xref: /freebsd/sys/kern/uipc_sockbuf.c (revision da7d7b9c861cf98e912c0bd1e549752d2dae4fb6)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_param.h"
36 
37 #include <sys/param.h>
38 #include <sys/aio.h> /* for aio_swake proto */
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mbuf.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/protosw.h>
45 #include <sys/resourcevar.h>
46 #include <sys/signalvar.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/sx.h>
50 #include <sys/sysctl.h>
51 
52 /*
53  * Function pointer set by the AIO routines so that the socket buffer code
54  * can call back into the AIO module if it is loaded.
55  */
56 void	(*aio_swake)(struct socket *, struct sockbuf *);
57 
58 /*
59  * Primitive routines for operating on socket buffers
60  */
61 
62 u_long	sb_max = SB_MAX;
63 u_long sb_max_adj =
64        (quad_t)SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
65 
66 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
67 
68 static struct mbuf	*sbcut_internal(struct sockbuf *sb, int len);
69 static void	sbflush_internal(struct sockbuf *sb);
70 
71 /*
72  * Mark ready "count" mbufs starting with "m".
73  */
74 int
75 sbready(struct sockbuf *sb, struct mbuf *m, int count)
76 {
77 	u_int blocker;
78 
79 	SOCKBUF_LOCK_ASSERT(sb);
80 	KASSERT(sb->sb_fnrdy != NULL, ("%s: sb %p NULL fnrdy", __func__, sb));
81 
82 	blocker = (sb->sb_fnrdy == m) ? M_BLOCKED : 0;
83 
84 	for (int i = 0; i < count; i++, m = m->m_next) {
85 		KASSERT(m->m_flags & M_NOTREADY,
86 		    ("%s: m %p !M_NOTREADY", __func__, m));
87 		m->m_flags &= ~(M_NOTREADY | blocker);
88 		if (blocker)
89 			sb->sb_acc += m->m_len;
90 	}
91 
92 	if (!blocker)
93 		return (EINPROGRESS);
94 
95 	/* This one was blocking all the queue. */
96 	for (; m && (m->m_flags & M_NOTREADY) == 0; m = m->m_next) {
97 		KASSERT(m->m_flags & M_BLOCKED,
98 		    ("%s: m %p !M_BLOCKED", __func__, m));
99 		m->m_flags &= ~M_BLOCKED;
100 		sb->sb_acc += m->m_len;
101 	}
102 
103 	sb->sb_fnrdy = m;
104 
105 	return (0);
106 }
107 
108 /*
109  * Adjust sockbuf state reflecting allocation of m.
110  */
111 void
112 sballoc(struct sockbuf *sb, struct mbuf *m)
113 {
114 
115 	SOCKBUF_LOCK_ASSERT(sb);
116 
117 	sb->sb_ccc += m->m_len;
118 
119 	if (sb->sb_fnrdy == NULL) {
120 		if (m->m_flags & M_NOTREADY)
121 			sb->sb_fnrdy = m;
122 		else
123 			sb->sb_acc += m->m_len;
124 	} else
125 		m->m_flags |= M_BLOCKED;
126 
127 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
128 		sb->sb_ctl += m->m_len;
129 
130 	sb->sb_mbcnt += MSIZE;
131 	sb->sb_mcnt += 1;
132 
133 	if (m->m_flags & M_EXT) {
134 		sb->sb_mbcnt += m->m_ext.ext_size;
135 		sb->sb_ccnt += 1;
136 	}
137 }
138 
139 /*
140  * Adjust sockbuf state reflecting freeing of m.
141  */
142 void
143 sbfree(struct sockbuf *sb, struct mbuf *m)
144 {
145 
146 #if 0	/* XXX: not yet: soclose() call path comes here w/o lock. */
147 	SOCKBUF_LOCK_ASSERT(sb);
148 #endif
149 
150 	sb->sb_ccc -= m->m_len;
151 
152 	if (!(m->m_flags & M_NOTAVAIL))
153 		sb->sb_acc -= m->m_len;
154 
155 	if (m == sb->sb_fnrdy) {
156 		struct mbuf *n;
157 
158 		KASSERT(m->m_flags & M_NOTREADY,
159 		    ("%s: m %p !M_NOTREADY", __func__, m));
160 
161 		n = m->m_next;
162 		while (n != NULL && !(n->m_flags & M_NOTREADY)) {
163 			n->m_flags &= ~M_BLOCKED;
164 			sb->sb_acc += n->m_len;
165 			n = n->m_next;
166 		}
167 		sb->sb_fnrdy = n;
168 	}
169 
170 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
171 		sb->sb_ctl -= m->m_len;
172 
173 	sb->sb_mbcnt -= MSIZE;
174 	sb->sb_mcnt -= 1;
175 	if (m->m_flags & M_EXT) {
176 		sb->sb_mbcnt -= m->m_ext.ext_size;
177 		sb->sb_ccnt -= 1;
178 	}
179 
180 	if (sb->sb_sndptr == m) {
181 		sb->sb_sndptr = NULL;
182 		sb->sb_sndptroff = 0;
183 	}
184 	if (sb->sb_sndptroff != 0)
185 		sb->sb_sndptroff -= m->m_len;
186 }
187 
188 /*
189  * Socantsendmore indicates that no more data will be sent on the socket; it
190  * would normally be applied to a socket when the user informs the system
191  * that no more data is to be sent, by the protocol code (in case
192  * PRU_SHUTDOWN).  Socantrcvmore indicates that no more data will be
193  * received, and will normally be applied to the socket by a protocol when it
194  * detects that the peer will send no more data.  Data queued for reading in
195  * the socket may yet be read.
