1 /* 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_mac.h" 36 #include "opt_param.h" 37 38 #include <sys/param.h> 39 #include <sys/aio.h> /* for aio_swake proto */ 40 #include <sys/domain.h> 41 #include <sys/event.h> 42 #include <sys/file.h> /* for maxfiles */ 43 #include <sys/kernel.h> 44 #include <sys/lock.h> 45 #include <sys/mac.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/mutex.h> 49 #include <sys/proc.h> 50 #include <sys/protosw.h> 51 #include <sys/resourcevar.h> 52 #include <sys/signalvar.h> 53 #include <sys/socket.h> 54 #include <sys/socketvar.h> 55 #include <sys/stat.h> 56 #include <sys/sysctl.h> 57 #include <sys/systm.h> 58 59 int maxsockets; 60 61 void (*aio_swake)(struct socket *, struct sockbuf *); 62 63 /* 64 * Primitive routines for operating on sockets and socket buffers 65 */ 66 67 u_long sb_max = SB_MAX; 68 static u_long sb_max_adj = 69 SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */ 70 71 static u_long sb_efficiency = 8; /* parameter for sbreserve() */ 72 73 /* 74 * Procedures to manipulate state flags of socket 75 * and do appropriate wakeups. Normal sequence from the 76 * active (originating) side is that soisconnecting() is 77 * called during processing of connect() call, 78 * resulting in an eventual call to soisconnected() if/when the 79 * connection is established. When the connection is torn down 80 * soisdisconnecting() is called during processing of disconnect() call, 81 * and soisdisconnected() is called when the connection to the peer 82 * is totally severed. The semantics of these routines are such that 83 * connectionless protocols can call soisconnected() and soisdisconnected() 84 * only, bypassing the in-progress calls when setting up a ``connection'' 85 * takes no time. 86 * 87 * From the passive side, a socket is created with 88 * two queues of sockets: so_incomp for connections in progress 89 * and so_comp for connections already made and awaiting user acceptance. 90 * As a protocol is preparing incoming connections, it creates a socket 91 * structure queued on so_incomp by calling sonewconn(). When the connection 92 * is established, soisconnected() is called, and transfers the 93 * socket structure to so_comp, making it available to accept(). 94 * 95 * If a socket is closed with sockets on either 96 * so_incomp or so_comp, these sockets are dropped. 97 * 98 * If higher level protocols are implemented in 99 * the kernel, the wakeups done here will sometimes 100 * cause software-interrupt process scheduling. 101 */ 102 103 void 104 soisconnecting(so) 105 register struct socket *so; 106 { 107 108 SOCK_LOCK(so); 109 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 110 so->so_state |= SS_ISCONNECTING; 111 SOCK_UNLOCK(so); 112 } 113 114 void 115 soisconnected(so) 116 struct socket *so; 117 { 118 struct socket *head; 119 120 SOCK_LOCK(so); 121 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 122 so->so_state |= SS_ISCONNECTED; 123 SOCK_UNLOCK(so); 124 ACCEPT_LOCK(); 125 head = so->so_head; 126 if (head != NULL && (so->so_qstate & SQ_INCOMP)) { 127 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 128 TAILQ_REMOVE(&head->so_incomp, so, so_list); 129 head->so_incqlen--; 130 so->so_qstate &= ~SQ_INCOMP; 131 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 132 head->so_qlen++; 133 so->so_qstate |= SQ_COMP; 134 ACCEPT_UNLOCK(); 135 sorwakeup(head); 136 wakeup_one(&head->so_timeo); 137 } else { 138 ACCEPT_UNLOCK(); 139 SOCK_LOCK(so); 140 so->so_upcall = 141 head->so_accf->so_accept_filter->accf_callback; 142 so->so_upcallarg = head->so_accf->so_accept_filter_arg; 143 so->so_rcv.sb_flags |= SB_UPCALL; 144 so->so_options &= ~SO_ACCEPTFILTER; 145 SOCK_UNLOCK(so); 146 so->so_upcall(so, so->so_upcallarg, M_TRYWAIT); 147 } 148 return; 149 } 150 ACCEPT_UNLOCK(); 151 wakeup(&so->so_timeo); 152 sorwakeup(so); 153 sowwakeup(so); 154 } 155 156 void 157 soisdisconnecting(so) 158 register struct socket *so; 159 { 160 161 /* 162 * XXXRW: This code separately acquires SOCK_LOCK(so) and 163 * SOCKBUF_LOCK(&so->so_rcv) even though they are the same mutex to 164 * avoid introducing the assumption that they are the same. 165 */ 166 SOCK_LOCK(so); 167 so->so_state &= ~SS_ISCONNECTING; 168 so->so_state |= SS_ISDISCONNECTING; 169 SOCK_UNLOCK(so); 170 SOCKBUF_LOCK(&so->so_rcv); 171 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 172 sorwakeup_locked(so); 173 SOCKBUF_LOCK(&so->so_snd); 174 so->so_snd.sb_state |= SBS_CANTSENDMORE; 175 sowwakeup_locked(so); 176 wakeup(&so->so_timeo); 177 } 178 179 void 180 soisdisconnected(so) 181 register struct socket *so; 182 { 183 184 /* 185 * XXXRW: This code separately acquires SOCK_LOCK(so) and 186 * SOCKBUF_LOCK(&so->so_rcv) even though they are the same mutex to 187 * avoid introducing the assumption that they are the same. 188 */ 189 /* XXXRW: so_state locking? */ 190 SOCK_LOCK(so); 191 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 192 so->so_state |= SS_ISDISCONNECTED; 193 SOCK_UNLOCK(so); 194 SOCKBUF_LOCK(&so->so_rcv); 195 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 196 sorwakeup_locked(so); 197 SOCKBUF_LOCK(&so->so_snd); 198 so->so_snd.sb_state |= SBS_CANTSENDMORE; 199 sbdrop_locked(&so->so_snd, so->so_snd.sb_cc); 200 sowwakeup_locked(so); 201 wakeup(&so->so_timeo); 202 } 203 204 /* 205 * When an attempt at a new connection is noted on a socket 206 * which accepts connections, sonewconn is called. If the 207 * connection is possible (subject to space constraints, etc.) 208 * then we allocate a new structure, propoerly linked into the 209 * data structure of the original socket, and return this. 210 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. 211 * 212 * note: the ref count on the socket is 0 on return 213 */ 214 struct socket * 215 sonewconn(head, connstatus) 216 register struct socket *head; 217 int connstatus; 218 { 219 register struct socket *so; 220 int over; 221 222 ACCEPT_LOCK(); 223 over = (head->so_qlen > 3 * head->so_qlimit / 2); 224 ACCEPT_UNLOCK(); 225 if (over) 226 return ((struct socket *)0); 227 so = soalloc(M_NOWAIT); 228 if (so == NULL) 229 return ((struct socket *)0); 230 if ((head->so_options & SO_ACCEPTFILTER) != 0) 231 connstatus = 0; 232 so->so_head = head; 233 so->so_type = head->so_type; 234 so->so_options = head->so_options &~ SO_ACCEPTCONN; 235 so->so_linger = head->so_linger; 236 so->so_state = head->so_state | SS_NOFDREF; 237 so->so_proto = head->so_proto; 238 so->so_timeo = head->so_timeo; 239 so->so_cred = crhold(head->so_cred); 240 #ifdef MAC 241 SOCK_LOCK(head); 242 mac_create_socket_from_socket(head, so); 243 SOCK_UNLOCK(head); 244 #endif 245 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) || 246 (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 247 sodealloc(so); 248 return ((struct socket *)0); 249 } 250 ACCEPT_LOCK(); 251 if (connstatus) { 252 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 253 so->so_qstate |= SQ_COMP; 254 head->so_qlen++; 255 } else { 256 /* 257 * XXXRW: Keep removing sockets from the head until there's 258 * room for us to insert on the tail. In pre-locking 259 * revisions, this was a simple if(), but as we could be 260 * racing with other threads and soabort() requires dropping 261 * locks, we must loop waiting for the condition to be true. 262 */ 263 while (head->so_incqlen > head->so_qlimit) { 264 struct socket *sp; 265 sp = TAILQ_FIRST(&head->so_incomp); 266 TAILQ_REMOVE(&so->so_incomp, sp, so_list); 267 head->so_incqlen--; 268 sp->so_qstate &= ~SQ_INCOMP; 269 sp->so_head = NULL; 270 ACCEPT_UNLOCK(); 271 (void) soabort(sp); 272 ACCEPT_LOCK(); 273 } 274 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 275 so->so_qstate |= SQ_INCOMP; 276 head->so_incqlen++; 277 } 278 ACCEPT_UNLOCK(); 279 if (connstatus) { 280 so->so_state |= connstatus; 281 sorwakeup(head); 282 wakeup_one(&head->so_timeo); 283 } 284 return (so); 285 } 286 287 /* 288 * Socantsendmore indicates that no more data will be sent on the 289 * socket; it would normally be applied to a socket when the user 290 * informs the system that no more data is to be sent, by the protocol 291 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 292 * will be received, and will normally be applied to the socket by a 293 * protocol when it detects that the peer will send no more data. 294 * Data queued for reading in the socket may yet be read. 295 */ 296 void 297 socantsendmore_locked(so) 298 struct socket *so; 299 { 300 301 SOCKBUF_LOCK_ASSERT(&so->so_snd); 302 303 so->so_snd.sb_state |= SBS_CANTSENDMORE; 304 sowwakeup_locked(so); 305 mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED); 306 } 307 308 void 309 socantsendmore(so) 310 struct socket *so; 311 { 312 313 SOCKBUF_LOCK(&so->so_snd); 314 socantsendmore_locked(so); 315 mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED); 316 } 317 318 void 319 socantrcvmore_locked(so) 320 struct socket *so; 321 { 322 323 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 324 325 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 326 sorwakeup_locked(so); 327 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED); 328 } 329 330 void 331 socantrcvmore(so) 332 struct socket *so; 333 { 334 335 SOCKBUF_LOCK(&so->so_rcv); 336 socantrcvmore_locked(so); 337 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED); 338 } 339 340 /* 341 * Wait for data to arrive at/drain from a socket buffer. 