xref: /freebsd/sys/kern/uipc_sockbuf.c (revision d5e3895ea4fe4ef9db8823774e07b4368180a23e)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_kern_tls.h"
38 #include "opt_param.h"
39 
40 #include <sys/param.h>
41 #include <sys/aio.h> /* for aio_swake proto */
42 #include <sys/kernel.h>
43 #include <sys/ktls.h>
44 #include <sys/lock.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/mutex.h>
48 #include <sys/proc.h>
49 #include <sys/protosw.h>
50 #include <sys/resourcevar.h>
51 #include <sys/signalvar.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sx.h>
55 #include <sys/sysctl.h>
56 
57 /*
58  * Function pointer set by the AIO routines so that the socket buffer code
59  * can call back into the AIO module if it is loaded.
60  */
61 void	(*aio_swake)(struct socket *, struct sockbuf *);
62 
63 /*
64  * Primitive routines for operating on socket buffers
65  */
66 
67 u_long	sb_max = SB_MAX;
68 u_long sb_max_adj =
69        (quad_t)SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
70 
71 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
72 
73 #ifdef KERN_TLS
74 static void	sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m,
75     struct mbuf *n);
76 #endif
77 static struct mbuf	*sbcut_internal(struct sockbuf *sb, int len);
78 static void	sbflush_internal(struct sockbuf *sb);
79 
80 /*
81  * Our own version of m_clrprotoflags(), that can preserve M_NOTREADY.
82  */
83 static void
84 sbm_clrprotoflags(struct mbuf *m, int flags)
85 {
86 	int mask;
87 
88 	mask = ~M_PROTOFLAGS;
89 	if (flags & PRUS_NOTREADY)
90 		mask |= M_NOTREADY;
91 	while (m) {
92 		m->m_flags &= mask;
93 		m = m->m_next;
94 	}
95 }
96 
97 /*
98  * Compress M_NOTREADY mbufs after they have been readied by sbready().
99  *
100  * sbcompress() skips M_NOTREADY mbufs since the data is not available to
101  * be copied at the time of sbcompress().  This function combines small
102  * mbufs similar to sbcompress() once mbufs are ready.  'm0' is the first
103  * mbuf sbready() marked ready, and 'end' is the first mbuf still not
104  * ready.
105  */
106 static void
107 sbready_compress(struct sockbuf *sb, struct mbuf *m0, struct mbuf *end)
108 {
109 	struct mbuf *m, *n;
110 	int ext_size;
111 
112 	SOCKBUF_LOCK_ASSERT(sb);
113 
114 	if ((sb->sb_flags & SB_NOCOALESCE) != 0)
115 		return;
116 
117 	for (m = m0; m != end; m = m->m_next) {
118 		MPASS((m->m_flags & M_NOTREADY) == 0);
119 		/*
120 		 * NB: In sbcompress(), 'n' is the last mbuf in the
121 		 * socket buffer and 'm' is the new mbuf being copied
122 		 * into the trailing space of 'n'.  Here, the roles
123 		 * are reversed and 'n' is the next mbuf after 'm'
124 		 * that is being copied into the trailing space of
125 		 * 'm'.
126 		 */
127 		n = m->m_next;
128 #ifdef KERN_TLS
129 		/* Try to coalesce adjacent ktls mbuf hdr/trailers. */
130 		if ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
131 		    (m->m_flags & M_EXTPG) &&
132 		    (n->m_flags & M_EXTPG) &&
133 		    !mbuf_has_tls_session(m) &&
134 		    !mbuf_has_tls_session(n)) {
135 			int hdr_len, trail_len;
136 
137 			hdr_len = n->m_epg_hdrlen;
138 			trail_len = m->m_epg_trllen;
139 			if (trail_len != 0 && hdr_len != 0 &&
140 			    trail_len + hdr_len <= MBUF_PEXT_TRAIL_LEN) {
141 				/* copy n's header to m's trailer */
142 				memcpy(&m->m_epg_trail[trail_len],
143 				    n->m_epg_hdr, hdr_len);
144 				m->m_epg_trllen += hdr_len;
145 				m->m_len += hdr_len;
146 				n->m_epg_hdrlen = 0;
147 				n->m_len -= hdr_len;
148 			}
149 		}
150 #endif
151 
152 		/* Compress small unmapped mbufs into plain mbufs. */
153 		if ((m->m_flags & M_EXTPG) && m->m_len <= MLEN &&
154 		    !mbuf_has_tls_session(m)) {
155 			ext_size = m->m_ext.ext_size;
156 			if (mb_unmapped_compress(m) == 0) {
157 				sb->sb_mbcnt -= ext_size;
158 				sb->sb_ccnt -= 1;
159 			}
160 		}
161 
162 		while ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
163 		    M_WRITABLE(m) &&
164 		    (m->m_flags & M_EXTPG) == 0 &&
165 		    !mbuf_has_tls_session(n) &&
166 		    !mbuf_has_tls_session(m) &&
167 		    n->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
168 		    n->m_len <= M_TRAILINGSPACE(m) &&
169 		    m->m_type == n->m_type) {
170 			KASSERT(sb->sb_lastrecord != n,
171 		    ("%s: merging start of record (%p) into previous mbuf (%p)",
172 			    __func__, n, m));
173 			m_copydata(n, 0, n->m_len, mtodo(m, m->m_len));
174 			m->m_len += n->m_len;
175 			m->m_next = n->m_next;
176 			m->m_flags |= n->m_flags & M_EOR;
177 			if (sb->sb_mbtail == n)
178 				sb->sb_mbtail = m;
179 
180 			sb->sb_mbcnt -= MSIZE;
181 			sb->sb_mcnt -= 1;
182 			if (n->m_flags & M_EXT) {
183 				sb->sb_mbcnt -= n->m_ext.ext_size;
184 				sb->sb_ccnt -= 1;
185 			}
186 			m_free(n);
187 			n = m->m_next;
188 		}
189 	}
190 	SBLASTRECORDCHK(sb);
191 	SBLASTMBUFCHK(sb);
192 }
193 
194 /*
195  * Mark ready "count" units of I/O starting with "m".  Most mbufs
196  * count as a single unit of I/O except for M_EXTPG mbufs which
197  * are backed by multiple pages.
198  */
199 int
200 sbready(struct sockbuf *sb, struct mbuf *m0, int count)
201 {
202 	struct mbuf *m;
203 	u_int blocker;
204 
205 	SOCKBUF_LOCK_ASSERT(sb);
206 	KASSERT(sb->sb_fnrdy != NULL, ("%s: sb %p NULL fnrdy", __func__, sb));
207 	KASSERT(count > 0, ("%s: invalid count %d", __func__, count));
208 
209 	m = m0;
210 	blocker = (sb->sb_fnrdy == m) ? M_BLOCKED : 0;
211 
212 	while (count > 0) {
213 		KASSERT(m->m_flags & M_NOTREADY,
214 		    ("%s: m %p !M_NOTREADY", __func__, m));
215 		if ((m->m_flags & M_EXTPG) != 0) {
216 			if (count < m->m_epg_nrdy) {
217 				m->m_epg_nrdy -= count;
218 				count = 0;
219 				break;
220 			}
221 			count -= m->m_epg_nrdy;
222 			m->m_epg_nrdy = 0;
223 		} else
224 			count--;
225 
226 		m->m_flags &= ~(M_NOTREADY | blocker);
227 		if (blocker)
228 			sb->sb_acc += m->m_len;
229 		m = m->m_next;
230 	}
231 
232 	/*
233 	 * If the first mbuf is still not fully ready because only
234 	 * some of its backing pages were readied, no further progress
235 	 * can be made.