196  */
197 void
198 socantsendmore_locked(struct socket *so)
199 {
200 
201 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
202 
203 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
204 	sowwakeup_locked(so);
205 	mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
206 }
207 
208 void
209 socantsendmore(struct socket *so)
210 {
211 
212 	SOCKBUF_LOCK(&so->so_snd);
213 	socantsendmore_locked(so);
214 	mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
215 }
216 
217 void
218 socantrcvmore_locked(struct socket *so)
219 {
220 
221 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
222 
223 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
224 	sorwakeup_locked(so);
225 	mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
226 }
227 
228 void
229 socantrcvmore(struct socket *so)
230 {
231 
232 	SOCKBUF_LOCK(&so->so_rcv);
233 	socantrcvmore_locked(so);
234 	mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
235 }
236 
237 /*
238  * Wait for data to arrive at/drain from a socket buffer.
239  */
240 int
241 sbwait(struct sockbuf *sb)
242 {
243 
244 	SOCKBUF_LOCK_ASSERT(sb);
245 
246 	sb->sb_flags |= SB_WAIT;
247 	return (msleep_sbt(&sb->sb_acc, &sb->sb_mtx,
248 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
249 	    sb->sb_timeo, 0, 0));
250 }
251 
252 int
253 sblock(struct sockbuf *sb, int flags)
254 {
255 
256 	KASSERT((flags & SBL_VALID) == flags,
257 	    ("sblock: flags invalid (0x%x)", flags));
258 
259 	if (flags & SBL_WAIT) {
260 		if ((sb->sb_flags & SB_NOINTR) ||
261 		    (flags & SBL_NOINTR)) {
262 			sx_xlock(&sb->sb_sx);
263 			return (0);
264 		}
265 		return (sx_xlock_sig(&sb->sb_sx));
266 	} else {
267 		if (sx_try_xlock(&sb->sb_sx) == 0)
268 			return (EWOULDBLOCK);
269 		return (0);
270 	}
271 }
272 
273 void
274 sbunlock(struct sockbuf *sb)
275 {
276 
277 	sx_xunlock(&sb->sb_sx);
278 }
279 
280 /*
281  * Wakeup processes waiting on a socket buffer.  Do asynchronous notification
282  * via SIGIO if the socket has the SS_ASYNC flag set.
283  *
284  * Called with the socket buffer lock held; will release the lock by the end
285  * of the function.  This allows the caller to acquire the socket buffer lock
286  * while testing for the need for various sorts of wakeup and hold it through
287  * to the point where it's no longer required.  We currently hold the lock
288  * through calls out to other subsystems (with the exception of kqueue), and
289  * then release it to avoid lock order issues.  It's not clear that's
290  * correct.
291  */
292 void
293 sowakeup(struct socket *so, struct sockbuf *sb)
294 {
295 	int ret;
296 
297 	SOCKBUF_LOCK_ASSERT(sb);
298 
299 	selwakeuppri(&sb->sb_sel, PSOCK);
300 	if (!SEL_WAITING(&sb->sb_sel))
301 		sb->sb_flags &= ~SB_SEL;
302 	if (sb->sb_flags & SB_WAIT) {
303 		sb->sb_flags &= ~SB_WAIT;
304 		wakeup(&sb->sb_acc);
305 	}
306 	KNOTE_LOCKED(&sb->sb_sel.si_note, 0);
307 	if (sb->sb_upcall != NULL) {
308 		ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT);
309 		if (ret == SU_ISCONNECTED) {
310 			KASSERT(sb == &so->so_rcv,
311 			    ("SO_SND upcall returned SU_ISCONNECTED"));
312 			soupcall_clear(so, SO_RCV);
313 		}
314 	} else
315 		ret = SU_OK;
316 	if (sb->sb_flags & SB_AIO)
317 		aio_swake(so, sb);
318 	SOCKBUF_UNLOCK(sb);
319 	if (ret == SU_ISCONNECTED)
320 		soisconnected(so);
321 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
322 		pgsigio(&so->so_sigio, SIGIO, 0);
323 	mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED);
324 }
325 
326 /*
327  * Socket buffer (struct sockbuf) utility routines.
328  *
329  * Each socket contains two socket buffers: one for sending data and one for
330  * receiving data.  Each buffer contains a queue of mbufs, information about
331  * the number of mbufs and amount of data in the queue, and other fields
332  * allowing select() statements and notification on data availability to be
333  * implemented.
334  *
335  * Data stored in a socket buffer is maintained as a list of records.  Each
336  * record is a list of mbufs chained together with the m_next field.  Records
337  * are chained together with the m_nextpkt field. The upper level routine
338  * soreceive() expects the following conventions to be observed when placing
339  * information in the receive buffer:
340  *
341  * 1. If the protocol requires each message be preceded by the sender's name,
342  *    then a record containing that name must be present before any
343  *    associated data (mbuf's must be of type MT_SONAME).
344  * 2. If the protocol supports the exchange of ``access rights'' (really just
345  *    additional data associated with the message), and there are ``rights''
346  *    to be received, then a record containing this data should be present
347  *    (mbuf's must be of type MT_RIGHTS).
348  * 3. If a name or rights record exists, then it must be followed by a data
349  *    record, perhaps of zero length.