342 */ 343 int 344 sbwait(sb) 345 struct sockbuf *sb; 346 { 347 348 SOCKBUF_LOCK_ASSERT(sb); 349 350 sb->sb_flags |= SB_WAIT; 351 return (msleep(&sb->sb_cc, &sb->sb_mtx, 352 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", 353 sb->sb_timeo)); 354 } 355 356 /* 357 * Lock a sockbuf already known to be locked; 358 * return any error returned from sleep (EINTR). 359 */ 360 int 361 sb_lock(sb) 362 register struct sockbuf *sb; 363 { 364 int error; 365 366 SOCKBUF_LOCK_ASSERT(sb); 367 368 while (sb->sb_flags & SB_LOCK) { 369 sb->sb_flags |= SB_WANT; 370 error = msleep(&sb->sb_flags, &sb->sb_mtx, 371 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH, 372 "sblock", 0); 373 if (error) 374 return (error); 375 } 376 sb->sb_flags |= SB_LOCK; 377 return (0); 378 } 379 380 /* 381 * Wakeup processes waiting on a socket buffer. Do asynchronous 382 * notification via SIGIO if the socket has the SS_ASYNC flag set. 383 * 384 * Called with the socket buffer lock held; will release the lock by the end 385 * of the function. This allows the caller to acquire the socket buffer lock 386 * while testing for the need for various sorts of wakeup and hold it through 387 * to the point where it's no longer required. We currently hold the lock 388 * through calls out to other subsystems (with the exception of kqueue), and 389 * then release it to avoid lock order issues. It's not clear that's 390 * correct. 391 */ 392 void 393 sowakeup(so, sb) 394 register struct socket *so; 395 register struct sockbuf *sb; 396 { 397 398 SOCKBUF_LOCK_ASSERT(sb); 399 400 selwakeuppri(&sb->sb_sel, PSOCK); 401 sb->sb_flags &= ~SB_SEL; 402 if (sb->sb_flags & SB_WAIT) { 403 sb->sb_flags &= ~SB_WAIT; 404 wakeup(&sb->sb_cc); 405 } 406 KNOTE(&sb->sb_sel.si_note, 0); 407 SOCKBUF_UNLOCK(sb); 408 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL) 409 pgsigio(&so->so_sigio, SIGIO, 0); 410 if (sb->sb_flags & SB_UPCALL) 411 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT); 412 if (sb->sb_flags & SB_AIO) 413 aio_swake(so, sb); 414 mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED); 415 } 416 417 /* 418 * Socket buffer (struct sockbuf) utility routines. 419 * 420 * Each socket contains two socket buffers: one for sending data and 421 * one for receiving data. Each buffer contains a queue of mbufs, 422 * information about the number of mbufs and amount of data in the 423 * queue, and other fields allowing select() statements and notification 424 * on data availability to be implemented. 425 * 426 * Data stored in a socket buffer is maintained as a list of records. 427 * Each record is a list of mbufs chained together with the m_next 428 * field. Records are chained together with the m_nextpkt field. The upper 429 * level routine soreceive() expects the following conventions to be 430 * observed when placing information in the receive buffer: 431 * 432 * 1. If the protocol requires each message be preceded by the sender's 433 * name, then a record containing that name must be present before 434 * any associated data (mbuf's must be of type MT_SONAME). 435 * 2. If the protocol supports the exchange of ``access rights'' (really 436 * just additional data associated with the message), and there are 437 * ``rights'' to be received, then a record containing this data 438 * should be present (mbuf's must be of type MT_RIGHTS). 439 * 3. If a name or rights record exists, then it must be followed by 440 * a data record, perhaps of zero length. 441 * 442 * Before using a new socket structure it is first necessary to reserve 443 * buffer space to the socket, by calling sbreserve(). This should commit 444 * some of the available buffer space in the system buffer pool for the 445 * socket (currently, it does nothing but enforce limits). The space 446 * should be released by calling sbrelease() when the socket is destroyed. 447 */ 448 449 int 450 soreserve(so, sndcc, rcvcc) 451 register struct socket *so; 452 u_long sndcc, rcvcc; 453 { 454 struct thread *td = curthread; 455 456 SOCKBUF_LOCK(&so->so_snd); 457 SOCKBUF_LOCK(&so->so_rcv); 458 if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0) 459 goto bad; 460 if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0) 461 goto bad2; 462 if (so->so_rcv.sb_lowat == 0) 463 so->so_rcv.sb_lowat = 1; 464 if (so->so_snd.sb_lowat == 0) 465 so->so_snd.sb_lowat = MCLBYTES; 466 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 467 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 468 SOCKBUF_UNLOCK(&so->so_rcv); 469 SOCKBUF_UNLOCK(&so->so_snd); 470 return (0); 471 bad2: 472 sbrelease_locked(&so->so_snd, so); 473 bad: 474 SOCKBUF_UNLOCK(&so->so_rcv); 475 SOCKBUF_UNLOCK(&so->so_snd); 476 return (ENOBUFS); 477 } 478 479 static int 480 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS) 481 { 482 int error = 0; 483 u_long old_sb_max = sb_max; 484 485 error = SYSCTL_OUT(req, arg1, sizeof(u_long)); 486 if (error || !req->newptr) 487 return (error); 488 error = SYSCTL_IN(req, arg1, sizeof(u_long)); 489 if (error) 490 return (error); 491 if (sb_max < MSIZE + MCLBYTES) { 492 sb_max = old_sb_max; 493 return (EINVAL); 494 } 495 sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES); 496 return (0); 497 } 498 499 /* 500 * Allot mbufs to a sockbuf. 