236 	 */
237 	if (m0 == m) {
238 		MPASS(m->m_flags & M_NOTREADY);
239 		return (EINPROGRESS);
240 	}
241 
242 	if (!blocker) {
243 		sbready_compress(sb, m0, m);
244 		return (EINPROGRESS);
245 	}
246 
247 	/* This one was blocking all the queue. */
248 	for (; m && (m->m_flags & M_NOTREADY) == 0; m = m->m_next) {
249 		KASSERT(m->m_flags & M_BLOCKED,
250 		    ("%s: m %p !M_BLOCKED", __func__, m));
251 		m->m_flags &= ~M_BLOCKED;
252 		sb->sb_acc += m->m_len;
253 	}
254 
255 	sb->sb_fnrdy = m;
256 	sbready_compress(sb, m0, m);
257 
258 	return (0);
259 }
260 
261 /*
262  * Adjust sockbuf state reflecting allocation of m.
263  */
264 void
265 sballoc(struct sockbuf *sb, struct mbuf *m)
266 {
267 
268 	SOCKBUF_LOCK_ASSERT(sb);
269 
270 	sb->sb_ccc += m->m_len;
271 
272 	if (sb->sb_fnrdy == NULL) {
273 		if (m->m_flags & M_NOTREADY)
274 			sb->sb_fnrdy = m;
275 		else
276 			sb->sb_acc += m->m_len;
277 	} else
278 		m->m_flags |= M_BLOCKED;
279 
280 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
281 		sb->sb_ctl += m->m_len;
282 
283 	sb->sb_mbcnt += MSIZE;
284 	sb->sb_mcnt += 1;
285 
286 	if (m->m_flags & M_EXT) {
287 		sb->sb_mbcnt += m->m_ext.ext_size;
288 		sb->sb_ccnt += 1;
289 	}
290 }
291 
292 /*
293  * Adjust sockbuf state reflecting freeing of m.
294  */
295 void
296 sbfree(struct sockbuf *sb, struct mbuf *m)
297 {
298 
299 #if 0	/* XXX: not yet: soclose() call path comes here w/o lock. */
300 	SOCKBUF_LOCK_ASSERT(sb);
301 #endif
302 
303 	sb->sb_ccc -= m->m_len;
304 
305 	if (!(m->m_flags & M_NOTAVAIL))
306 		sb->sb_acc -= m->m_len;
307 
308 	if (m == sb->sb_fnrdy) {
309 		struct mbuf *n;
310 
311 		KASSERT(m->m_flags & M_NOTREADY,
312 		    ("%s: m %p !M_NOTREADY", __func__, m));
313 
314 		n = m->m_next;
315 		while (n != NULL && !(n->m_flags & M_NOTREADY)) {
316 			n->m_flags &= ~M_BLOCKED;
317 			sb->sb_acc += n->m_len;
318 			n = n->m_next;
319 		}
320 		sb->sb_fnrdy = n;
321 	}
322 
323 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
324 		sb->sb_ctl -= m->m_len;
325 
326 	sb->sb_mbcnt -= MSIZE;
327 	sb->sb_mcnt -= 1;
328 	if (m->m_flags & M_EXT) {
329 		sb->sb_mbcnt -= m->m_ext.ext_size;
330 		sb->sb_ccnt -= 1;
331 	}
332 
333 	if (sb->sb_sndptr == m) {
334 		sb->sb_sndptr = NULL;
335 		sb->sb_sndptroff = 0;
336 	}
337 	if (sb->sb_sndptroff != 0)
338 		sb->sb_sndptroff -= m->m_len;
339 }
340 
341 #ifdef KERN_TLS
342 /*
343  * Similar to sballoc/sbfree but does not adjust state associated with
344  * the sb_mb chain such as sb_fnrdy or sb_sndptr*.  Also assumes mbufs
345  * are not ready.
346  */
347 void
348 sballoc_ktls_rx(struct sockbuf *sb, struct mbuf *m)
349 {
350 
351 	SOCKBUF_LOCK_ASSERT(sb);
352 
353 	sb->sb_ccc += m->m_len;
354 	sb->sb_tlscc += m->m_len;
355 
356 	sb->sb_mbcnt += MSIZE;
357 	sb->sb_mcnt += 1;
358 
359 	if (m->m_flags & M_EXT) {
360 		sb->sb_mbcnt += m->m_ext.ext_size;
361 		sb->sb_ccnt += 1;
362 	}
363 }
364 
365 void
366 sbfree_ktls_rx(struct sockbuf *sb, struct mbuf *m)
367 {
368 
369 #if 0	/* XXX: not yet: soclose() call path comes here w/o lock. */
370 	SOCKBUF_LOCK_ASSERT(sb);
371 #endif
372 
373 	sb->sb_ccc -= m->m_len;
374 	sb->sb_tlscc -= m->m_len;
375 
376 	sb->sb_mbcnt -= MSIZE;
377 	sb->sb_mcnt -= 1;
378 
379 	if (m->m_flags & M_EXT) {
380 		sb->sb_mbcnt -= m->m_ext.ext_size;
381 		sb->sb_ccnt -= 1;
382 	}
383 }
384 #endif
385 
386 /*
387  * Socantsendmore indicates that no more data will be sent on the socket; it
388  * would normally be applied to a socket when the user informs the system
389  * that no more data is to be sent, by the protocol code (in case
390  * PRU_SHUTDOWN).  Socantrcvmore indicates that no more data will be
391  * received, and will normally be applied to the socket by a protocol when it
392  * detects that the peer will send no more data.  Data queued for reading in
393  * the socket may yet be read.
394  */
395 void
396 socantsendmore_locked(struct socket *so)
397 {
398 
399 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
400 
401 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
402 	sowwakeup_locked(so);
403 	mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
404 }
405 
406 void
407 socantsendmore(struct socket *so)
408 {
409 
410 	SOCKBUF_LOCK(&so->so_snd);
411 	socantsendmore_locked(so);
412 	mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
413 }
414 
415 void
416 socantrcvmore_locked(struct socket *so)
417 {
418 
419 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
420 
421 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
422 #ifdef KERN_TLS
423 	if (so->so_rcv.sb_flags & SB_TLS_RX)
424 		ktls_check_rx(&so->so_rcv);
425 #endif
426 	sorwakeup_locked(so);
427 	mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
428 }
429 
430 void
431 socantrcvmore(struct socket *so)
432 {
433 
434 	SOCKBUF_LOCK(&so->so_rcv);
435 	socantrcvmore_locked(so);
436 	mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
437 }
438 
439 /*
440  * Wait for data to arrive at/drain from a socket buffer.
441  */
442 int
443 sbwait(struct sockbuf *sb)
444 {
445 
446 	SOCKBUF_LOCK_ASSERT(sb);
447 
448 	sb->sb_flags |= SB_WAIT;
449 	return (msleep_sbt(&sb->sb_acc, &sb->sb_mtx,
450 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
451 	    sb->sb_timeo, 0, 0));
452 }
453 
454 int
455 sblock(struct sockbuf *sb, int flags)
456 {
457 
458 	KASSERT((flags & SBL_VALID) == flags,
459 	    ("sblock: flags invalid (0x%x)", flags));
460 
461 	if (flags & SBL_WAIT) {
462 		if ((sb->sb_flags & SB_NOINTR) ||
463 		    (flags & SBL_NOINTR)) {
464 			sx_xlock(&sb->sb_sx);
465 			return (0);
466 		}
467 		return (sx_xlock_sig(&sb->sb_sx));
468 	} else {
469 		if (sx_try_xlock(&sb->sb_sx) == 0)
470 			return (EWOULDBLOCK);
471 		return (0);
472 	}
473 }
474 
475 void
476 sbunlock(struct sockbuf *sb)
477 {
478 
479 	sx_xunlock(&sb->sb_sx);
480 }
481 
482 /*
483  * Wakeup processes waiting on a socket buffer.  Do asynchronous notification
484  * via SIGIO if the socket has the SS_ASYNC flag set.
