sb->sb_flags & SB_LOCK) { 310 sb->sb_flags |= SB_WANT; 311 error = tsleep((caddr_t)&sb->sb_flags, 312 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH, 313 "sblock", 0); 314 if (error) 315 return (error); 316 } 317 sb->sb_flags |= SB_LOCK; 318 return (0); 319 } 320 321 /* 322 * Wakeup processes waiting on a socket buffer. 323 * Do asynchronous notification via SIGIO 324 * if the socket has the SS_ASYNC flag set. 325 */ 326 void 327 sowakeup(so, sb) 328 register struct socket *so; 329 register struct sockbuf *sb; 330 { 331 selwakeup(&sb->sb_sel); 332 sb->sb_flags &= ~SB_SEL; 333 if (sb->sb_flags & SB_WAIT) { 334 sb->sb_flags &= ~SB_WAIT; 335 wakeup((caddr_t)&sb->sb_cc); 336 } 337 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL) 338 pgsigio(so->so_sigio, SIGIO, 0); 339 if (sb->sb_flags & SB_UPCALL) 340 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT); 341 if (sb->sb_flags & SB_AIO) 342 aio_swake(so, sb); 343 } 344 345 /* 346 * Socket buffer (struct sockbuf) utility routines. 347 * 348 * Each socket contains two socket buffers: one for sending data and 349 * one for receiving data. Each buffer contains a queue of mbufs, 350 * information about the number of mbufs and amount of data in the 351 * queue, and other fields allowing select() statements and notification 352 * on data availability to be implemented. 353 * 354 * Data stored in a socket buffer is maintained as a list of records. 355 * Each record is a list of mbufs chained together with the m_next 356 * field. Records are chained together with the m_nextpkt field. The upper 357 * level routine soreceive() expects the following conventions to be 358 * observed when placing information in the receive buffer: 359 * 360 * 1. If the protocol requires each message be preceded by the sender's 361 * name, then a record containing that name must be present before 362 * any associated data (mbuf's must be of type MT_SONAME). 363 * 2. If the protocol supports the exchange of ``access rights'' (really 364 * just additional data associated with the message), and there are 365 * ``rights'' to be received, then a record containing this data 366 * should be present (mbuf's must be of type MT_RIGHTS). 367 * 3. If a name or rights record exists, then it must be followed by 368 * a data record, perhaps of zero length. 369 * 370 * Before using a new socket structure it is first necessary to reserve 371 * buffer space to the socket, by calling sbreserve(). This should commit 372 * some of the available buffer space in the system buffer pool for the 373 * socket (currently, it does nothing but enforce limits). The space 374 * should be released by calling sbrelease() when the socket is destroyed. 375 */ 376 377 int 378 soreserve(so, sndcc, rcvcc) 379 register struct socket *so; 380 u_long sndcc, rcvcc; 381 { 382 struct proc *p = curproc; 383 384 if (sbreserve(&so->so_snd, sndcc, so, p) == 0) 385 goto bad; 386 if (sbreserve(&so->so_rcv, rcvcc, so, p) == 0) 387 goto bad2; 388 if (so->so_rcv.sb_lowat == 0) 389 so->so_rcv.sb_lowat = 1; 390 if (so->so_snd.sb_lowat == 0) 391 so->so_snd.sb_lowat = MCLBYTES; 392 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 393 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 394 return (0); 395 bad2: 396 sbrelease(&so->so_snd, so); 397 bad: 398 return (ENOBUFS); 399 } 400 401 /* 402 * Allot mbufs to a sockbuf. 