501 * Attempt to scale mbmax so that mbcnt doesn't become limiting 502 * if buffering efficiency is near the normal case. 503 */ 504 int 505 sbreserve_locked(sb, cc, so, td) 506 struct sockbuf *sb; 507 u_long cc; 508 struct socket *so; 509 struct thread *td; 510 { 511 rlim_t sbsize_limit; 512 513 SOCKBUF_LOCK_ASSERT(sb); 514 515 /* 516 * td will only be NULL when we're in an interrupt 517 * (e.g. in tcp_input()) 518 */ 519 if (cc > sb_max_adj) 520 return (0); 521 if (td != NULL) { 522 PROC_LOCK(td->td_proc); 523 sbsize_limit = lim_cur(td->td_proc, RLIMIT_SBSIZE); 524 PROC_UNLOCK(td->td_proc); 525 } else 526 sbsize_limit = RLIM_INFINITY; 527 if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc, 528 sbsize_limit)) 529 return (0); 530 sb->sb_mbmax = min(cc * sb_efficiency, sb_max); 531 if (sb->sb_lowat > sb->sb_hiwat) 532 sb->sb_lowat = sb->sb_hiwat; 533 return (1); 534 } 535 536 int 537 sbreserve(sb, cc, so, td) 538 struct sockbuf *sb; 539 u_long cc; 540 struct socket *so; 541 struct thread *td; 542 { 543 int error; 544 545 SOCKBUF_LOCK(sb); 546 error = sbreserve_locked(sb, cc, so, td); 547 SOCKBUF_UNLOCK(sb); 548 return (error); 549 } 550 551 /* 552 * Free mbufs held by a socket, and reserved mbuf space. 553 */ 554 void 555 sbrelease_locked(sb, so) 556 struct sockbuf *sb; 557 struct socket *so; 558 { 559 560 SOCKBUF_LOCK_ASSERT(sb); 561 562 sbflush_locked(sb); 563 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0, 564 RLIM_INFINITY); 565 sb->sb_mbmax = 0; 566 } 567 568 void 569 sbrelease(sb, so) 570 struct sockbuf *sb; 571 struct socket *so; 572 { 573 574 SOCKBUF_LOCK(sb); 575 sbrelease_locked(sb, so); 576 SOCKBUF_UNLOCK(sb); 577 } 578 /* 579 * Routines to add and remove 580 * data from an mbuf queue. 581 * 582 * The routines sbappend() or sbappendrecord() are normally called to 583 * append new mbufs to a socket buffer, after checking that adequate 584 * space is available, comparing the function sbspace() with the amount 585 * of data to be added. sbappendrecord() differs from sbappend() in 586 * that data supplied is treated as the beginning of a new record. 587 * To place a sender's address, optional access rights, and data in a 588 * socket receive buffer, sbappendaddr() should be used. To place 589 * access rights and data in a socket receive buffer, sbappendrights() 590 * should be used. In either case, the new data begins a new record. 591 * Note that unlike sbappend() and sbappendrecord(), these routines check 592 * for the caller that there will be enough space to store the data. 593 * Each fails if there is not enough space, or if it cannot find mbufs 594 * to store additional information in. 595 * 596 * Reliable protocols may use the socket send buffer to hold data 597 * awaiting acknowledgement. Data is normally copied from a socket 598 * send buffer in a protocol with m_copy for output to a peer, 599 * and then removing the data from the socket buffer with sbdrop() 600 * or sbdroprecord() when the data is acknowledged by the peer. 601 */ 602 603 #ifdef SOCKBUF_DEBUG 604 void 605 sblastrecordchk(struct sockbuf *sb, const char *file, int line) 606 { 607 struct mbuf *m = sb->sb_mb; 608 609 SOCKBUF_LOCK_ASSERT(sb); 610 611 while (m && m->m_nextpkt) 612 m = m->m_nextpkt; 613 614 if (m != sb->sb_lastrecord) { 615 printf("%s: sb_mb %p sb_lastrecord %p last %p\n", 616 __func__, sb->sb_mb, sb->sb_lastrecord, m); 617 printf("packet chain:\n"); 618 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) 619 printf("\t%p\n", m); 620 panic("%s from %s:%u", __func__, file, line); 621 } 622 } 623 624 void 625 sblastmbufchk(struct sockbuf *sb, const char *file, int line) 626 { 627 struct mbuf *m = sb->sb_mb; 628 struct mbuf *n; 629 630 SOCKBUF_LOCK_ASSERT(sb); 631 632 while (m && m->m_nextpkt) 633 m = m->m_nextpkt; 634 635 while (m && m->m_next) 636 m = m->m_next; 637 638 if (m != sb->sb_mbtail) { 639 printf("%s: sb_mb %p sb_mbtail %p last %p\n", 640 __func__, sb->sb_mb, sb->sb_mbtail, m); 641 printf("packet tree:\n"); 642 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) { 643 printf("\t"); 644 for (n = m; n != NULL; n = n->m_next) 645 printf("%p ", n); 646 printf("\n"); 647 } 648 panic("%s from %s:%u", __func__, file, line); 649 } 650 } 651 #endif /* SOCKBUF_DEBUG */ 652 653 #define SBLINKRECORD(sb, m0) do { \ 654 SOCKBUF_LOCK_ASSERT(sb); \ 655 if ((sb)->sb_lastrecord != NULL) \ 656 (sb)->sb_lastrecord->m_nextpkt = (m0); \ 657 else \ 658 (sb)->sb_mb = (m0); \ 659 (sb)->sb_lastrecord = (m0); \ 660 } while (/*CONSTCOND*/0) 661 662 /* 663 * Append mbuf chain m to the last record in the 664 * socket buffer sb. The additional space associated 665 * the mbuf chain is recorded in sb. Empty mbufs are 666 * discarded and mbufs are compacted where possible. 