485  *
486  * Called with the socket buffer lock held; will release the lock by the end
487  * of the function.  This allows the caller to acquire the socket buffer lock
488  * while testing for the need for various sorts of wakeup and hold it through
489  * to the point where it's no longer required.  We currently hold the lock
490  * through calls out to other subsystems (with the exception of kqueue), and
491  * then release it to avoid lock order issues.  It's not clear that's
492  * correct.
493  */
494 void
495 sowakeup(struct socket *so, struct sockbuf *sb)
496 {
497 	int ret;
498 
499 	SOCKBUF_LOCK_ASSERT(sb);
500 
501 	selwakeuppri(sb->sb_sel, PSOCK);
502 	if (!SEL_WAITING(sb->sb_sel))
503 		sb->sb_flags &= ~SB_SEL;
504 	if (sb->sb_flags & SB_WAIT) {
505 		sb->sb_flags &= ~SB_WAIT;
506 		wakeup(&sb->sb_acc);
507 	}
508 	KNOTE_LOCKED(&sb->sb_sel->si_note, 0);
509 	if (sb->sb_upcall != NULL) {
510 		ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT);
511 		if (ret == SU_ISCONNECTED) {
512 			KASSERT(sb == &so->so_rcv,
513 			    ("SO_SND upcall returned SU_ISCONNECTED"));
514 			soupcall_clear(so, SO_RCV);
515 		}
516 	} else
517 		ret = SU_OK;
518 	if (sb->sb_flags & SB_AIO)
519 		sowakeup_aio(so, sb);
520 	SOCKBUF_UNLOCK(sb);
521 	if (ret == SU_ISCONNECTED)
522 		soisconnected(so);
523 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
524 		pgsigio(&so->so_sigio, SIGIO, 0);
525 	mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED);
526 }
527 
528 /*
529  * Socket buffer (struct sockbuf) utility routines.
530  *
531  * Each socket contains two socket buffers: one for sending data and one for
532  * receiving data.  Each buffer contains a queue of mbufs, information about
533  * the number of mbufs and amount of data in the queue, and other fields
534  * allowing select() statements and notification on data availability to be
535  * implemented.
536  *
537  * Data stored in a socket buffer is maintained as a list of records.  Each
538  * record is a list of mbufs chained together with the m_next field.  Records
539  * are chained together with the m_nextpkt field. The upper level routine
540  * soreceive() expects the following conventions to be observed when placing
541  * information in the receive buffer:
542  *
543  * 1. If the protocol requires each message be preceded by the sender's name,
544  *    then a record containing that name must be present before any
545  *    associated data (mbuf's must be of type MT_SONAME).
546  * 2. If the protocol supports the exchange of ``access rights'' (really just
547  *    additional data associated with the message), and there are ``rights''
548  *    to be received, then a record containing this data should be present
549  *    (mbuf's must be of type MT_RIGHTS).
550  * 3. If a name or rights record exists, then it must be followed by a data
551  *    record, perhaps of zero length.
552  *
553  * Before using a new socket structure it is first necessary to reserve
554  * buffer space to the socket, by calling sbreserve().  This should commit
555  * some of the available buffer space in the system buffer pool for the
556  * socket (currently, it does nothing but enforce limits).  The space should
557  * be released by calling sbrelease() when the socket is destroyed.
558  */
559 int
560 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
561 {
562 	struct thread *td = curthread;
563 
564 	SOCKBUF_LOCK(&so->so_snd);
565 	SOCKBUF_LOCK(&so->so_rcv);
566 	if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0)
567 		goto bad;
568 	if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0)
569 		goto bad2;
570 	if (so->so_rcv.sb_lowat == 0)
571 		so->so_rcv.sb_lowat = 1;
572 	if (so->so_snd.sb_lowat == 0)
573 		so->so_snd.sb_lowat = MCLBYTES;
574 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
575 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
576 	SOCKBUF_UNLOCK(&so->so_rcv);
577 	SOCKBUF_UNLOCK(&so->so_snd);
578 	return (0);
579 bad2:
580 	sbrelease_locked(&so->so_snd, so);
581 bad:
582 	SOCKBUF_UNLOCK(&so->so_rcv);
583 	SOCKBUF_UNLOCK(&so->so_snd);
584 	return (ENOBUFS);
585 }
586 
587 static int
588 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
589 {
590 	int error = 0;
591 	u_long tmp_sb_max = sb_max;
592 
593 	error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req);
594 	if (error || !req->newptr)
595 		return (error);
596 	if (tmp_sb_max < MSIZE + MCLBYTES)
597 		return (EINVAL);
598 	sb_max = tmp_sb_max;
599 	sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
600 	return (0);
601 }
602 
603 /*
604  * Allot mbufs to a sockbuf.  Attempt to scale mbmax so that mbcnt doesn't
605  * become limiting if buffering efficiency is near the normal case.
606  */
607 int
608 sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so,
609     struct thread *td)
610 {
611 	rlim_t sbsize_limit;
612 
613 	SOCKBUF_LOCK_ASSERT(sb);
614 
615 	/*
616 	 * When a thread is passed, we take into account the thread's socket
617 	 * buffer size limit.  The caller will generally pass curthread, but
618 	 * in the TCP input path, NULL will be passed to indicate that no
619 	 * appropriate thread resource limits are available.  In that case,
620 	 * we don't apply a process limit.
621 	 */
622 	if (cc > sb_max_adj)
623 		return (0);
624 	if (td != NULL) {
625 		sbsize_limit = lim_cur(td, RLIMIT_SBSIZE);
626 	} else
627 		sbsize_limit = RLIM_INFINITY;
628 	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
629 	    sbsize_limit))
630 		return (0);
631 	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
632 	if (sb->sb_lowat > sb->sb_hiwat)
633 		sb->sb_lowat = sb->sb_hiwat;
634 	return (1);
635 }
636 
637 int
638 sbsetopt(struct socket *so, int cmd, u_long cc)
639 {
640 	struct sockbuf *sb;
641 	short *flags;
642 	u_int *hiwat, *lowat;
643 	int error;
644 
645 	sb = NULL;
646 	SOCK_LOCK(so);
647 	if (SOLISTENING(so)) {
648 		switch (cmd) {
649 			case SO_SNDLOWAT:
650 			case SO_SNDBUF:
651 				lowat = &so->sol_sbsnd_lowat;
652 				hiwat = &so->sol_sbsnd_hiwat;
653 				flags = &so->sol_sbsnd_flags;
654 				break;
655 			case SO_RCVLOWAT:
656 			case SO_RCVBUF:
657 				lowat = &so->sol_sbrcv_lowat;
658 				hiwat = &so->sol_sbrcv_hiwat;
659 				flags = &so->sol_sbrcv_flags;
660 				break;
661 		}
662 	} else {
663 		switch (cmd) {
664 			case SO_SNDLOWAT:
665 			case SO_SNDBUF:
666 				sb = &so->so_snd;
667 				break;
668 			case SO_RCVLOWAT:
669 			case SO_RCVBUF:
670 				sb = &so->so_rcv;
671 				break;
672 		}
673 		flags = &sb->sb_flags;
674 		hiwat = &sb->sb_hiwat;
675 		lowat = &sb->sb_lowat;
676 		SOCKBUF_LOCK(sb);
677 	}
678 
679 	error = 0;
680 	switch (cmd) {
681 	case SO_SNDBUF:
682 	case SO_RCVBUF:
683 		if (SOLISTENING(so)) {
684 			if (cc > sb_max_adj) {
685 				error = ENOBUFS;
686 				break;
687 			}
688 			*hiwat = cc;
689 			if (*lowat > *hiwat)
690 				*lowat = *hiwat;
691 		} else {
692 			if (!sbreserve_locked(sb, cc, so, curthread))
693 				error = ENOBUFS;
694 		}
695 		if (error == 0)
696 			*flags &= ~SB_AUTOSIZE;
697 		break;
698 	case SO_SNDLOWAT:
699 	case SO_RCVLOWAT:
700 		/*
701 		 * Make sure the low-water is never greater than the
702 		 * high-water.