350  *
351  * Before using a new socket structure it is first necessary to reserve
352  * buffer space to the socket, by calling sbreserve().  This should commit
353  * some of the available buffer space in the system buffer pool for the
354  * socket (currently, it does nothing but enforce limits).  The space should
355  * be released by calling sbrelease() when the socket is destroyed.
356  */
357 int
358 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
359 {
360 	struct thread *td = curthread;
361 
362 	SOCKBUF_LOCK(&so->so_snd);
363 	SOCKBUF_LOCK(&so->so_rcv);
364 	if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0)
365 		goto bad;
366 	if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0)
367 		goto bad2;
368 	if (so->so_rcv.sb_lowat == 0)
369 		so->so_rcv.sb_lowat = 1;
370 	if (so->so_snd.sb_lowat == 0)
371 		so->so_snd.sb_lowat = MCLBYTES;
372 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
373 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
374 	SOCKBUF_UNLOCK(&so->so_rcv);
375 	SOCKBUF_UNLOCK(&so->so_snd);
376 	return (0);
377 bad2:
378 	sbrelease_locked(&so->so_snd, so);
379 bad:
380 	SOCKBUF_UNLOCK(&so->so_rcv);
381 	SOCKBUF_UNLOCK(&so->so_snd);
382 	return (ENOBUFS);
383 }
384 
385 static int
386 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
387 {
388 	int error = 0;
389 	u_long tmp_sb_max = sb_max;
390 
391 	error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req);
392 	if (error || !req->newptr)
393 		return (error);
394 	if (tmp_sb_max < MSIZE + MCLBYTES)
395 		return (EINVAL);
396 	sb_max = tmp_sb_max;
397 	sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
398 	return (0);
399 }
400 
401 /*
402  * Allot mbufs to a sockbuf.  Attempt to scale mbmax so that mbcnt doesn't
403  * become limiting if buffering efficiency is near the normal case.
404  */
405 int
406 sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so,
407     struct thread *td)
408 {
409 	rlim_t sbsize_limit;
410 
411 	SOCKBUF_LOCK_ASSERT(sb);
412 
413 	/*
414 	 * When a thread is passed, we take into account the thread's socket
415 	 * buffer size limit.  The caller will generally pass curthread, but
416 	 * in the TCP input path, NULL will be passed to indicate that no
417 	 * appropriate thread resource limits are available.  In that case,
418 	 * we don't apply a process limit.
419 	 */
420 	if (cc > sb_max_adj)
421 		return (0);
422 	if (td != NULL) {
423 		sbsize_limit = lim_cur(td, RLIMIT_SBSIZE);
424 	} else
425 		sbsize_limit = RLIM_INFINITY;
426 	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
427 	    sbsize_limit))
428 		return (0);
429 	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
430 	if (sb->sb_lowat > sb->sb_hiwat)
431 		sb->sb_lowat = sb->sb_hiwat;
432 	return (1);
433 }
434 
435 int
436 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so,
437     struct thread *td)
438 {
439 	int error;
440 
441 	SOCKBUF_LOCK(sb);
442 	error = sbreserve_locked(sb, cc, so, td);
443 	SOCKBUF_UNLOCK(sb);
444 	return (error);
445 }
446 
447 /*
448  * Free mbufs held by a socket, and reserved mbuf space.
449  */
450 void
451 sbrelease_internal(struct sockbuf *sb, struct socket *so)
452 {
453 
454 	sbflush_internal(sb);
455 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
456 	    RLIM_INFINITY);
457 	sb->sb_mbmax = 0;
458 }
459 
460 void
461 sbrelease_locked(struct sockbuf *sb, struct socket *so)
462 {
463 
464 	SOCKBUF_LOCK_ASSERT(sb);
465 
466 	sbrelease_internal(sb, so);
467 }
468 
469 void
470 sbrelease(struct sockbuf *sb, struct socket *so)
471 {
472 
473 	SOCKBUF_LOCK(sb);
474 	sbrelease_locked(sb, so);
475 	SOCKBUF_UNLOCK(sb);
476 }
477 
478 void
479 sbdestroy(struct sockbuf *sb, struct socket *so)
480 {
481 
482 	sbrelease_internal(sb, so);
483 }
484 
485 /*
486  * Routines to add and remove data from an mbuf queue.
487  *
488  * The routines sbappend() or sbappendrecord() are normally called to append
489  * new mbufs to a socket buffer, after checking that adequate space is
490  * available, comparing the function sbspace() with the amount of data to be
491  * added.  sbappendrecord() differs from sbappend() in that data supplied is
492  * treated as the beginning of a new record.  To place a sender's address,
493  * optional access rights, and data in a socket receive buffer,
494  * sbappendaddr() should be used.  To place access rights and data in a
495  * socket receive buffer, sbappendrights() should be used.  In either case,
496  * the new data begins a new record.  Note that unlike sbappend() and
497  * sbappendrecord(), these routines check for the caller that there will be
498  * enough space to store the data.  Each fails if there is not enough space,
499  * or if it cannot find mbufs to store additional information in.
500  *
501  * Reliable protocols may use the socket send buffer to hold data awaiting
502  * acknowledgement.  Data is normally copied from a socket send buffer in a
503  * protocol with m_copy for output to a peer, and then removing the data from
504  * the socket buffer with sbdrop() or sbdroprecord() when the data is
505  * acknowledged by the peer.