667 */ 668 void 669 sbappend_locked(sb, m) 670 struct sockbuf *sb; 671 struct mbuf *m; 672 { 673 register struct mbuf *n; 674 675 SOCKBUF_LOCK_ASSERT(sb); 676 677 if (m == 0) 678 return; 679 680 SBLASTRECORDCHK(sb); 681 n = sb->sb_mb; 682 if (n) { 683 while (n->m_nextpkt) 684 n = n->m_nextpkt; 685 do { 686 if (n->m_flags & M_EOR) { 687 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */ 688 return; 689 } 690 } while (n->m_next && (n = n->m_next)); 691 } else { 692 /* 693 * XXX Would like to simply use sb_mbtail here, but 694 * XXX I need to verify that I won't miss an EOR that 695 * XXX way. 696 */ 697 if ((n = sb->sb_lastrecord) != NULL) { 698 do { 699 if (n->m_flags & M_EOR) { 700 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */ 701 return; 702 } 703 } while (n->m_next && (n = n->m_next)); 704 } else { 705 /* 706 * If this is the first record in the socket buffer, 707 * it's also the last record. 708 */ 709 sb->sb_lastrecord = m; 710 } 711 } 712 sbcompress(sb, m, n); 713 SBLASTRECORDCHK(sb); 714 } 715 716 /* 717 * Append mbuf chain m to the last record in the 718 * socket buffer sb. The additional space associated 719 * the mbuf chain is recorded in sb. Empty mbufs are 720 * discarded and mbufs are compacted where possible. 721 */ 722 void 723 sbappend(sb, m) 724 struct sockbuf *sb; 725 struct mbuf *m; 726 { 727 728 SOCKBUF_LOCK(sb); 729 sbappend_locked(sb, m); 730 SOCKBUF_UNLOCK(sb); 731 } 732 733 /* 734 * This version of sbappend() should only be used when the caller 735 * absolutely knows that there will never be more than one record 736 * in the socket buffer, that is, a stream protocol (such as TCP). 737 */ 738 void 739 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m) 740 { 741 SOCKBUF_LOCK_ASSERT(sb); 742 743 KASSERT(m->m_nextpkt == NULL,("sbappendstream 0")); 744 KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1")); 745 746 SBLASTMBUFCHK(sb); 747 748 sbcompress(sb, m, sb->sb_mbtail); 749 750 sb->sb_lastrecord = sb->sb_mb; 751 SBLASTRECORDCHK(sb); 752 } 753 754 /* 755 * This version of sbappend() should only be used when the caller 756 * absolutely knows that there will never be more than one record 757 * in the socket buffer, that is, a stream protocol (such as TCP). 758 */ 759 void 760 sbappendstream(struct sockbuf *sb, struct mbuf *m) 761 { 762 763 SOCKBUF_LOCK(sb); 764 sbappendstream_locked(sb, m); 765 SOCKBUF_UNLOCK(sb); 766 } 767 768 #ifdef SOCKBUF_DEBUG 769 void 770 sbcheck(sb) 771 struct sockbuf *sb; 772 { 773 struct mbuf *m; 774 struct mbuf *n = 0; 775 u_long len = 0, mbcnt = 0; 776 777 SOCKBUF_LOCK_ASSERT(sb); 778 779 for (m = sb->sb_mb; m; m = n) { 780 n = m->m_nextpkt; 781 for (; m; m = m->m_next) { 782 len += m->m_len; 783 mbcnt += MSIZE; 784 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ 785 mbcnt += m->m_ext.ext_size; 786 } 787 } 788 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 789 printf("cc %ld != %u || mbcnt %ld != %u\n", len, sb->sb_cc, 790 mbcnt, sb->sb_mbcnt); 791 panic("sbcheck"); 792 } 793 } 794 #endif 795 796 /* 797 * As above, except the mbuf chain 798 * begins a new record. 799 */ 800 void 801 sbappendrecord_locked(sb, m0) 802 register struct sockbuf *sb; 803 register struct mbuf *m0; 804 { 805 register struct mbuf *m; 806 807 SOCKBUF_LOCK_ASSERT(sb); 808 809 if (m0 == 0) 810 return; 811 m = sb->sb_mb; 812 if (m) 813 while (m->m_nextpkt) 814 m = m->m_nextpkt; 815 /* 816 * Put the first mbuf on the queue. 817 * Note this permits zero length records. 818 */ 819 sballoc(sb, m0); 820 SBLASTRECORDCHK(sb); 821 SBLINKRECORD(sb, m0); 822 if (m) 823 m->m_nextpkt = m0; 824 else 825 sb->sb_mb = m0; 826 m = m0->m_next; 827 m0->m_next = 0; 828 if (m && (m0->m_flags & M_EOR)) { 829 m0->m_flags &= ~M_EOR; 830 m->m_flags |= M_EOR; 831 } 832 sbcompress(sb, m, m0); 833 } 834 835 /* 836 * As above, except the mbuf chain 837 * begins a new record. 838 */ 839 void 840 sbappendrecord(sb, m0) 841 register struct sockbuf *sb; 842 register struct mbuf *m0; 843 { 844 845 SOCKBUF_LOCK(sb); 846 sbappendrecord_locked(sb, m0); 847 SOCKBUF_UNLOCK(sb); 848 } 849 850 /* 851 * As above except that OOB data 852 * is inserted at the beginning of the sockbuf, 853 * but after any other OOB data. 854 */ 855 void 856 sbinsertoob_locked(sb, m0) 857 register struct sockbuf *sb; 858 register struct mbuf *m0; 859 { 860 register struct mbuf *m; 861 register struct mbuf **mp; 862 863 SOCKBUF_LOCK_ASSERT(sb); 864 865 if (m0 == 0) 866 return; 867 for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) { 868 m = *mp; 869 again: 870 switch (m->m_type) { 871 872 case MT_OOBDATA: 873 continue; /* WANT next train */ 874 875 case MT_CONTROL: 876 m = m->m_next; 877 if (m) 878 goto again; /* inspect THIS train further */ 879 } 880 break; 881 } 882 /* 883 * Put the first mbuf on the queue. 