703 		 */
704 		*lowat = (cc > *hiwat) ? *hiwat : cc;
705 		break;
706 	}
707 
708 	if (!SOLISTENING(so))
709 		SOCKBUF_UNLOCK(sb);
710 	SOCK_UNLOCK(so);
711 	return (error);
712 }
713 
714 /*
715  * Free mbufs held by a socket, and reserved mbuf space.
716  */
717 void
718 sbrelease_internal(struct sockbuf *sb, struct socket *so)
719 {
720 
721 	sbflush_internal(sb);
722 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
723 	    RLIM_INFINITY);
724 	sb->sb_mbmax = 0;
725 }
726 
727 void
728 sbrelease_locked(struct sockbuf *sb, struct socket *so)
729 {
730 
731 	SOCKBUF_LOCK_ASSERT(sb);
732 
733 	sbrelease_internal(sb, so);
734 }
735 
736 void
737 sbrelease(struct sockbuf *sb, struct socket *so)
738 {
739 
740 	SOCKBUF_LOCK(sb);
741 	sbrelease_locked(sb, so);
742 	SOCKBUF_UNLOCK(sb);
743 }
744 
745 void
746 sbdestroy(struct sockbuf *sb, struct socket *so)
747 {
748 
749 	sbrelease_internal(sb, so);
750 #ifdef KERN_TLS
751 	if (sb->sb_tls_info != NULL)
752 		ktls_free(sb->sb_tls_info);
753 	sb->sb_tls_info = NULL;
754 #endif
755 }
756 
757 /*
758  * Routines to add and remove data from an mbuf queue.
759  *
760  * The routines sbappend() or sbappendrecord() are normally called to append
761  * new mbufs to a socket buffer, after checking that adequate space is
762  * available, comparing the function sbspace() with the amount of data to be
763  * added.  sbappendrecord() differs from sbappend() in that data supplied is
764  * treated as the beginning of a new record.  To place a sender's address,
765  * optional access rights, and data in a socket receive buffer,
766  * sbappendaddr() should be used.  To place access rights and data in a
767  * socket receive buffer, sbappendrights() should be used.  In either case,
768  * the new data begins a new record.  Note that unlike sbappend() and
769  * sbappendrecord(), these routines check for the caller that there will be
770  * enough space to store the data.  Each fails if there is not enough space,
771  * or if it cannot find mbufs to store additional information in.
772  *
773  * Reliable protocols may use the socket send buffer to hold data awaiting
774  * acknowledgement.  Data is normally copied from a socket send buffer in a
775  * protocol with m_copy for output to a peer, and then removing the data from
776  * the socket buffer with sbdrop() or sbdroprecord() when the data is
777  * acknowledged by the peer.
778  */
779 #ifdef SOCKBUF_DEBUG
780 void
781 sblastrecordchk(struct sockbuf *sb, const char *file, int line)
782 {
783 	struct mbuf *m = sb->sb_mb;
784 
785 	SOCKBUF_LOCK_ASSERT(sb);
786 
787 	while (m && m->m_nextpkt)
788 		m = m->m_nextpkt;
789 
790 	if (m != sb->sb_lastrecord) {
791 		printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
792 			__func__, sb->sb_mb, sb->sb_lastrecord, m);
793 		printf("packet chain:\n");
794 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
795 			printf("\t%p\n", m);
796 		panic("%s from %s:%u", __func__, file, line);
797 	}
798 }
799 
800 void
801 sblastmbufchk(struct sockbuf *sb, const char *file, int line)
802 {
803 	struct mbuf *m = sb->sb_mb;
804 	struct mbuf *n;
805 
806 	SOCKBUF_LOCK_ASSERT(sb);
807 
808 	while (m && m->m_nextpkt)
809 		m = m->m_nextpkt;
810 
811 	while (m && m->m_next)
812 		m = m->m_next;
813 
814 	if (m != sb->sb_mbtail) {
815 		printf("%s: sb_mb %p sb_mbtail %p last %p\n",
816 			__func__, sb->sb_mb, sb->sb_mbtail, m);
817 		printf("packet tree:\n");
818 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
819 			printf("\t");
820 			for (n = m; n != NULL; n = n->m_next)
821 				printf("%p ", n);
822 			printf("\n");
823 		}
824 		panic("%s from %s:%u", __func__, file, line);
825 	}
826 
827 #ifdef KERN_TLS
828 	m = sb->sb_mtls;
829 	while (m && m->m_next)
830 		m = m->m_next;
831 
832 	if (m != sb->sb_mtlstail) {
833 		printf("%s: sb_mtls %p sb_mtlstail %p last %p\n",
834 			__func__, sb->sb_mtls, sb->sb_mtlstail, m);
835 		printf("TLS packet tree:\n");
836 		printf("\t");
837 		for (m = sb->sb_mtls; m != NULL; m = m->m_next) {
838 			printf("%p ", m);
839 		}
840 		printf("\n");
841 		panic("%s from %s:%u", __func__, file, line);
842 	}
843 #endif
844 }
845 #endif /* SOCKBUF_DEBUG */
846 
847 #define SBLINKRECORD(sb, m0) do {					\
848 	SOCKBUF_LOCK_ASSERT(sb);					\
849 	if ((sb)->sb_lastrecord != NULL)				\
850 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
851 	else								\
852 		(sb)->sb_mb = (m0);					\
853 	(sb)->sb_lastrecord = (m0);					\
854 } while (/*CONSTCOND*/0)
855 
856 /*
857  * Append mbuf chain m to the last record in the socket buffer sb.  The
858  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
859  * are discarded and mbufs are compacted where possible.
860  */
861 void
862 sbappend_locked(struct sockbuf *sb, struct mbuf *m, int flags)
863 {
864 	struct mbuf *n;
865 
866 	SOCKBUF_LOCK_ASSERT(sb);
867 
868 	if (m == NULL)
869 		return;
870 	sbm_clrprotoflags(m, flags);
871 	SBLASTRECORDCHK(sb);
872 	n = sb->sb_mb;
873 	if (n) {
874 		while (n->m_nextpkt)
875 			n = n->m_nextpkt;
876 		do {
877 			if (n->m_flags & M_EOR) {
878 				sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
879 				return;
880 			}
881 		} while (n->m_next && (n = n->m_next));
882 	} else {
883 		/*
884 		 * XXX Would like to simply use sb_mbtail here, but
885 		 * XXX I need to verify that I won't miss an EOR that
886 		 * XXX way.
887 		 */
888 		if ((n = sb->sb_lastrecord) != NULL) {
889 			do {
890 				if (n->m_flags & M_EOR) {
891 					sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
892 					return;
893 				}
894 			} while (n->m_next && (n = n->m_next));
895 		} else {
896 			/*
897 			 * If this is the first record in the socket buffer,
898 			 * it's also the last record.
899 			 */
900 			sb->sb_lastrecord = m;
901 		}
902 	}
903 	sbcompress(sb, m, n);
904 	SBLASTRECORDCHK(sb);
905 }
906 
907 /*
908  * Append mbuf chain m to the last record in the socket buffer sb.  The
909  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
910  * are discarded and mbufs are compacted where possible.
911  */
912 void
913 sbappend(struct sockbuf *sb, struct mbuf *m, int flags)
914 {
915 
916 	SOCKBUF_LOCK(sb);
917 	sbappend_locked(sb, m, flags);
918 	SOCKBUF_UNLOCK(sb);
919 }
920 
921 #ifdef KERN_TLS
922 /*
923  * Append an mbuf containing encrypted TLS data.  The data
924  * is marked M_NOTREADY until it has been decrypted and
925  * stored as a TLS record.