506  */
507 #ifdef SOCKBUF_DEBUG
508 void
509 sblastrecordchk(struct sockbuf *sb, const char *file, int line)
510 {
511 	struct mbuf *m = sb->sb_mb;
512 
513 	SOCKBUF_LOCK_ASSERT(sb);
514 
515 	while (m && m->m_nextpkt)
516 		m = m->m_nextpkt;
517 
518 	if (m != sb->sb_lastrecord) {
519 		printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
520 			__func__, sb->sb_mb, sb->sb_lastrecord, m);
521 		printf("packet chain:\n");
522 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
523 			printf("\t%p\n", m);
524 		panic("%s from %s:%u", __func__, file, line);
525 	}
526 }
527 
528 void
529 sblastmbufchk(struct sockbuf *sb, const char *file, int line)
530 {
531 	struct mbuf *m = sb->sb_mb;
532 	struct mbuf *n;
533 
534 	SOCKBUF_LOCK_ASSERT(sb);
535 
536 	while (m && m->m_nextpkt)
537 		m = m->m_nextpkt;
538 
539 	while (m && m->m_next)
540 		m = m->m_next;
541 
542 	if (m != sb->sb_mbtail) {
543 		printf("%s: sb_mb %p sb_mbtail %p last %p\n",
544 			__func__, sb->sb_mb, sb->sb_mbtail, m);
545 		printf("packet tree:\n");
546 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
547 			printf("\t");
548 			for (n = m; n != NULL; n = n->m_next)
549 				printf("%p ", n);
550 			printf("\n");
551 		}
552 		panic("%s from %s:%u", __func__, file, line);
553 	}
554 }
555 #endif /* SOCKBUF_DEBUG */
556 
557 #define SBLINKRECORD(sb, m0) do {					\
558 	SOCKBUF_LOCK_ASSERT(sb);					\
559 	if ((sb)->sb_lastrecord != NULL)				\
560 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
561 	else								\
562 		(sb)->sb_mb = (m0);					\
563 	(sb)->sb_lastrecord = (m0);					\
564 } while (/*CONSTCOND*/0)
565 
566 /*
567  * Append mbuf chain m to the last record in the socket buffer sb.  The
568  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
569  * are discarded and mbufs are compacted where possible.
570  */
571 void
572 sbappend_locked(struct sockbuf *sb, struct mbuf *m)
573 {
574 	struct mbuf *n;
575 
576 	SOCKBUF_LOCK_ASSERT(sb);
577 
578 	if (m == 0)
579 		return;
580 	m_clrprotoflags(m);
581 	SBLASTRECORDCHK(sb);
582 	n = sb->sb_mb;
583 	if (n) {
584 		while (n->m_nextpkt)
585 			n = n->m_nextpkt;
586 		do {
587 			if (n->m_flags & M_EOR) {
588 				sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
589 				return;
590 			}
591 		} while (n->m_next && (n = n->m_next));
592 	} else {
593 		/*
594 		 * XXX Would like to simply use sb_mbtail here, but
595 		 * XXX I need to verify that I won't miss an EOR that
596 		 * XXX way.
597 		 */
598 		if ((n = sb->sb_lastrecord) != NULL) {
599 			do {
600 				if (n->m_flags & M_EOR) {
601 					sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
602 					return;
603 				}
604 			} while (n->m_next && (n = n->m_next));
605 		} else {
606 			/*
607 			 * If this is the first record in the socket buffer,
608 			 * it's also the last record.
609 			 */
610 			sb->sb_lastrecord = m;
611 		}
612 	}
613 	sbcompress(sb, m, n);
614 	SBLASTRECORDCHK(sb);
615 }
616 
617 /*
618  * Append mbuf chain m to the last record in the socket buffer sb.  The
619  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
620  * are discarded and mbufs are compacted where possible.
621  */
622 void
623 sbappend(struct sockbuf *sb, struct mbuf *m)
624 {
625 
626 	SOCKBUF_LOCK(sb);
627 	sbappend_locked(sb, m);
628 	SOCKBUF_UNLOCK(sb);
629 }
630 
631 /*
632  * This version of sbappend() should only be used when the caller absolutely
633  * knows that there will never be more than one record in the socket buffer,
634  * that is, a stream protocol (such as TCP).
635  */
636 void
637 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags)
638 {
639 	SOCKBUF_LOCK_ASSERT(sb);
640 
641 	KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
642 	KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
643 
644 	SBLASTMBUFCHK(sb);
645 
646 	/* Remove all packet headers and mbuf tags to get a pure data chain. */
647 	m_demote(m, 1, flags & PRUS_NOTREADY ? M_NOTREADY : 0);
648 
649 	sbcompress(sb, m, sb->sb_mbtail);
650 
651 	sb->sb_lastrecord = sb->sb_mb;
652 	SBLASTRECORDCHK(sb);
653 }
654 
655 /*
656  * This version of sbappend() should only be used when the caller absolutely
657  * knows that there will never be more than one record in the socket buffer,
658  * that is, a stream protocol (such as TCP).