884 * Note this permits zero length records. 885 */ 886 sballoc(sb, m0); 887 m0->m_nextpkt = *mp; 888 *mp = m0; 889 m = m0->m_next; 890 m0->m_next = 0; 891 if (m && (m0->m_flags & M_EOR)) { 892 m0->m_flags &= ~M_EOR; 893 m->m_flags |= M_EOR; 894 } 895 sbcompress(sb, m, m0); 896 } 897 898 /* 899 * As above except that OOB data 900 * is inserted at the beginning of the sockbuf, 901 * but after any other OOB data. 902 */ 903 void 904 sbinsertoob(sb, m0) 905 register struct sockbuf *sb; 906 register struct mbuf *m0; 907 { 908 909 SOCKBUF_LOCK(sb); 910 sbinsertoob_locked(sb, m0); 911 SOCKBUF_UNLOCK(sb); 912 } 913 914 /* 915 * Append address and data, and optionally, control (ancillary) data 916 * to the receive queue of a socket. If present, 917 * m0 must include a packet header with total length. 918 * Returns 0 if no space in sockbuf or insufficient mbufs. 919 */ 920 int 921 sbappendaddr_locked(sb, asa, m0, control) 922 struct sockbuf *sb; 923 const struct sockaddr *asa; 924 struct mbuf *m0, *control; 925 { 926 struct mbuf *m, *n, *nlast; 927 int space = asa->sa_len; 928 929 SOCKBUF_LOCK_ASSERT(sb); 930 931 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 932 panic("sbappendaddr_locked"); 933 if (m0) 934 space += m0->m_pkthdr.len; 935 space += m_length(control, &n); 936 937 if (space > sbspace(sb)) 938 return (0); 939 #if MSIZE <= 256 940 if (asa->sa_len > MLEN) 941 return (0); 942 #endif 943 MGET(m, M_DONTWAIT, MT_SONAME); 944 if (m == 0) 945 return (0); 946 m->m_len = asa->sa_len; 947 bcopy(asa, mtod(m, caddr_t), asa->sa_len); 948 if (n) 949 n->m_next = m0; /* concatenate data to control */ 950 else 951 control = m0; 952 m->m_next = control; 953 for (n = m; n->m_next != NULL; n = n->m_next) 954 sballoc(sb, n); 955 sballoc(sb, n); 956 nlast = n; 957 SBLINKRECORD(sb, m); 958 959 sb->sb_mbtail = nlast; 960 SBLASTMBUFCHK(sb); 961 962 SBLASTRECORDCHK(sb); 963 return (1); 964 } 965 966 /* 967 * Append address and data, and optionally, control (ancillary) data 968 * to the receive queue of a socket. If present, 969 * m0 must include a packet header with total length. 970 * Returns 0 if no space in sockbuf or insufficient mbufs. 971 */ 972 int 973 sbappendaddr(sb, asa, m0, control) 974 struct sockbuf *sb; 975 const struct sockaddr *asa; 976 struct mbuf *m0, *control; 977 { 978 int retval; 979 980 SOCKBUF_LOCK(sb); 981 retval = sbappendaddr_locked(sb, asa, m0, control); 982 SOCKBUF_UNLOCK(sb); 983 return (retval); 984 } 985 986 int 987 sbappendcontrol_locked(sb, m0, control) 988 struct sockbuf *sb; 989 struct mbuf *control, *m0; 990 { 991 struct mbuf *m, *n, *mlast; 992 int space; 993 994 SOCKBUF_LOCK_ASSERT(sb); 995 996 if (control == 0) 997 panic("sbappendcontrol_locked"); 998 space = m_length(control, &n) + m_length(m0, NULL); 999 1000 if (space > sbspace(sb)) 1001 return (0); 1002 n->m_next = m0; /* concatenate data to control */ 1003 1004 SBLASTRECORDCHK(sb); 1005 1006 for (m = control; m->m_next; m = m->m_next) 1007 sballoc(sb, m); 1008 sballoc(sb, m); 1009 mlast = m; 1010 SBLINKRECORD(sb, control); 1011 1012 sb->sb_mbtail = mlast; 1013 SBLASTMBUFCHK(sb); 1014 1015 SBLASTRECORDCHK(sb); 1016 return (1); 1017 } 1018 1019 int 1020 sbappendcontrol(sb, m0, control) 1021 struct sockbuf *sb; 1022 struct mbuf *control, *m0; 1023 { 1024 int retval; 1025 1026 SOCKBUF_LOCK(sb); 1027 retval = sbappendcontrol_locked(sb, m0, control); 1028 SOCKBUF_UNLOCK(sb); 1029 return (retval); 1030 } 1031 1032 /* 1033 * Compress mbuf chain m into the socket 1034 * buffer sb following mbuf n. If n 1035 * is null, the buffer is presumed empty. 1036 */ 1037 void 1038 sbcompress(sb, m, n) 1039 register struct sockbuf *sb; 1040 register struct mbuf *m, *n; 1041 { 1042 register int eor = 0; 1043 register struct mbuf *o; 1044 1045 SOCKBUF_LOCK_ASSERT(sb); 1046 1047 while (m) { 1048 eor |= m->m_flags & M_EOR; 1049 if (m->m_len == 0 && 1050 (eor == 0 || 1051 (((o = m->m_next) || (o = n)) && 1052 o->m_type == m->m_type))) { 1053 if (sb->sb_lastrecord == m) 1054 sb->sb_lastrecord = m->m_next; 1055 m = m_free(m); 1056 continue; 1057 } 1058 if (n && (n->m_flags & M_EOR) == 0 && 1059 M_WRITABLE(n) && 1060 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ 1061 m->m_len <= M_TRAILINGSPACE(n) && 1062 n->m_type == m->m_type) { 1063 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, 1064 (unsigned)m->m_len); 1065 n->m_len += m->m_len; 1066 sb->sb_cc += m->m_len; 1067 if (m->m_type != MT_DATA && m->m_type != MT_HEADER && 1068 m->m_type != MT_OOBDATA) 1069 /* XXX: Probably don't need.