403 * Attempt to scale mbmax so that mbcnt doesn't become limiting 404 * if buffering efficiency is near the normal case. 405 */ 406 int 407 sbreserve(sb, cc, so, p) 408 struct sockbuf *sb; 409 u_long cc; 410 struct socket *so; 411 struct proc *p; 412 { 413 rlim_t delta; 414 415 /* 416 * p will only be NULL when we're in an interrupt 417 * (e.g. in tcp_input()) 418 */ 419 if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES)) 420 return (0); 421 delta = (rlim_t)cc - sb->sb_hiwat; 422 if (p && delta >= 0 && chgsbsize(so->so_cred->cr_uid, 0) + delta > 423 p->p_rlimit[RLIMIT_SBSIZE].rlim_cur) 424 return (0); 425 (void)chgsbsize(so->so_cred->cr_uid, delta); 426 sb->sb_hiwat = cc; 427 sb->sb_mbmax = min(cc * sb_efficiency, sb_max); 428 if (sb->sb_lowat > sb->sb_hiwat) 429 sb->sb_lowat = sb->sb_hiwat; 430 return (1); 431 } 432 433 /* 434 * Free mbufs held by a socket, and reserved mbuf space. 435 */ 436 void 437 sbrelease(sb, so) 438 struct sockbuf *sb; 439 struct socket *so; 440 { 441 442 sbflush(sb); 443 (void)chgsbsize(so->so_cred->cr_uid, -(rlim_t)sb->sb_hiwat); 444 sb->sb_hiwat = sb->sb_mbmax = 0; 445 } 446 447 /* 448 * Routines to add and remove 449 * data from an mbuf queue. 450 * 451 * The routines sbappend() or sbappendrecord() are normally called to 452 * append new mbufs to a socket buffer, after checking that adequate 453 * space is available, comparing the function sbspace() with the amount 454 * of data to be added. sbappendrecord() differs from sbappend() in 455 * that data supplied is treated as the beginning of a new record. 456 * To place a sender's address, optional access rights, and data in a 457 * socket receive buffer, sbappendaddr() should be used. To place 458 * access rights and data in a socket receive buffer, sbappendrights() 459 * should be used. In either case, the new data begins a new record. 460 * Note that unlike sbappend() and sbappendrecord(), these routines check 461 * for the caller that there will be enough space to store the data. 462 * Each fails if there is not enough space, or if it cannot find mbufs 463 * to store additional information in. 464 * 465 * Reliable protocols may use the socket send buffer to hold data 466 * awaiting acknowledgement. Data is normally copied from a socket 467 * send buffer in a protocol with m_copy for output to a peer, 468 * and then removing the data from the socket buffer with sbdrop() 469 * or sbdroprecord() when the data is acknowledged by the peer. 470 */ 471 472 /* 473 * Append mbuf chain m to the last record in the 474 * socket buffer sb. The additional space associated 475 * the mbuf chain is recorded in sb. Empty mbufs are 476 * discarded and mbufs are compacted where possible. 477 */ 478 void 479 sbappend(sb, m) 480 struct sockbuf *sb; 481 struct mbuf *m; 482 { 483 register struct mbuf *n; 484 485 if (m == 0) 486 return; 487 n = sb->sb_mb; 488 if (n) { 489 while (n->m_nextpkt) 490 n = n->m_nextpkt; 491 do { 492 if (n->m_flags & M_EOR) { 493 sbappendrecord(sb, m); /* XXXXXX!!!! */ 494 return; 495 } 496 } while (n->m_next && (n = n->m_next)); 497 } 498 sbcompress(sb, m, n); 499 } 500 501 #ifdef SOCKBUF_DEBUG 502 void 503 sbcheck(sb) 504 register struct sockbuf *sb; 505 { 506 register struct mbuf *m; 507 register struct mbuf *n = 0; 508 register u_long len = 0, mbcnt = 0; 509 510 for (m = sb->sb_mb; m; m = n) { 511 n = m->m_nextpkt; 512 for (; m; m = m->m_next) { 513 len += m->m_len; 514 mbcnt += MSIZE; 515 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ 516 mbcnt += m->m_ext.ext_size; 517 } 518 } 519 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 520 printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc, 521 mbcnt, sb->sb_mbcnt); 522 panic("sbcheck"); 523 } 524 } 525 #endif 526 527 /* 528 * As above, except the mbuf chain 529 * begins a new record. 530 */ 531 void 532 sbappendrecord(sb, m0) 533 register struct sockbuf *sb; 534 register struct mbuf *m0; 535 { 536 register struct mbuf *m; 537 538 if (m0 == 0) 539 return; 540 m = sb->sb_mb; 541 if (m) 542 while (m->m_nextpkt) 543 m = m->m_nextpkt; 544 /* 545 * Put the first mbuf on the queue. 546 * Note this permits zero length records. 