659  */
660 void
661 sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags)
662 {
663 
664 	SOCKBUF_LOCK(sb);
665 	sbappendstream_locked(sb, m, flags);
666 	SOCKBUF_UNLOCK(sb);
667 }
668 
669 #ifdef SOCKBUF_DEBUG
670 void
671 sbcheck(struct sockbuf *sb, const char *file, int line)
672 {
673 	struct mbuf *m, *n, *fnrdy;
674 	u_long acc, ccc, mbcnt;
675 
676 	SOCKBUF_LOCK_ASSERT(sb);
677 
678 	acc = ccc = mbcnt = 0;
679 	fnrdy = NULL;
680 
681 	for (m = sb->sb_mb; m; m = n) {
682 	    n = m->m_nextpkt;
683 	    for (; m; m = m->m_next) {
684 		if (m->m_len == 0) {
685 			printf("sb %p empty mbuf %p\n", sb, m);
686 			goto fail;
687 		}
688 		if ((m->m_flags & M_NOTREADY) && fnrdy == NULL) {
689 			if (m != sb->sb_fnrdy) {
690 				printf("sb %p: fnrdy %p != m %p\n",
691 				    sb, sb->sb_fnrdy, m);
692 				goto fail;
693 			}
694 			fnrdy = m;
695 		}
696 		if (fnrdy) {
697 			if (!(m->m_flags & M_NOTAVAIL)) {
698 				printf("sb %p: fnrdy %p, m %p is avail\n",
699 				    sb, sb->sb_fnrdy, m);
700 				goto fail;
701 			}
702 		} else
703 			acc += m->m_len;
704 		ccc += m->m_len;
705 		mbcnt += MSIZE;
706 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
707 			mbcnt += m->m_ext.ext_size;
708 	    }
709 	}
710 	if (acc != sb->sb_acc || ccc != sb->sb_ccc || mbcnt != sb->sb_mbcnt) {
711 		printf("acc %ld/%u ccc %ld/%u mbcnt %ld/%u\n",
712 		    acc, sb->sb_acc, ccc, sb->sb_ccc, mbcnt, sb->sb_mbcnt);
713 		goto fail;
714 	}
715 	return;
716 fail:
717 	panic("%s from %s:%u", __func__, file, line);
718 }
719 #endif
720 
721 /*
722  * As above, except the mbuf chain begins a new record.
723  */
724 void
725 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
726 {
727 	struct mbuf *m;
728 
729 	SOCKBUF_LOCK_ASSERT(sb);
730 
731 	if (m0 == 0)
732 		return;
733 	m_clrprotoflags(m0);
734 	/*
735 	 * Put the first mbuf on the queue.  Note this permits zero length
736 	 * records.
737 	 */
738 	sballoc(sb, m0);
739 	SBLASTRECORDCHK(sb);
740 	SBLINKRECORD(sb, m0);
741 	sb->sb_mbtail = m0;
742 	m = m0->m_next;
743 	m0->m_next = 0;
744 	if (m && (m0->m_flags & M_EOR)) {
745 		m0->m_flags &= ~M_EOR;
746 		m->m_flags |= M_EOR;
747 	}
748 	/* always call sbcompress() so it can do SBLASTMBUFCHK() */
749 	sbcompress(sb, m, m0);
750 }
751 
752 /*
753  * As above, except the mbuf chain begins a new record.
754  */
755 void
756 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
757 {
758 
759 	SOCKBUF_LOCK(sb);
760 	sbappendrecord_locked(sb, m0);
761 	SOCKBUF_UNLOCK(sb);
762 }
763 
764 /* Helper routine that appends data, control, and address to a sockbuf. */
765 static int
766 sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa,
767     struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last)
768 {
769 	struct mbuf *m, *n, *nlast;
770 #if MSIZE <= 256
771 	if (asa->sa_len > MLEN)
772 		return (0);
773 #endif
774 	m = m_get(M_NOWAIT, MT_SONAME);
775 	if (m == NULL)
776 		return (0);
777 	m->m_len = asa->sa_len;
778 	bcopy(asa, mtod(m, caddr_t), asa->sa_len);
779 	if (m0)
780 		m_clrprotoflags(m0);
781 	if (ctrl_last)
782 		ctrl_last->m_next = m0;	/* concatenate data to control */
783 	else
784 		control = m0;
785 	m->m_next = control;
786 	for (n = m; n->m_next != NULL; n = n->m_next)
787 		sballoc(sb, n);
788 	sballoc(sb, n);
789 	nlast = n;
790 	SBLINKRECORD(sb, m);
791 
792 	sb->sb_mbtail = nlast;
793 	SBLASTMBUFCHK(sb);
794 
795 	SBLASTRECORDCHK(sb);
796 	return (1);
797 }
798 
799 /*
800  * Append address and data, and optionally, control (ancillary) data to the
801  * receive queue of a socket.  If present, m0 must include a packet header
802  * with total length.  Returns 0 if no space in sockbuf or insufficient
803  * mbufs.
804  */
805 int
806 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
807     struct mbuf *m0, struct mbuf *control)
808 {
809 	struct mbuf *ctrl_last;
810 	int space = asa->sa_len;
811 
812 	SOCKBUF_LOCK_ASSERT(sb);
813 
814 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
815 		panic("sbappendaddr_locked");
816 	if (m0)
817 		space += m0->m_pkthdr.len;
818 	space += m_length(control, &ctrl_last);
819 
820 	if (space > sbspace(sb))
821 		return (0);
822 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
823 }
824 
825 /*
826  * Append address and data, and optionally, control (ancillary) data to the
827  * receive queue of a socket.  If present, m0 must include a packet header
828  * with total length.  Returns 0 if insufficient mbufs.  Does not validate space
829  * on the receiving sockbuf.
830  */
831 int
832 sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa,
833     struct mbuf *m0, struct mbuf *control)
834 {
835 	struct mbuf *ctrl_last;
836 
837 	SOCKBUF_LOCK_ASSERT(sb);
838 
839 	ctrl_last = (control == NULL) ? NULL : m_last(control);
840 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
841 }
842 
843 /*
844  * Append address and data, and optionally, control (ancillary) data to the
845  * receive queue of a socket.  If present, m0 must include a packet header
846  * with total length.  Returns 0 if no space in sockbuf or insufficient
847  * mbufs.