*/ 1070 sb->sb_ctl += m->m_len; 1071 m = m_free(m); 1072 continue; 1073 } 1074 if (n) 1075 n->m_next = m; 1076 else 1077 sb->sb_mb = m; 1078 sb->sb_mbtail = m; 1079 sballoc(sb, m); 1080 n = m; 1081 m->m_flags &= ~M_EOR; 1082 m = m->m_next; 1083 n->m_next = 0; 1084 } 1085 if (eor) { 1086 if (n) 1087 n->m_flags |= eor; 1088 else 1089 printf("semi-panic: sbcompress\n"); 1090 } 1091 SBLASTMBUFCHK(sb); 1092 } 1093 1094 /* 1095 * Free all mbufs in a sockbuf. 1096 * Check that all resources are reclaimed. 1097 */ 1098 void 1099 sbflush_locked(sb) 1100 register struct sockbuf *sb; 1101 { 1102 1103 SOCKBUF_LOCK_ASSERT(sb); 1104 1105 if (sb->sb_flags & SB_LOCK) 1106 panic("sbflush_locked: locked"); 1107 while (sb->sb_mbcnt) { 1108 /* 1109 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty: 1110 * we would loop forever. Panic instead. 1111 */ 1112 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len)) 1113 break; 1114 sbdrop_locked(sb, (int)sb->sb_cc); 1115 } 1116 if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt) 1117 panic("sbflush_locked: cc %u || mb %p || mbcnt %u", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt); 1118 } 1119 1120 void 1121 sbflush(sb) 1122 register struct sockbuf *sb; 1123 { 1124 1125 SOCKBUF_LOCK(sb); 1126 sbflush_locked(sb); 1127 SOCKBUF_UNLOCK(sb); 1128 } 1129 1130 /* 1131 * Drop data from (the front of) a sockbuf. 1132 */ 1133 void 1134 sbdrop_locked(sb, len) 1135 register struct sockbuf *sb; 1136 register int len; 1137 { 1138 register struct mbuf *m; 1139 struct mbuf *next; 1140 1141 SOCKBUF_LOCK_ASSERT(sb); 1142 1143 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 1144 while (len > 0) { 1145 if (m == 0) { 1146 if (next == 0) 1147 panic("sbdrop"); 1148 m = next; 1149 next = m->m_nextpkt; 1150 continue; 1151 } 1152 if (m->m_len > len) { 1153 m->m_len -= len; 1154 m->m_data += len; 1155 sb->sb_cc -= len; 1156 if (m->m_type != MT_DATA && m->m_type != MT_HEADER && 1157 m->m_type != MT_OOBDATA) 1158 sb->sb_ctl -= len; 1159 break; 1160 } 1161 len -= m->m_len; 1162 sbfree(sb, m); 1163 m = m_free(m); 1164 } 1165 while (m && m->m_len == 0) { 1166 sbfree(sb, m); 1167 m = m_free(m); 1168 } 1169 if (m) { 1170 sb->sb_mb = m; 1171 m->m_nextpkt = next; 1172 } else 1173 sb->sb_mb = next; 1174 /* 1175 * First part is an inline SB_EMPTY_FIXUP(). Second part 1176 * makes sure sb_lastrecord is up-to-date if we dropped 1177 * part of the last record. 1178 */ 1179 m = sb->sb_mb; 1180 if (m == NULL) { 1181 sb->sb_mbtail = NULL; 1182 sb->sb_lastrecord = NULL; 1183 } else if (m->m_nextpkt == NULL) { 1184 sb->sb_lastrecord = m; 1185 } 1186 } 1187 1188 /* 1189 * Drop data from (the front of) a sockbuf. 1190 */ 1191 void 1192 sbdrop(sb, len) 1193 register struct sockbuf *sb; 1194 register int len; 1195 { 1196 1197 SOCKBUF_LOCK(sb); 1198 sbdrop_locked(sb, len); 1199 SOCKBUF_UNLOCK(sb); 1200 } 1201 1202 /* 1203 * Drop a record off the front of a sockbuf 1204 * and move the next record to the front. 1205 */ 1206 void 1207 sbdroprecord_locked(sb) 1208 register struct sockbuf *sb; 1209 { 1210 register struct mbuf *m; 1211 1212 SOCKBUF_LOCK_ASSERT(sb); 1213 1214 m = sb->sb_mb; 1215 if (m) { 1216 sb->sb_mb = m->m_nextpkt; 1217 do { 1218 sbfree(sb, m); 1219 m = m_free(m); 1220 } while (m); 1221 } 1222 SB_EMPTY_FIXUP(sb); 1223 } 1224 1225 /* 1226 * Drop a record off the front of a sockbuf 1227 * and move the next record to the front. 1228 */ 1229 void 1230 sbdroprecord(sb) 1231 register struct sockbuf *sb; 1232 { 1233 1234 SOCKBUF_LOCK(sb); 1235 sbdroprecord_locked(sb); 1236 SOCKBUF_UNLOCK(sb); 1237 } 1238 1239 /* 1240 * Create a "control" mbuf containing the specified data 1241 * with the specified type for presentation on a socket buffer. 1242 */ 1243 struct mbuf * 1244 sbcreatecontrol(p, size, type, level) 1245 caddr_t p; 1246 register int size; 1247 int type, level; 1248 { 1249 register struct cmsghdr *cp; 1250 struct mbuf *m; 1251 1252 if (CMSG_SPACE((u_int)size) > MCLBYTES) 1253 return ((struct mbuf *) NULL); 1254 if (CMSG_SPACE((u_int)size > MLEN)) 1255 m = m_getcl(M_DONTWAIT, MT_CONTROL, 0); 1256 else 1257 m = m_get(M_DONTWAIT, MT_CONTROL); 1258 if (m == NULL) 1259 return ((struct mbuf *) NULL); 1260 cp = mtod(m, struct cmsghdr *); 1261 m->m_len = 0; 1262 KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m), 1263 ("sbcreatecontrol: short mbuf")); 1264 if (p != NULL) 1265 (void)memcpy(CMSG_DATA(cp), p, size); 1266 m->m_len = CMSG_SPACE(size); 1267 cp->cmsg_len = CMSG_LEN(size); 1268 cp->cmsg_level = level; 1269 cp->cmsg_type = type; 1270 return (m); 1271 } 1272 1273 /* 1274 * Some routines that return EOPNOTSUPP for entry points that are not 1275 * supported by a protocol. Fill in as needed. 