926  */
927 static void
928 sbappend_ktls_rx(struct sockbuf *sb, struct mbuf *m)
929 {
930 	struct mbuf *n;
931 
932 	SBLASTMBUFCHK(sb);
933 
934 	/* Remove all packet headers and mbuf tags to get a pure data chain. */
935 	m_demote(m, 1, 0);
936 
937 	for (n = m; n != NULL; n = n->m_next)
938 		n->m_flags |= M_NOTREADY;
939 	sbcompress_ktls_rx(sb, m, sb->sb_mtlstail);
940 	ktls_check_rx(sb);
941 }
942 #endif
943 
944 /*
945  * This version of sbappend() should only be used when the caller absolutely
946  * knows that there will never be more than one record in the socket buffer,
947  * that is, a stream protocol (such as TCP).
948  */
949 void
950 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags)
951 {
952 	SOCKBUF_LOCK_ASSERT(sb);
953 
954 	KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
955 
956 #ifdef KERN_TLS
957 	/*
958 	 * Decrypted TLS records are appended as records via
959 	 * sbappendrecord().  TCP passes encrypted TLS records to this
960 	 * function which must be scheduled for decryption.
961 	 */
962 	if (sb->sb_flags & SB_TLS_RX) {
963 		sbappend_ktls_rx(sb, m);
964 		return;
965 	}
966 #endif
967 
968 	KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
969 
970 	SBLASTMBUFCHK(sb);
971 
972 #ifdef KERN_TLS
973 	if (sb->sb_tls_info != NULL)
974 		ktls_seq(sb, m);
975 #endif
976 
977 	/* Remove all packet headers and mbuf tags to get a pure data chain. */
978 	m_demote(m, 1, flags & PRUS_NOTREADY ? M_NOTREADY : 0);
979 
980 	sbcompress(sb, m, sb->sb_mbtail);
981 
982 	sb->sb_lastrecord = sb->sb_mb;
983 	SBLASTRECORDCHK(sb);
984 }
985 
986 /*
987  * This version of sbappend() should only be used when the caller absolutely
988  * knows that there will never be more than one record in the socket buffer,
989  * that is, a stream protocol (such as TCP).
990  */
991 void
992 sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags)
993 {
994 
995 	SOCKBUF_LOCK(sb);
996 	sbappendstream_locked(sb, m, flags);
997 	SOCKBUF_UNLOCK(sb);
998 }
999 
1000 #ifdef SOCKBUF_DEBUG
1001 void
1002 sbcheck(struct sockbuf *sb, const char *file, int line)
1003 {
1004 	struct mbuf *m, *n, *fnrdy;
1005 	u_long acc, ccc, mbcnt;
1006 #ifdef KERN_TLS
1007 	u_long tlscc;
1008 #endif
1009 
1010 	SOCKBUF_LOCK_ASSERT(sb);
1011 
1012 	acc = ccc = mbcnt = 0;
1013 	fnrdy = NULL;
1014 
1015 	for (m = sb->sb_mb; m; m = n) {
1016 	    n = m->m_nextpkt;
1017 	    for (; m; m = m->m_next) {
1018 		if (m->m_len == 0) {
1019 			printf("sb %p empty mbuf %p\n", sb, m);
1020 			goto fail;
1021 		}
1022 		if ((m->m_flags & M_NOTREADY) && fnrdy == NULL) {
1023 			if (m != sb->sb_fnrdy) {
1024 				printf("sb %p: fnrdy %p != m %p\n",
1025 				    sb, sb->sb_fnrdy, m);
1026 				goto fail;
1027 			}
1028 			fnrdy = m;
1029 		}
1030 		if (fnrdy) {
1031 			if (!(m->m_flags & M_NOTAVAIL)) {
1032 				printf("sb %p: fnrdy %p, m %p is avail\n",
1033 				    sb, sb->sb_fnrdy, m);
1034 				goto fail;
1035 			}
1036 		} else
1037 			acc += m->m_len;
1038 		ccc += m->m_len;
1039 		mbcnt += MSIZE;
1040 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1041 			mbcnt += m->m_ext.ext_size;
1042 	    }
1043 	}
1044 #ifdef KERN_TLS
1045 	/*
1046 	 * Account for mbufs "detached" by ktls_detach_record() while
1047 	 * they are decrypted by ktls_decrypt().  tlsdcc gives a count
1048 	 * of the detached bytes that are included in ccc.  The mbufs
1049 	 * and clusters are not included in the socket buffer
1050 	 * accounting.
1051 	 */
1052 	ccc += sb->sb_tlsdcc;
1053 
1054 	tlscc = 0;
1055 	for (m = sb->sb_mtls; m; m = m->m_next) {
1056 		if (m->m_nextpkt != NULL) {
1057 			printf("sb %p TLS mbuf %p with nextpkt\n", sb, m);
1058 			goto fail;
1059 		}
1060 		if ((m->m_flags & M_NOTREADY) == 0) {
1061 			printf("sb %p TLS mbuf %p ready\n", sb, m);
1062 			goto fail;
1063 		}
1064 		tlscc += m->m_len;
1065 		ccc += m->m_len;
1066 		mbcnt += MSIZE;
1067 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1068 			mbcnt += m->m_ext.ext_size;
1069 	}
1070 
1071 	if (sb->sb_tlscc != tlscc) {
1072 		printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
1073 		    sb->sb_tlsdcc);
1074 		goto fail;
1075 	}
1076 #endif
1077 	if (acc != sb->sb_acc || ccc != sb->sb_ccc || mbcnt != sb->sb_mbcnt) {
1078 		printf("acc %ld/%u ccc %ld/%u mbcnt %ld/%u\n",
1079 		    acc, sb->sb_acc, ccc, sb->sb_ccc, mbcnt, sb->sb_mbcnt);
1080 #ifdef KERN_TLS
1081 		printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
1082 		    sb->sb_tlsdcc);
1083 #endif
1084 		goto fail;
1085 	}
1086 	return;
1087 fail:
1088 	panic("%s from %s:%u", __func__, file, line);
1089 }
1090 #endif
1091 
1092 /*
1093  * As above, except the mbuf chain begins a new record.
1094  */
1095 void
1096 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
1097 {
1098 	struct mbuf *m;
1099 
1100 	SOCKBUF_LOCK_ASSERT(sb);
1101 
1102 	if (m0 == NULL)
1103 		return;
1104 	m_clrprotoflags(m0);
1105 	/*
1106 	 * Put the first mbuf on the queue.  Note this permits zero length
1107 	 * records.
1108 	 */
1109 	sballoc(sb, m0);
1110 	SBLASTRECORDCHK(sb);
1111 	SBLINKRECORD(sb, m0);
1112 	sb->sb_mbtail = m0;
1113 	m = m0->m_next;
1114 	m0->m_next = 0;
1115 	if (m && (m0->m_flags & M_EOR)) {
1116 		m0->m_flags &= ~M_EOR;
1117 		m->m_flags |= M_EOR;
1118 	}
1119 	/* always call sbcompress() so it can do SBLASTMBUFCHK() */
1120 	sbcompress(sb, m, m0);
1121 }
1122 
1123 /*
1124  * As above, except the mbuf chain begins a new record.