848  */
849 int
850 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
851     struct mbuf *m0, struct mbuf *control)
852 {
853 	int retval;
854 
855 	SOCKBUF_LOCK(sb);
856 	retval = sbappendaddr_locked(sb, asa, m0, control);
857 	SOCKBUF_UNLOCK(sb);
858 	return (retval);
859 }
860 
861 int
862 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
863     struct mbuf *control)
864 {
865 	struct mbuf *m, *n, *mlast;
866 	int space;
867 
868 	SOCKBUF_LOCK_ASSERT(sb);
869 
870 	if (control == 0)
871 		panic("sbappendcontrol_locked");
872 	space = m_length(control, &n) + m_length(m0, NULL);
873 
874 	if (space > sbspace(sb))
875 		return (0);
876 	m_clrprotoflags(m0);
877 	n->m_next = m0;			/* concatenate data to control */
878 
879 	SBLASTRECORDCHK(sb);
880 
881 	for (m = control; m->m_next; m = m->m_next)
882 		sballoc(sb, m);
883 	sballoc(sb, m);
884 	mlast = m;
885 	SBLINKRECORD(sb, control);
886 
887 	sb->sb_mbtail = mlast;
888 	SBLASTMBUFCHK(sb);
889 
890 	SBLASTRECORDCHK(sb);
891 	return (1);
892 }
893 
894 int
895 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
896 {
897 	int retval;
898 
899 	SOCKBUF_LOCK(sb);
900 	retval = sbappendcontrol_locked(sb, m0, control);
901 	SOCKBUF_UNLOCK(sb);
902 	return (retval);
903 }
904 
905 /*
906  * Append the data in mbuf chain (m) into the socket buffer sb following mbuf
907  * (n).  If (n) is NULL, the buffer is presumed empty.
908  *
909  * When the data is compressed, mbufs in the chain may be handled in one of
910  * three ways:
911  *
912  * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
913  *     record boundary, and no change in data type).
914  *
915  * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
916  *     an mbuf already in the socket buffer.  This can occur if an
917  *     appropriate mbuf exists, there is room, both mbufs are not marked as
918  *     not ready, and no merging of data types will occur.
919  *
920  * (3) The mbuf may be appended to the end of the existing mbuf chain.
921  *
922  * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
923  * end-of-record.
924  */
925 void
926 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
927 {
928 	int eor = 0;
929 	struct mbuf *o;
930 
931 	SOCKBUF_LOCK_ASSERT(sb);
932 
933 	while (m) {
934 		eor |= m->m_flags & M_EOR;
935 		if (m->m_len == 0 &&
936 		    (eor == 0 ||
937 		     (((o = m->m_next) || (o = n)) &&
938 		      o->m_type == m->m_type))) {
939 			if (sb->sb_lastrecord == m)
940 				sb->sb_lastrecord = m->m_next;
941 			m = m_free(m);
942 			continue;
943 		}
944 		if (n && (n->m_flags & M_EOR) == 0 &&
945 		    M_WRITABLE(n) &&
946 		    ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
947 		    !(m->m_flags & M_NOTREADY) &&
948 		    !(n->m_flags & M_NOTREADY) &&
949 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
950 		    m->m_len <= M_TRAILINGSPACE(n) &&
951 		    n->m_type == m->m_type) {
952 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
953 			    (unsigned)m->m_len);
954 			n->m_len += m->m_len;
955 			sb->sb_ccc += m->m_len;
956 			if (sb->sb_fnrdy == NULL)
957 				sb->sb_acc += m->m_len;
958 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
959 				/* XXX: Probably don't need.*/
960 				sb->sb_ctl += m->m_len;
961 			m = m_free(m);
962 			continue;
963 		}
964 		if (n)
965 			n->m_next = m;
966 		else
967 			sb->sb_mb = m;
968 		sb->sb_mbtail = m;
969 		sballoc(sb, m);
970 		n = m;
971 		m->m_flags &= ~M_EOR;
972 		m = m->m_next;
973 		n->m_next = 0;
974 	}
975 	if (eor) {
976 		KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
977 		n->m_flags |= eor;
978 	}
979 	SBLASTMBUFCHK(sb);
980 }
981 
982 /*
983  * Free all mbufs in a sockbuf.  Check that all resources are reclaimed.
984  */
985 static void
986 sbflush_internal(struct sockbuf *sb)
987 {
988 
989 	while (sb->sb_mbcnt) {
990 		/*
991 		 * Don't call sbcut(sb, 0) if the leading mbuf is non-empty:
992 		 * we would loop forever. Panic instead.
993 		 */
994 		if (sb->sb_ccc == 0 && (sb->sb_mb == NULL || sb->sb_mb->m_len))
995 			break;
996 		m_freem(sbcut_internal(sb, (int)sb->sb_ccc));
997 	}
998 	KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
999 	    ("%s: ccc %u mb %p mbcnt %u", __func__,
1000 	    sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
1001 }
1002 
1003 void
1004 sbflush_locked(struct sockbuf *sb)
1005 {
1006 
1007 	SOCKBUF_LOCK_ASSERT(sb);
1008 	sbflush_internal(sb);
1009 }
1010 
1011 void
1012 sbflush(struct sockbuf *sb)
1013 {
1014 
1015 	SOCKBUF_LOCK(sb);
1016 	sbflush_locked(sb);
1017 	SOCKBUF_UNLOCK(sb);
1018 }
1019 
1020 /*
1021  * Cut data from (the front of) a sockbuf.