1276 */ 1277 int 1278 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 1279 { 1280 return EOPNOTSUPP; 1281 } 1282 1283 int 1284 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 1285 { 1286 return EOPNOTSUPP; 1287 } 1288 1289 int 1290 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 1291 { 1292 return EOPNOTSUPP; 1293 } 1294 1295 int 1296 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 1297 struct ifnet *ifp, struct thread *td) 1298 { 1299 return EOPNOTSUPP; 1300 } 1301 1302 int 1303 pru_listen_notsupp(struct socket *so, struct thread *td) 1304 { 1305 return EOPNOTSUPP; 1306 } 1307 1308 int 1309 pru_rcvd_notsupp(struct socket *so, int flags) 1310 { 1311 return EOPNOTSUPP; 1312 } 1313 1314 int 1315 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 1316 { 1317 return EOPNOTSUPP; 1318 } 1319 1320 /* 1321 * This isn't really a ``null'' operation, but it's the default one 1322 * and doesn't do anything destructive. 1323 */ 1324 int 1325 pru_sense_null(struct socket *so, struct stat *sb) 1326 { 1327 sb->st_blksize = so->so_snd.sb_hiwat; 1328 return 0; 1329 } 1330 1331 /* 1332 * For protocol types that don't keep cached copies of labels in their 1333 * pcbs, provide a null sosetlabel that does a NOOP. 1334 */ 1335 void 1336 pru_sosetlabel_null(struct socket *so) 1337 { 1338 1339 } 1340 1341 /* 1342 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 1343 */ 1344 struct sockaddr * 1345 sodupsockaddr(const struct sockaddr *sa, int mflags) 1346 { 1347 struct sockaddr *sa2; 1348 1349 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 1350 if (sa2) 1351 bcopy(sa, sa2, sa->sa_len); 1352 return sa2; 1353 } 1354 1355 /* 1356 * Create an external-format (``xsocket'') structure using the information 1357 * in the kernel-format socket structure pointed to by so. This is done 1358 * to reduce the spew of irrelevant information over this interface, 1359 * to isolate user code from changes in the kernel structure, and 1360 * potentially to provide information-hiding if we decide that 1361 * some of this information should be hidden from users. 1362 */ 1363 void 1364 sotoxsocket(struct socket *so, struct xsocket *xso) 1365 { 1366 xso->xso_len = sizeof *xso; 1367 xso->xso_so = so; 1368 xso->so_type = so->so_type; 1369 xso->so_options = so->so_options; 1370 xso->so_linger = so->so_linger; 1371 xso->so_state = so->so_state; 1372 xso->so_pcb = so->so_pcb; 1373 xso->xso_protocol = so->so_proto->pr_protocol; 1374 xso->xso_family = so->so_proto->pr_domain->dom_family; 1375 xso->so_qlen = so->so_qlen; 1376 xso->so_incqlen = so->so_incqlen; 1377 xso->so_qlimit = so->so_qlimit; 1378 xso->so_timeo = so->so_timeo; 1379 xso->so_error = so->so_error; 1380 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 1381 xso->so_oobmark = so->so_oobmark; 1382 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 1383 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 1384 xso->so_uid = so->so_cred->cr_uid; 1385 } 1386 1387 /* 1388 * This does the same for sockbufs. Note that the xsockbuf structure, 1389 * since it is always embedded in a socket, does not include a self 1390 * pointer nor a length. We make this entry point public in case 1391 * some other mechanism needs it. 1392 */ 1393 void 1394 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb) 1395 { 1396 xsb->sb_cc = sb->sb_cc; 1397 xsb->sb_hiwat = sb->sb_hiwat; 1398 xsb->sb_mbcnt = sb->sb_mbcnt; 1399 xsb->sb_mbmax = sb->sb_mbmax; 1400 xsb->sb_lowat = sb->sb_lowat; 1401 xsb->sb_flags = sb->sb_flags; 1402 xsb->sb_timeo = sb->sb_timeo; 1403 } 1404 1405 /* 1406 * Here is the definition of some of the basic objects in the kern.ipc 1407 * branch of the MIB. 1408 */ 1409 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 1410 1411 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */ 1412 static int dummy; 1413 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, ""); 1414 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_ULONG|CTLFLAG_RW, 1415 &sb_max, 0, sysctl_handle_sb_max, "LU", "Maximum socket buffer size"); 1416 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RDTUN, 1417 &maxsockets, 0, "Maximum number of sockets avaliable"); 1418 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW, 1419 &sb_efficiency, 0, ""); 1420 1421 /* 1422 * Initialise maxsockets 1423 */ 1424 static void init_maxsockets(void *ignored) 1425 { 1426 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 1427 maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters)); 1428 } 1429 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 1430