547 */ 548 sballoc(sb, m0); 549 if (m) 550 m->m_nextpkt = m0; 551 else 552 sb->sb_mb = m0; 553 m = m0->m_next; 554 m0->m_next = 0; 555 if (m && (m0->m_flags & M_EOR)) { 556 m0->m_flags &= ~M_EOR; 557 m->m_flags |= M_EOR; 558 } 559 sbcompress(sb, m, m0); 560 } 561 562 /* 563 * As above except that OOB data 564 * is inserted at the beginning of the sockbuf, 565 * but after any other OOB data. 566 */ 567 void 568 sbinsertoob(sb, m0) 569 register struct sockbuf *sb; 570 register struct mbuf *m0; 571 { 572 register struct mbuf *m; 573 register struct mbuf **mp; 574 575 if (m0 == 0) 576 return; 577 for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) { 578 m = *mp; 579 again: 580 switch (m->m_type) { 581 582 case MT_OOBDATA: 583 continue; /* WANT next train */ 584 585 case MT_CONTROL: 586 m = m->m_next; 587 if (m) 588 goto again; /* inspect THIS train further */ 589 } 590 break; 591 } 592 /* 593 * Put the first mbuf on the queue. 594 * Note this permits zero length records. 595 */ 596 sballoc(sb, m0); 597 m0->m_nextpkt = *mp; 598 *mp = m0; 599 m = m0->m_next; 600 m0->m_next = 0; 601 if (m && (m0->m_flags & M_EOR)) { 602 m0->m_flags &= ~M_EOR; 603 m->m_flags |= M_EOR; 604 } 605 sbcompress(sb, m, m0); 606 } 607 608 /* 609 * Append address and data, and optionally, control (ancillary) data 610 * to the receive queue of a socket. If present, 611 * m0 must include a packet header with total length. 612 * Returns 0 if no space in sockbuf or insufficient mbufs. 613 */ 614 int 615 sbappendaddr(sb, asa, m0, control) 616 register struct sockbuf *sb; 617 struct sockaddr *asa; 618 struct mbuf *m0, *control; 619 { 620 register struct mbuf *m, *n; 621 int space = asa->sa_len; 622 623 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 624 panic("sbappendaddr"); 625 if (m0) 626 space += m0->m_pkthdr.len; 627 for (n = control; n; n = n->m_next) { 628 space += n->m_len; 629 if (n->m_next == 0) /* keep pointer to last control buf */ 630 break; 631 } 632 if (space > sbspace(sb)) 633 return (0); 634 if (asa->sa_len > MLEN) 635 return (0); 636 MGET(m, M_DONTWAIT, MT_SONAME); 637 if (m == 0) 638 return (0); 639 m->m_len = asa->sa_len; 640 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len); 641 if (n) 642 n->m_next = m0; /* concatenate data to control */ 643 else 644 control = m0; 645 m->m_next = control; 646 for (n = m; n; n = n->m_next) 647 sballoc(sb, n); 648 n = sb->sb_mb; 649 if (n) { 650 while (n->m_nextpkt) 651 n = n->m_nextpkt; 652 n->m_nextpkt = m; 653 } else 654 sb->sb_mb = m; 655 return (1); 656 } 657 658 int 659 sbappendcontrol(sb, m0, control) 660 struct sockbuf *sb; 661 struct mbuf *control, *m0; 662 { 663 register struct mbuf *m, *n; 664 int space = 0; 665 666 if (control == 0) 667 panic("sbappendcontrol"); 668 for (m = control; ; m = m->m_next) { 669 space += m->m_len; 670 if (m->m_next == 0) 671 break; 672 } 673 n = m; /* save pointer to last control buffer */ 674 for (m = m0; m; m = m->m_next) 675 space += m->m_len; 676 if (space > sbspace(sb)) 677 return (0); 678 n->m_next = m0; /* concatenate data to control */ 679 for (m = control; m; m = m->m_next) 680 sballoc(sb, m); 681 n = sb->sb_mb; 682 if (n) { 683 while (n->m_nextpkt) 684 n = n->m_nextpkt; 685 n->m_nextpkt = control; 686 } else 687 sb->sb_mb = control; 688 return (1); 689 } 690 691 /* 692 * Compress mbuf chain m into the socket 693 * buffer sb following mbuf n. If n 694 * is null, the buffer is presumed empty. 