1125  */
1126 void
1127 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
1128 {
1129 
1130 	SOCKBUF_LOCK(sb);
1131 	sbappendrecord_locked(sb, m0);
1132 	SOCKBUF_UNLOCK(sb);
1133 }
1134 
1135 /* Helper routine that appends data, control, and address to a sockbuf. */
1136 static int
1137 sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa,
1138     struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last)
1139 {
1140 	struct mbuf *m, *n, *nlast;
1141 #if MSIZE <= 256
1142 	if (asa->sa_len > MLEN)
1143 		return (0);
1144 #endif
1145 	m = m_get(M_NOWAIT, MT_SONAME);
1146 	if (m == NULL)
1147 		return (0);
1148 	m->m_len = asa->sa_len;
1149 	bcopy(asa, mtod(m, caddr_t), asa->sa_len);
1150 	if (m0) {
1151 		m_clrprotoflags(m0);
1152 		m_tag_delete_chain(m0, NULL);
1153 		/*
1154 		 * Clear some persistent info from pkthdr.
1155 		 * We don't use m_demote(), because some netgraph consumers
1156 		 * expect M_PKTHDR presence.
1157 		 */
1158 		m0->m_pkthdr.rcvif = NULL;
1159 		m0->m_pkthdr.flowid = 0;
1160 		m0->m_pkthdr.csum_flags = 0;
1161 		m0->m_pkthdr.fibnum = 0;
1162 		m0->m_pkthdr.rsstype = 0;
1163 	}
1164 	if (ctrl_last)
1165 		ctrl_last->m_next = m0;	/* concatenate data to control */
1166 	else
1167 		control = m0;
1168 	m->m_next = control;
1169 	for (n = m; n->m_next != NULL; n = n->m_next)
1170 		sballoc(sb, n);
1171 	sballoc(sb, n);
1172 	nlast = n;
1173 	SBLINKRECORD(sb, m);
1174 
1175 	sb->sb_mbtail = nlast;
1176 	SBLASTMBUFCHK(sb);
1177 
1178 	SBLASTRECORDCHK(sb);
1179 	return (1);
1180 }
1181 
1182 /*
1183  * Append address and data, and optionally, control (ancillary) data to the
1184  * receive queue of a socket.  If present, m0 must include a packet header
1185  * with total length.  Returns 0 if no space in sockbuf or insufficient
1186  * mbufs.
1187  */
1188 int
1189 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
1190     struct mbuf *m0, struct mbuf *control)
1191 {
1192 	struct mbuf *ctrl_last;
1193 	int space = asa->sa_len;
1194 
1195 	SOCKBUF_LOCK_ASSERT(sb);
1196 
1197 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1198 		panic("sbappendaddr_locked");
1199 	if (m0)
1200 		space += m0->m_pkthdr.len;
1201 	space += m_length(control, &ctrl_last);
1202 
1203 	if (space > sbspace(sb))
1204 		return (0);
1205 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1206 }
1207 
1208 /*
1209  * Append address and data, and optionally, control (ancillary) data to the
1210  * receive queue of a socket.  If present, m0 must include a packet header
1211  * with total length.  Returns 0 if insufficient mbufs.  Does not validate space
1212  * on the receiving sockbuf.
1213  */
1214 int
1215 sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa,
1216     struct mbuf *m0, struct mbuf *control)
1217 {
1218 	struct mbuf *ctrl_last;
1219 
1220 	SOCKBUF_LOCK_ASSERT(sb);
1221 
1222 	ctrl_last = (control == NULL) ? NULL : m_last(control);
1223 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1224 }
1225 
1226 /*
1227  * Append address and data, and optionally, control (ancillary) data to the
1228  * receive queue of a socket.  If present, m0 must include a packet header
1229  * with total length.  Returns 0 if no space in sockbuf or insufficient
1230  * mbufs.
1231  */
1232 int
1233 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
1234     struct mbuf *m0, struct mbuf *control)
1235 {
1236 	int retval;
1237 
1238 	SOCKBUF_LOCK(sb);
1239 	retval = sbappendaddr_locked(sb, asa, m0, control);
1240 	SOCKBUF_UNLOCK(sb);
1241 	return (retval);
1242 }
1243 
1244 void
1245 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
1246     struct mbuf *control, int flags)
1247 {
1248 	struct mbuf *m, *mlast;
1249 
1250 	sbm_clrprotoflags(m0, flags);
1251 	m_last(control)->m_next = m0;
1252 
1253 	SBLASTRECORDCHK(sb);
1254 
1255 	for (m = control; m->m_next; m = m->m_next)
1256 		sballoc(sb, m);
1257 	sballoc(sb, m);
1258 	mlast = m;
1259 	SBLINKRECORD(sb, control);
1260 
1261 	sb->sb_mbtail = mlast;
1262 	SBLASTMBUFCHK(sb);
1263 
1264 	SBLASTRECORDCHK(sb);
1265 }
1266 
1267 void
1268 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control,
1269     int flags)
1270 {
1271 
1272 	SOCKBUF_LOCK(sb);
1273 	sbappendcontrol_locked(sb, m0, control, flags);
1274 	SOCKBUF_UNLOCK(sb);
1275 }
1276 
1277 /*
1278  * Append the data in mbuf chain (m) into the socket buffer sb following mbuf
1279  * (n).  If (n) is NULL, the buffer is presumed empty.
1280  *
1281  * When the data is compressed, mbufs in the chain may be handled in one of
1282  * three ways:
1283  *
1284  * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
1285  *     record boundary, and no change in data type).
1286  *
1287  * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
1288  *     an mbuf already in the socket buffer.  This can occur if an
1289  *     appropriate mbuf exists, there is room, both mbufs are not marked as
1290  *     not ready, and no merging of data types will occur.
1291  *
1292  * (3) The mbuf may be appended to the end of the existing mbuf chain.
1293  *
1294  * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
1295  * end-of-record.
1296  */
1297 void
1298 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1299 {
1300 	int eor = 0;
1301 	struct mbuf *o;
1302 
1303 	SOCKBUF_LOCK_ASSERT(sb);
1304 
1305 	while (m) {
1306 		eor |= m->m_flags & M_EOR;
1307 		if (m->m_len == 0 &&
1308 		    (eor == 0 ||
1309 		     (((o = m->m_next) || (o = n)) &&
1310 		      o->m_type == m->m_type))) {
1311 			if (sb->sb_lastrecord == m)
1312 				sb->sb_lastrecord = m->m_next;
1313 			m = m_free(m);
1314 			continue;
1315 		}
1316 		if (n && (n->m_flags & M_EOR) == 0 &&
1317 		    M_WRITABLE(n) &&
1318 		    ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
1319 		    !(m->m_flags & M_NOTREADY) &&
1320 		    !(n->m_flags & (M_NOTREADY | M_EXTPG)) &&
1321 		    !mbuf_has_tls_session(m) &&
1322 		    !mbuf_has_tls_session(n) &&
1323 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1324 		    m->m_len <= M_TRAILINGSPACE(n) &&
1325 		    n->m_type == m->m_type) {
1326 			m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1327 			n->m_len += m->m_len;
1328 			sb->sb_ccc += m->m_len;
1329 			if (sb->sb_fnrdy == NULL)
1330 				sb->sb_acc += m->m_len;
1331 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1332 				/* XXX: Probably don't need.*/
1333 				sb->sb_ctl += m->m_len;
1334 			m = m_free(m);
1335 			continue;
1336 		}
1337 		if (m->m_len <= MLEN && (m->m_flags & M_EXTPG) &&
1338 		    (m->m_flags & M_NOTREADY) == 0 &&
1339 		    !mbuf_has_tls_session(m))
1340 			(void)mb_unmapped_compress(m);
1341 		if (n)
1342 			n->m_next = m;
1343 		else
1344 			sb->sb_mb = m;
1345 		sb->sb_mbtail = m;
1346 		sballoc(sb, m);
1347 		n = m;
1348 		m->m_flags &= ~M_EOR;
1349 		m = m->m_next;
1350 		n->m_next = 0;
1351 	}
1352 	if (eor) {
1353 		KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
1354 		n->m_flags |= eor;
1355 	}
1356 	SBLASTMBUFCHK(sb);
1357 }
1358 
1359 #ifdef KERN_TLS
1360 /*
1361  * A version of sbcompress() for encrypted TLS RX mbufs.  These mbufs
1362  * are appended to the 'sb_mtls' chain instead of 'sb_mb' and are also
1363  * a bit simpler (no EOR markers, always MT_DATA, etc.).