1022  */
1023 static struct mbuf *
1024 sbcut_internal(struct sockbuf *sb, int len)
1025 {
1026 	struct mbuf *m, *next, *mfree;
1027 
1028 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1029 	mfree = NULL;
1030 
1031 	while (len > 0) {
1032 		if (m == NULL) {
1033 			KASSERT(next, ("%s: no next, len %d", __func__, len));
1034 			m = next;
1035 			next = m->m_nextpkt;
1036 		}
1037 		if (m->m_len > len) {
1038 			KASSERT(!(m->m_flags & M_NOTAVAIL),
1039 			    ("%s: m %p M_NOTAVAIL", __func__, m));
1040 			m->m_len -= len;
1041 			m->m_data += len;
1042 			sb->sb_ccc -= len;
1043 			sb->sb_acc -= len;
1044 			if (sb->sb_sndptroff != 0)
1045 				sb->sb_sndptroff -= len;
1046 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1047 				sb->sb_ctl -= len;
1048 			break;
1049 		}
1050 		len -= m->m_len;
1051 		sbfree(sb, m);
1052 		/*
1053 		 * Do not put M_NOTREADY buffers to the free list, they
1054 		 * are referenced from outside.
1055 		 */
1056 		if (m->m_flags & M_NOTREADY)
1057 			m = m->m_next;
1058 		else {
1059 			struct mbuf *n;
1060 
1061 			n = m->m_next;
1062 			m->m_next = mfree;
1063 			mfree = m;
1064 			m = n;
1065 		}
1066 	}
1067 	/*
1068 	 * Free any zero-length mbufs from the buffer.
1069 	 * For SOCK_DGRAM sockets such mbufs represent empty records.
1070 	 * XXX: For SOCK_STREAM sockets such mbufs can appear in the buffer,
1071 	 * when sosend_generic() needs to send only control data.
1072 	 */
1073 	while (m && m->m_len == 0) {
1074 		struct mbuf *n;
1075 
1076 		sbfree(sb, m);
1077 		n = m->m_next;
1078 		m->m_next = mfree;
1079 		mfree = m;
1080 		m = n;
1081 	}
1082 	if (m) {
1083 		sb->sb_mb = m;
1084 		m->m_nextpkt = next;
1085 	} else
1086 		sb->sb_mb = next;
1087 	/*
1088 	 * First part is an inline SB_EMPTY_FIXUP().  Second part makes sure
1089 	 * sb_lastrecord is up-to-date if we dropped part of the last record.
1090 	 */
1091 	m = sb->sb_mb;
1092 	if (m == NULL) {
1093 		sb->sb_mbtail = NULL;
1094 		sb->sb_lastrecord = NULL;
1095 	} else if (m->m_nextpkt == NULL) {
1096 		sb->sb_lastrecord = m;
1097 	}
1098 
1099 	return (mfree);
1100 }
1101 
1102 /*
1103  * Drop data from (the front of) a sockbuf.
1104  */
1105 void
1106 sbdrop_locked(struct sockbuf *sb, int len)
1107 {
1108 
1109 	SOCKBUF_LOCK_ASSERT(sb);
1110 	m_freem(sbcut_internal(sb, len));
1111 }
1112 
1113 /*
1114  * Drop data from (the front of) a sockbuf,
1115  * and return it to caller.
1116  */
1117 struct mbuf *
1118 sbcut_locked(struct sockbuf *sb, int len)
1119 {
1120 
1121 	SOCKBUF_LOCK_ASSERT(sb);
1122 	return (sbcut_internal(sb, len));
1123 }
1124 
1125 void
1126 sbdrop(struct sockbuf *sb, int len)
1127 {
1128 	struct mbuf *mfree;
1129 
1130 	SOCKBUF_LOCK(sb);
1131 	mfree = sbcut_internal(sb, len);
1132 	SOCKBUF_UNLOCK(sb);
1133 
1134 	m_freem(mfree);
1135 }
1136 
1137 /*
1138  * Maintain a pointer and offset pair into the socket buffer mbuf chain to
1139  * avoid traversal of the entire socket buffer for larger offsets.
1140  */
1141 struct mbuf *
1142 sbsndptr(struct sockbuf *sb, u_int off, u_int len, u_int *moff)
1143 {
1144 	struct mbuf *m, *ret;
1145 
1146 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1147 	KASSERT(off + len <= sb->sb_acc, ("%s: beyond sb", __func__));
1148 	KASSERT(sb->sb_sndptroff <= sb->sb_acc, ("%s: sndptroff broken", __func__));
1149 
1150 	/*
1151 	 * Is off below stored offset? Happens on retransmits.
1152 	 * Just return, we can't help here.