695 */ 696 void 697 sbcompress(sb, m, n) 698 register struct sockbuf *sb; 699 register struct mbuf *m, *n; 700 { 701 register int eor = 0; 702 register struct mbuf *o; 703 704 while (m) { 705 eor |= m->m_flags & M_EOR; 706 if (m->m_len == 0 && 707 (eor == 0 || 708 (((o = m->m_next) || (o = n)) && 709 o->m_type == m->m_type))) { 710 m = m_free(m); 711 continue; 712 } 713 if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 && 714 (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] && 715 n->m_type == m->m_type) { 716 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, 717 (unsigned)m->m_len); 718 n->m_len += m->m_len; 719 sb->sb_cc += m->m_len; 720 m = m_free(m); 721 continue; 722 } 723 if (n) 724 n->m_next = m; 725 else 726 sb->sb_mb = m; 727 sballoc(sb, m); 728 n = m; 729 m->m_flags &= ~M_EOR; 730 m = m->m_next; 731 n->m_next = 0; 732 } 733 if (eor) { 734 if (n) 735 n->m_flags |= eor; 736 else 737 printf("semi-panic: sbcompress\n"); 738 } 739 } 740 741 /* 742 * Free all mbufs in a sockbuf. 743 * Check that all resources are reclaimed. 744 */ 745 void 746 sbflush(sb) 747 register struct sockbuf *sb; 748 { 749 750 if (sb->sb_flags & SB_LOCK) 751 panic("sbflush: locked"); 752 while (sb->sb_mbcnt) { 753 /* 754 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty: 755 * we would loop forever. Panic instead. 756 */ 757 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len)) 758 break; 759 sbdrop(sb, (int)sb->sb_cc); 760 } 761 if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt) 762 panic("sbflush: cc %ld || mb %p || mbcnt %ld", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt); 763 } 764 765 /* 766 * Drop data from (the front of) a sockbuf. 767 */ 768 void 769 sbdrop(sb, len) 770 register struct sockbuf *sb; 771 register int len; 772 { 773 register struct mbuf *m, *mn; 774 struct mbuf *next; 775 776 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 777 while (len > 0) { 778 if (m == 0) { 779 if (next == 0) 780 panic("sbdrop"); 781 m = next; 782 next = m->m_nextpkt; 783 continue; 784 } 785 if (m->m_len > len) { 786 m->m_len -= len; 787 m->m_data += len; 788 sb->sb_cc -= len; 789 break; 790 } 791 len -= m->m_len; 792 sbfree(sb, m); 793 MFREE(m, mn); 794 m = mn; 795 } 796 while (m && m->m_len == 0) { 797 sbfree(sb, m); 798 MFREE(m, mn); 799 m = mn; 800 } 801 if (m) { 802 sb->sb_mb = m; 803 m->m_nextpkt = next; 804 } else 805 sb->sb_mb = next; 806 } 807 808 /* 809 * Drop a record off the front of a sockbuf 810 * and move the next record to the front. 811 */ 812 void 813 sbdroprecord(sb) 814 register struct sockbuf *sb; 815 { 816 register struct mbuf *m, *mn; 817 818 m = sb->sb_mb; 819 if (m) { 820 sb->sb_mb = m->m_nextpkt; 821 do { 822 sbfree(sb, m); 823 MFREE(m, mn); 824 m = mn; 825 } while (m); 826 } 827 } 828 829 /* 830 * Create a "control" mbuf containing the specified data 831 * with the specified type for presentation on a socket buffer. 832 */ 833 struct mbuf * 834 sbcreatecontrol(p, size, type, level) 835 caddr_t p; 836 register int size; 837 int type, level; 838 { 839 register struct cmsghdr *cp; 840 struct mbuf *m; 841 842 if ((u_int)size > MLEN) 843 return ((struct mbuf *) NULL); 844 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) 845 return ((struct mbuf *) NULL); 846 cp = mtod(m, struct cmsghdr *); 847 /* XXX check size? */ 848 (void)memcpy(CMSG_DATA(cp), p, size); 849 size += sizeof(*cp); 850 m->m_len = size; 851 cp->cmsg_len = size; 852 cp->cmsg_level = level; 853 cp->cmsg_type = type; 854 return (m); 855 } 856 857 /* 858 * Some routines that return EOPNOTSUPP for entry points that are not 859 * supported by a protocol. Fill in as needed. 860 */ 861 int 862 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 863 { 864 return EOPNOTSUPP; 865 } 866 867 int 868 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p) 869 { 870 return EOPNOTSUPP; 871 } 872 873 int 874 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 875 { 876 return EOPNOTSUPP; 877 } 878 879 int 880 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 881 struct ifnet *ifp, struct proc *p) 882 { 883 return EOPNOTSUPP; 884 } 885 886 int 887 pru_listen_notsupp(struct socket *so, struct proc *p) 888 { 889 return EOPNOTSUPP; 890 } 891 892 int 893 pru_rcvd_notsupp(struct socket *so, int flags) 894 { 895 return EOPNOTSUPP; 896 } 897 898 int 899 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 900 { 901 return EOPNOTSUPP; 902 } 903 904 /* 905 * This isn't really a ``null'' operation, but it's the default one 906 * and doesn't do anything destructive. 