1364  */
1365 static void
1366 sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1367 {
1368 
1369 	SOCKBUF_LOCK_ASSERT(sb);
1370 
1371 	while (m) {
1372 		KASSERT((m->m_flags & M_EOR) == 0,
1373 		    ("TLS RX mbuf %p with EOR", m));
1374 		KASSERT(m->m_type == MT_DATA,
1375 		    ("TLS RX mbuf %p is not MT_DATA", m));
1376 		KASSERT((m->m_flags & M_NOTREADY) != 0,
1377 		    ("TLS RX mbuf %p ready", m));
1378 		KASSERT((m->m_flags & M_EXTPG) == 0,
1379 		    ("TLS RX mbuf %p unmapped", m));
1380 
1381 		if (m->m_len == 0) {
1382 			m = m_free(m);
1383 			continue;
1384 		}
1385 
1386 		/*
1387 		 * Even though both 'n' and 'm' are NOTREADY, it's ok
1388 		 * to coalesce the data.
1389 		 */
1390 		if (n &&
1391 		    M_WRITABLE(n) &&
1392 		    ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
1393 		    !(n->m_flags & (M_EXTPG)) &&
1394 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1395 		    m->m_len <= M_TRAILINGSPACE(n)) {
1396 			m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1397 			n->m_len += m->m_len;
1398 			sb->sb_ccc += m->m_len;
1399 			sb->sb_tlscc += m->m_len;
1400 			m = m_free(m);
1401 			continue;
1402 		}
1403 		if (n)
1404 			n->m_next = m;
1405 		else
1406 			sb->sb_mtls = m;
1407 		sb->sb_mtlstail = m;
1408 		sballoc_ktls_rx(sb, m);
1409 		n = m;
1410 		m = m->m_next;
1411 		n->m_next = NULL;
1412 	}
1413 	SBLASTMBUFCHK(sb);
1414 }
1415 #endif
1416 
1417 /*
1418  * Free all mbufs in a sockbuf.  Check that all resources are reclaimed.
1419  */
1420 static void
1421 sbflush_internal(struct sockbuf *sb)
1422 {
1423 
1424 	while (sb->sb_mbcnt || sb->sb_tlsdcc) {
1425 		/*
1426 		 * Don't call sbcut(sb, 0) if the leading mbuf is non-empty:
1427 		 * we would loop forever. Panic instead.
1428 		 */
1429 		if (sb->sb_ccc == 0 && (sb->sb_mb == NULL || sb->sb_mb->m_len))
1430 			break;
1431 		m_freem(sbcut_internal(sb, (int)sb->sb_ccc));
1432 	}
1433 	KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
1434 	    ("%s: ccc %u mb %p mbcnt %u", __func__,
1435 	    sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
1436 }
1437 
1438 void
1439 sbflush_locked(struct sockbuf *sb)
1440 {
1441 
1442 	SOCKBUF_LOCK_ASSERT(sb);
1443 	sbflush_internal(sb);
1444 }
1445 
1446 void
1447 sbflush(struct sockbuf *sb)
1448 {
1449 
1450 	SOCKBUF_LOCK(sb);
1451 	sbflush_locked(sb);
1452 	SOCKBUF_UNLOCK(sb);
1453 }
1454 
1455 /*
1456  * Cut data from (the front of) a sockbuf.
1457  */
1458 static struct mbuf *
1459 sbcut_internal(struct sockbuf *sb, int len)
1460 {
1461 	struct mbuf *m, *next, *mfree;
1462 	bool is_tls;
1463 
1464 	KASSERT(len >= 0, ("%s: len is %d but it is supposed to be >= 0",
1465 	    __func__, len));
1466 	KASSERT(len <= sb->sb_ccc, ("%s: len: %d is > ccc: %u",
1467 	    __func__, len, sb->sb_ccc));
1468 
1469 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1470 	is_tls = false;
1471 	mfree = NULL;
1472 
1473 	while (len > 0) {
1474 		if (m == NULL) {
1475 #ifdef KERN_TLS
1476 			if (next == NULL && !is_tls) {
1477 				if (sb->sb_tlsdcc != 0) {
1478 					MPASS(len >= sb->sb_tlsdcc);
1479 					len -= sb->sb_tlsdcc;
1480 					sb->sb_ccc -= sb->sb_tlsdcc;
1481 					sb->sb_tlsdcc = 0;
1482 					if (len == 0)
1483 						break;
1484 				}
1485 				next = sb->sb_mtls;
1486 				is_tls = true;
1487 			}
1488 #endif
1489 			KASSERT(next, ("%s: no next, len %d", __func__, len));
1490 			m = next;
1491 			next = m->m_nextpkt;
1492 		}
1493 		if (m->m_len > len) {
1494 			KASSERT(!(m->m_flags & M_NOTAVAIL),
1495 			    ("%s: m %p M_NOTAVAIL", __func__, m));
1496 			m->m_len -= len;
1497 			m->m_data += len;
1498 			sb->sb_ccc -= len;
1499 			sb->sb_acc -= len;
1500 			if (sb->sb_sndptroff != 0)
1501 				sb->sb_sndptroff -= len;
1502 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1503 				sb->sb_ctl -= len;
1504 			break;
1505 		}
1506 		len -= m->m_len;
1507 #ifdef KERN_TLS
1508 		if (is_tls)
1509 			sbfree_ktls_rx(sb, m);
1510 		else
1511 #endif
1512 			sbfree(sb, m);
1513 		/*
1514 		 * Do not put M_NOTREADY buffers to the free list, they
1515 		 * are referenced from outside.
1516 		 */
1517 		if (m->m_flags & M_NOTREADY && !is_tls)
1518 			m = m->m_next;
1519 		else {
1520 			struct mbuf *n;
1521 
1522 			n = m->m_next;
1523 			m->m_next = mfree;
1524 			mfree = m;
1525 			m = n;
1526 		}
1527 	}
1528 	/*
1529 	 * Free any zero-length mbufs from the buffer.
1530 	 * For SOCK_DGRAM sockets such mbufs represent empty records.
1531 	 * XXX: For SOCK_STREAM sockets such mbufs can appear in the buffer,
1532 	 * when sosend_generic() needs to send only control data.
1533 	 */
1534 	while (m && m->m_len == 0) {
1535 		struct mbuf *n;
1536 
1537 		sbfree(sb, m);
1538 		n = m->m_next;
1539 		m->m_next = mfree;
1540 		mfree = m;
1541 		m = n;
1542 	}
1543 #ifdef KERN_TLS
1544 	if (is_tls) {
1545 		sb->sb_mb = NULL;
1546 		sb->sb_mtls = m;
1547 		if (m == NULL)
1548 			sb->sb_mtlstail = NULL;
1549 	} else
1550 #endif
1551 	if (m) {
1552 		sb->sb_mb = m;
1553 		m->m_nextpkt = next;
1554 	} else
1555 		sb->sb_mb = next;
1556 	/*
1557 	 * First part is an inline SB_EMPTY_FIXUP().  Second part makes sure
1558 	 * sb_lastrecord is up-to-date if we dropped part of the last record.
1559 	 */
1560 	m = sb->sb_mb;
1561 	if (m == NULL) {
1562 		sb->sb_mbtail = NULL;
1563 		sb->sb_lastrecord = NULL;
1564 	} else if (m->m_nextpkt == NULL) {
1565 		sb->sb_lastrecord = m;
1566 	}
1567 
1568 	return (mfree);
1569 }
1570 
1571 /*
1572  * Drop data from (the front of) a sockbuf.