1153 	 */
1154 	if (sb->sb_sndptroff > off) {
1155 		*moff = off;
1156 		return (sb->sb_mb);
1157 	}
1158 
1159 	/* Return closest mbuf in chain for current offset. */
1160 	*moff = off - sb->sb_sndptroff;
1161 	m = ret = sb->sb_sndptr ? sb->sb_sndptr : sb->sb_mb;
1162 	if (*moff == m->m_len) {
1163 		*moff = 0;
1164 		sb->sb_sndptroff += m->m_len;
1165 		m = ret = m->m_next;
1166 		KASSERT(ret->m_len > 0,
1167 		    ("mbuf %p in sockbuf %p chain has no valid data", ret, sb));
1168 	}
1169 
1170 	/* Advance by len to be as close as possible for the next transmit. */
1171 	for (off = off - sb->sb_sndptroff + len - 1;
1172 	     off > 0 && m != NULL && off >= m->m_len;
1173 	     m = m->m_next) {
1174 		sb->sb_sndptroff += m->m_len;
1175 		off -= m->m_len;
1176 	}
1177 	if (off > 0 && m == NULL)
1178 		panic("%s: sockbuf %p and mbuf %p clashing", __func__, sb, ret);
1179 	sb->sb_sndptr = m;
1180 
1181 	return (ret);
1182 }
1183 
1184 /*
1185  * Return the first mbuf and the mbuf data offset for the provided
1186  * send offset without changing the "sb_sndptroff" field.
1187  */
1188 struct mbuf *
1189 sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff)
1190 {
1191 	struct mbuf *m;
1192 
1193 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1194 
1195 	/*
1196 	 * If the "off" is below the stored offset, which happens on
1197 	 * retransmits, just use "sb_mb":
1198 	 */
1199 	if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1200 		m = sb->sb_mb;
1201 	} else {
1202 		m = sb->sb_sndptr;
1203 		off -= sb->sb_sndptroff;
1204 	}
1205 	while (off > 0 && m != NULL) {
1206 		if (off < m->m_len)
1207 			break;
1208 		off -= m->m_len;
1209 		m = m->m_next;
1210 	}
1211 	*moff = off;
1212 	return (m);
1213 }
1214 
1215 /*
1216  * Drop a record off the front of a sockbuf and move the next record to the
1217  * front.
1218  */
1219 void
1220 sbdroprecord_locked(struct sockbuf *sb)
1221 {
1222 	struct mbuf *m;
1223 
1224 	SOCKBUF_LOCK_ASSERT(sb);
1225 
1226 	m = sb->sb_mb;
1227 	if (m) {
1228 		sb->sb_mb = m->m_nextpkt;
1229 		do {
1230 			sbfree(sb, m);
1231 			m = m_free(m);
1232 		} while (m);
1233 	}
1234 	SB_EMPTY_FIXUP(sb);
1235 }
1236 
1237 /*
1238  * Drop a record off the front of a sockbuf and move the next record to the
1239  * front.
1240  */
1241 void
1242 sbdroprecord(struct sockbuf *sb)
1243 {
1244 
1245 	SOCKBUF_LOCK(sb);
1246 	sbdroprecord_locked(sb);
1247 	SOCKBUF_UNLOCK(sb);
1248 }
1249 
1250 /*
1251  * Create a "control" mbuf containing the specified data with the specified
1252  * type for presentation on a socket buffer.
1253  */
1254 struct mbuf *
1255 sbcreatecontrol(caddr_t p, int size, int type, int level)
1256 {
1257 	struct cmsghdr *cp;
1258 	struct mbuf *m;
1259 
1260 	if (CMSG_SPACE((u_int)size) > MCLBYTES)
1261 		return ((struct mbuf *) NULL);
1262 	if (CMSG_SPACE((u_int)size) > MLEN)
1263 		m = m_getcl(M_NOWAIT, MT_CONTROL, 0);
1264 	else
1265 		m = m_get(M_NOWAIT, MT_CONTROL);
1266 	if (m == NULL)
1267 		return ((struct mbuf *) NULL);
1268 	cp = mtod(m, struct cmsghdr *);
1269 	m->m_len = 0;
1270 	KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
1271 	    ("sbcreatecontrol: short mbuf"));
1272 	/*
1273 	 * Don't leave the padding between the msg header and the
1274 	 * cmsg data and the padding after the cmsg data un-initialized.
1275 	 */
1276 	bzero(cp, CMSG_SPACE((u_int)size));
1277 	if (p != NULL)
1278 		(void)memcpy(CMSG_DATA(cp), p, size);
1279 	m->m_len = CMSG_SPACE(size);
1280 	cp->cmsg_len = CMSG_LEN(size);
1281 	cp->cmsg_level = level;
1282 	cp->cmsg_type = type;
1283 	return (m);
1284 }
1285 
1286 /*
1287  * This does the same for socket buffers that sotoxsocket does for sockets:
1288  * generate an user-format data structure describing the socket buffer.  Note
1289  * that the xsockbuf structure, since it is always embedded in a socket, does
1290  * not include a self pointer nor a length.  We make this entry point public
1291  * in case some other mechanism needs it.
1292  */
1293 void
1294 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1295 {
1296 
1297 	xsb->sb_cc = sb->sb_ccc;
1298 	xsb->sb_hiwat = sb->sb_hiwat;
1299 	xsb->sb_mbcnt = sb->sb_mbcnt;
1300 	xsb->sb_mcnt = sb->sb_mcnt;
1301 	xsb->sb_ccnt = sb->sb_ccnt;
1302 	xsb->sb_mbmax = sb->sb_mbmax;
1303 	xsb->sb_lowat = sb->sb_lowat;
1304 	xsb->sb_flags = sb->sb_flags;
1305 	xsb->sb_timeo = sb->sb_timeo;
1306 }
1307 
1308 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1309 static int dummy;
1310 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
1311 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_ULONG|CTLFLAG_RW,
1312     &sb_max, 0, sysctl_handle_sb_max, "LU", "Maximum socket buffer size");
1313 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1314     &sb_efficiency, 0, "Socket buffer size waste factor");
1315