907 */ 908 int 909 pru_sense_null(struct socket *so, struct stat *sb) 910 { 911 sb->st_blksize = so->so_snd.sb_hiwat; 912 return 0; 913 } 914 915 /* 916 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 917 */ 918 struct sockaddr * 919 dup_sockaddr(sa, canwait) 920 struct sockaddr *sa; 921 int canwait; 922 { 923 struct sockaddr *sa2; 924 925 MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME, 926 canwait ? M_WAITOK : M_NOWAIT); 927 if (sa2) 928 bcopy(sa, sa2, sa->sa_len); 929 return sa2; 930 } 931 932 /* 933 * Create an external-format (``xsocket'') structure using the information 934 * in the kernel-format socket structure pointed to by so. This is done 935 * to reduce the spew of irrelevant information over this interface, 936 * to isolate user code from changes in the kernel structure, and 937 * potentially to provide information-hiding if we decide that 938 * some of this information should be hidden from users. 939 */ 940 void 941 sotoxsocket(struct socket *so, struct xsocket *xso) 942 { 943 xso->xso_len = sizeof *xso; 944 xso->xso_so = so; 945 xso->so_type = so->so_type; 946 xso->so_options = so->so_options; 947 xso->so_linger = so->so_linger; 948 xso->so_state = so->so_state; 949 xso->so_pcb = so->so_pcb; 950 xso->xso_protocol = so->so_proto->pr_protocol; 951 xso->xso_family = so->so_proto->pr_domain->dom_family; 952 xso->so_qlen = so->so_qlen; 953 xso->so_incqlen = so->so_incqlen; 954 xso->so_qlimit = so->so_qlimit; 955 xso->so_timeo = so->so_timeo; 956 xso->so_error = so->so_error; 957 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 958 xso->so_oobmark = so->so_oobmark; 959 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 960 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 961 xso->so_uid = so->so_cred->cr_uid; 962 } 963 964 /* 965 * This does the same for sockbufs. Note that the xsockbuf structure, 966 * since it is always embedded in a socket, does not include a self 967 * pointer nor a length. We make this entry point public in case 968 * some other mechanism needs it. 969 */ 970 void 971 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb) 972 { 973 xsb->sb_cc = sb->sb_cc; 974 xsb->sb_hiwat = sb->sb_hiwat; 975 xsb->sb_mbcnt = sb->sb_mbcnt; 976 xsb->sb_mbmax = sb->sb_mbmax; 977 xsb->sb_lowat = sb->sb_lowat; 978 xsb->sb_flags = sb->sb_flags; 979 xsb->sb_timeo = sb->sb_timeo; 980 } 981 982 /* 983 * Here is the definition of some of the basic objects in the kern.ipc 984 * branch of the MIB. 985 */ 986 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 987 988 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */ 989 static int dummy; 990 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, ""); 991 992 SYSCTL_INT(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW, 993 &sb_max, 0, "Maximum socket buffer size"); 994 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD, 995 &maxsockets, 0, "Maximum number of sockets avaliable"); 996 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW, 997 &sb_efficiency, 0, ""); 998 999 /* 1000 * Initialise maxsockets 1001 */ 1002 static void init_maxsockets(void *ignored) 1003 { 1004 TUNABLE_INT_FETCH("kern.ipc.maxsockets", 0, maxsockets); 1005 maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters)); 1006 } 1007 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 1008