1573  */
1574 void
1575 sbdrop_locked(struct sockbuf *sb, int len)
1576 {
1577 
1578 	SOCKBUF_LOCK_ASSERT(sb);
1579 	m_freem(sbcut_internal(sb, len));
1580 }
1581 
1582 /*
1583  * Drop data from (the front of) a sockbuf,
1584  * and return it to caller.
1585  */
1586 struct mbuf *
1587 sbcut_locked(struct sockbuf *sb, int len)
1588 {
1589 
1590 	SOCKBUF_LOCK_ASSERT(sb);
1591 	return (sbcut_internal(sb, len));
1592 }
1593 
1594 void
1595 sbdrop(struct sockbuf *sb, int len)
1596 {
1597 	struct mbuf *mfree;
1598 
1599 	SOCKBUF_LOCK(sb);
1600 	mfree = sbcut_internal(sb, len);
1601 	SOCKBUF_UNLOCK(sb);
1602 
1603 	m_freem(mfree);
1604 }
1605 
1606 struct mbuf *
1607 sbsndptr_noadv(struct sockbuf *sb, uint32_t off, uint32_t *moff)
1608 {
1609 	struct mbuf *m;
1610 
1611 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1612 	if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1613 		*moff = off;
1614 		if (sb->sb_sndptr == NULL) {
1615 			sb->sb_sndptr = sb->sb_mb;
1616 			sb->sb_sndptroff = 0;
1617 		}
1618 		return (sb->sb_mb);
1619 	} else {
1620 		m = sb->sb_sndptr;
1621 		off -= sb->sb_sndptroff;
1622 	}
1623 	*moff = off;
1624 	return (m);
1625 }
1626 
1627 void
1628 sbsndptr_adv(struct sockbuf *sb, struct mbuf *mb, uint32_t len)
1629 {
1630 	/*
1631 	 * A small copy was done, advance forward the sb_sbsndptr to cover
1632 	 * it.
1633 	 */
1634 	struct mbuf *m;
1635 
1636 	if (mb != sb->sb_sndptr) {
1637 		/* Did not copyout at the same mbuf */
1638 		return;
1639 	}
1640 	m = mb;
1641 	while (m && (len > 0)) {
1642 		if (len >= m->m_len) {
1643 			len -= m->m_len;
1644 			if (m->m_next) {
1645 				sb->sb_sndptroff += m->m_len;
1646 				sb->sb_sndptr = m->m_next;
1647 			}
1648 			m = m->m_next;
1649 		} else {
1650 			len = 0;
1651 		}
1652 	}
1653 }
1654 
1655 /*
1656  * Return the first mbuf and the mbuf data offset for the provided
1657  * send offset without changing the "sb_sndptroff" field.
1658  */
1659 struct mbuf *
1660 sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff)
1661 {
1662 	struct mbuf *m;
1663 
1664 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1665 
1666 	/*
1667 	 * If the "off" is below the stored offset, which happens on
1668 	 * retransmits, just use "sb_mb":
1669 	 */
1670 	if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1671 		m = sb->sb_mb;
1672 	} else {
1673 		m = sb->sb_sndptr;
1674 		off -= sb->sb_sndptroff;
1675 	}
1676 	while (off > 0 && m != NULL) {
1677 		if (off < m->m_len)
1678 			break;
1679 		off -= m->m_len;
1680 		m = m->m_next;
1681 	}
1682 	*moff = off;
1683 	return (m);
1684 }
1685 
1686 /*
1687  * Drop a record off the front of a sockbuf and move the next record to the
1688  * front.
1689  */
1690 void
1691 sbdroprecord_locked(struct sockbuf *sb)
1692 {
1693 	struct mbuf *m;
1694 
1695 	SOCKBUF_LOCK_ASSERT(sb);
1696 
1697 	m = sb->sb_mb;
1698 	if (m) {
1699 		sb->sb_mb = m->m_nextpkt;
1700 		do {
1701 			sbfree(sb, m);
1702 			m = m_free(m);
1703 		} while (m);
1704 	}
1705 	SB_EMPTY_FIXUP(sb);
1706 }
1707 
1708 /*
1709  * Drop a record off the front of a sockbuf and move the next record to the
1710  * front.
1711  */
1712 void
1713 sbdroprecord(struct sockbuf *sb)
1714 {
1715 
1716 	SOCKBUF_LOCK(sb);
1717 	sbdroprecord_locked(sb);
1718 	SOCKBUF_UNLOCK(sb);
1719 }
1720 
1721 /*
1722  * Create a "control" mbuf containing the specified data with the specified
1723  * type for presentation on a socket buffer.
1724  */
1725 struct mbuf *
1726 sbcreatecontrol_how(void *p, int size, int type, int level, int wait)
1727 {
1728 	struct cmsghdr *cp;
1729 	struct mbuf *m;
1730 
1731 	MBUF_CHECKSLEEP(wait);
1732 	if (CMSG_SPACE((u_int)size) > MCLBYTES)
1733 		return ((struct mbuf *) NULL);
1734 	if (CMSG_SPACE((u_int)size) > MLEN)
1735 		m = m_getcl(wait, MT_CONTROL, 0);
1736 	else
1737 		m = m_get(wait, MT_CONTROL);
1738 	if (m == NULL)
1739 		return ((struct mbuf *) NULL);
1740 	cp = mtod(m, struct cmsghdr *);
1741 	m->m_len = 0;
1742 	KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
1743 	    ("sbcreatecontrol: short mbuf"));
1744 	/*
1745 	 * Don't leave the padding between the msg header and the
1746 	 * cmsg data and the padding after the cmsg data un-initialized.
1747 	 */
1748 	bzero(cp, CMSG_SPACE((u_int)size));
1749 	if (p != NULL)
1750 		(void)memcpy(CMSG_DATA(cp), p, size);
1751 	m->m_len = CMSG_SPACE(size);
1752 	cp->cmsg_len = CMSG_LEN(size);
1753 	cp->cmsg_level = level;
1754 	cp->cmsg_type = type;
1755 	return (m);
1756 }
1757 
1758 struct mbuf *
1759 sbcreatecontrol(caddr_t p, int size, int type, int level)
1760 {
1761 
1762 	return (sbcreatecontrol_how(p, size, type, level, M_NOWAIT));
1763 }
1764 
1765 /*
1766  * This does the same for socket buffers that sotoxsocket does for sockets:
1767  * generate an user-format data structure describing the socket buffer.  Note
1768  * that the xsockbuf structure, since it is always embedded in a socket, does
1769  * not include a self pointer nor a length.  We make this entry point public
1770  * in case some other mechanism needs it.
1771  */
1772 void
1773 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1774 {
1775 
1776 	xsb->sb_cc = sb->sb_ccc;
1777 	xsb->sb_hiwat = sb->sb_hiwat;
1778 	xsb->sb_mbcnt = sb->sb_mbcnt;
1779 	xsb->sb_mcnt = sb->sb_mcnt;
1780 	xsb->sb_ccnt = sb->sb_ccnt;
1781 	xsb->sb_mbmax = sb->sb_mbmax;
1782 	xsb->sb_lowat = sb->sb_lowat;
1783 	xsb->sb_flags = sb->sb_flags;
1784 	xsb->sb_timeo = sb->sb_timeo;
1785 }
1786 
1787 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1788 static int dummy;
1789 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW | CTLFLAG_SKIP, &dummy, 0, "");
1790 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf,
1791     CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sb_max, 0,
1792     sysctl_handle_sb_max, "LU",
1793     "Maximum socket buffer size");
1794 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1795     &sb_efficiency, 0, "Socket buffer size waste factor");
1796