1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_kern_tls.h" 38 #include "opt_param.h" 39 40 #include <sys/param.h> 41 #include <sys/aio.h> /* for aio_swake proto */ 42 #include <sys/kernel.h> 43 #include <sys/ktls.h> 44 #include <sys/lock.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/mutex.h> 48 #include <sys/proc.h> 49 #include <sys/protosw.h> 50 #include <sys/resourcevar.h> 51 #include <sys/signalvar.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/sx.h> 55 #include <sys/sysctl.h> 56 57 /* 58 * Function pointer set by the AIO routines so that the socket buffer code 59 * can call back into the AIO module if it is loaded. 60 */ 61 void (*aio_swake)(struct socket *, struct sockbuf *); 62 63 /* 64 * Primitive routines for operating on socket buffers 65 */ 66 67 u_long sb_max = SB_MAX; 68 u_long sb_max_adj = 69 (quad_t)SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */ 70 71 static u_long sb_efficiency = 8; /* parameter for sbreserve() */ 72 73 static struct mbuf *sbcut_internal(struct sockbuf *sb, int len); 74 static void sbflush_internal(struct sockbuf *sb); 75 76 /* 77 * Our own version of m_clrprotoflags(), that can preserve M_NOTREADY. 78 */ 79 static void 80 sbm_clrprotoflags(struct mbuf *m, int flags) 81 { 82 int mask; 83 84 mask = ~M_PROTOFLAGS; 85 if (flags & PRUS_NOTREADY) 86 mask |= M_NOTREADY; 87 while (m) { 88 m->m_flags &= mask; 89 m = m->m_next; 90 } 91 } 92 93 /* 94 * Compress M_NOTREADY mbufs after they have been readied by sbready(). 95 * 96 * sbcompress() skips M_NOTREADY mbufs since the data is not available to 97 * be copied at the time of sbcompress(). This function combines small 98 * mbufs similar to sbcompress() once mbufs are ready. 'm0' is the first 99 * mbuf sbready() marked ready, and 'end' is the first mbuf still not 100 * ready. 101 */ 102 static void 103 sbready_compress(struct sockbuf *sb, struct mbuf *m0, struct mbuf *end) 104 { 105 struct mbuf *m, *n; 106 int ext_size; 107 108 SOCKBUF_LOCK_ASSERT(sb); 109 110 if ((sb->sb_flags & SB_NOCOALESCE) != 0) 111 return; 112 113 for (m = m0; m != end; m = m->m_next) { 114 MPASS((m->m_flags & M_NOTREADY) == 0); 115 /* 116 * NB: In sbcompress(), 'n' is the last mbuf in the 117 * socket buffer and 'm' is the new mbuf being copied 118 * into the trailing space of 'n'. Here, the roles 119 * are reversed and 'n' is the next mbuf after 'm' 120 * that is being copied into the trailing space of 121 * 'm'. 122 */ 123 n = m->m_next; 124 #ifdef KERN_TLS 125 /* Try to coalesce adjacent ktls mbuf hdr/trailers. */ 126 if ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 && 127 (m->m_flags & M_EXTPG) && 128 (n->m_flags & M_EXTPG) && 129 !mbuf_has_tls_session(m) && 130 !mbuf_has_tls_session(n)) { 131 int hdr_len, trail_len; 132 133 hdr_len = n->m_epg_hdrlen; 134 trail_len = m->m_epg_trllen; 135 if (trail_len != 0 && hdr_len != 0 && 136 trail_len + hdr_len <= MBUF_PEXT_TRAIL_LEN) { 137 /* copy n's header to m's trailer */ 138 memcpy(&m->m_epg_trail[trail_len], 139 n->m_epg_hdr, hdr_len); 140 m->m_epg_trllen += hdr_len; 141 m->m_len += hdr_len; 142 n->m_epg_hdrlen = 0; 143 n->m_len -= hdr_len; 144 } 145 } 146 #endif 147 148 /* Compress small unmapped mbufs into plain mbufs. */ 149 if ((m->m_flags & M_EXTPG) && m->m_len <= MLEN && 150 !mbuf_has_tls_session(m)) { 151 ext_size = m->m_ext.ext_size; 152 if (mb_unmapped_compress(m) == 0) { 153 sb->sb_mbcnt -= ext_size; 154 sb->sb_ccnt -= 1; 155 } 156 } 157 158 while ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 && 159 M_WRITABLE(m) && 160 (m->m_flags & M_EXTPG) == 0 && 161 !mbuf_has_tls_session(n) && 162 !mbuf_has_tls_session(m) && 163 n->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ 164 n->m_len <= M_TRAILINGSPACE(m) && 165 m->m_type == n->m_type) { 166 KASSERT(sb->sb_lastrecord != n, 167 ("%s: merging start of record (%p) into previous mbuf (%p)", 168 __func__, n, m)); 169 m_copydata(n, 0, n->m_len, mtodo(m, m->m_len)); 170 m->m_len += n->m_len; 171 m->m_next = n->m_next; 172 m->m_flags |= n->m_flags & M_EOR; 173 if (sb->sb_mbtail == n) 174 sb->sb_mbtail = m; 175 176 sb->sb_mbcnt -= MSIZE; 177 sb->sb_mcnt -= 1; 178 if (n->m_flags & M_EXT) { 179 sb->sb_mbcnt -= n->m_ext.ext_size; 180 sb->sb_ccnt -= 1; 181 } 182 m_free(n); 183 n = m->m_next; 184 } 185 } 186 SBLASTRECORDCHK(sb); 187 SBLASTMBUFCHK(sb); 188 } 189 190 /* 191 * Mark ready "count" units of I/O starting with "m". Most mbufs 192 * count as a single unit of I/O except for M_EXTPG mbufs which 193 * are backed by multiple pages. 194 */ 195 int 196 sbready(struct sockbuf *sb, struct mbuf *m0, int count) 197 { 198 struct mbuf *m; 199 u_int blocker; 200 201 SOCKBUF_LOCK_ASSERT(sb); 202 KASSERT(sb->sb_fnrdy != NULL, ("%s: sb %p NULL fnrdy", __func__, sb)); 203 KASSERT(count > 0, ("%s: invalid count %d", __func__, count)); 204 205 m = m0; 206 blocker = (sb->sb_fnrdy == m) ? M_BLOCKED : 0; 207 208 while (count > 0) { 209 KASSERT(m->m_flags & M_NOTREADY, 210 ("%s: m %p !M_NOTREADY", __func__, m)); 211 if ((m->m_flags & M_EXTPG) != 0) { 212 if (count < m->m_epg_nrdy) { 213 m->m_epg_nrdy -= count; 214 count = 0; 215 break; 216 } 217 count -= m->m_epg_nrdy; 218 m->m_epg_nrdy = 0; 219 } else 220 count--; 221 222 m->m_flags &= ~(M_NOTREADY | blocker); 223 if (blocker) 224 sb->sb_acc += m->m_len; 225 m = m->m_next; 226 } 227 228 /* 229 * If the first mbuf is still not fully ready because only 230 * some of its backing pages were readied, no further progress 231 * can be made. 232 */ 233 if (m0 == m) { 234 MPASS(m->m_flags & M_NOTREADY); 235 return (EINPROGRESS); 236 } 237 238 if (!blocker) { 239 sbready_compress(sb, m0, m); 240 return (EINPROGRESS); 241 } 242 243 /* This one was blocking all the queue. */ 244 for (; m && (m->m_flags & M_NOTREADY) == 0; m = m->m_next) { 245 KASSERT(m->m_flags & M_BLOCKED, 246 ("%s: m %p !M_BLOCKED", __func__, m)); 247 m->m_flags &= ~M_BLOCKED; 248 sb->sb_acc += m->m_len; 249 } 250 251 sb->sb_fnrdy = m; 252 sbready_compress(sb, m0, m); 253 254 return (0); 255 } 256 257 /* 258 * Adjust sockbuf state reflecting allocation of m. 259 */ 260 void 261 sballoc(struct sockbuf *sb, struct mbuf *m) 262 { 263 264 SOCKBUF_LOCK_ASSERT(sb); 265 266 sb->sb_ccc += m->m_len; 267 268 if (sb->sb_fnrdy == NULL) { 269 if (m->m_flags & M_NOTREADY) 270 sb->sb_fnrdy = m; 271 else 272 sb->sb_acc += m->m_len; 273 } else 274 m->m_flags |= M_BLOCKED; 275 276 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA) 277 sb->sb_ctl += m->m_len; 278 279 sb->sb_mbcnt += MSIZE; 280 sb->sb_mcnt += 1; 281 282 if (m->m_flags & M_EXT) { 283 sb->sb_mbcnt += m->m_ext.ext_size; 284 sb->sb_ccnt += 1; 285 } 286 } 287 288 /* 289 * Adjust sockbuf state reflecting freeing of m. 290 */ 291 void 292 sbfree(struct sockbuf *sb, struct mbuf *m) 293 { 294 295 #if 0 /* XXX: not yet: soclose() call path comes here w/o lock. */ 296 SOCKBUF_LOCK_ASSERT(sb); 297 #endif 298 299 sb->sb_ccc -= m->m_len; 300 301 if (!(m->m_flags & M_NOTAVAIL)) 302 sb->sb_acc -= m->m_len; 303 304 if (m == sb->sb_fnrdy) { 305 struct mbuf *n; 306 307 KASSERT(m->m_flags & M_NOTREADY, 308 ("%s: m %p !M_NOTREADY", __func__, m)); 309 310 n = m->m_next; 311 while (n != NULL && !(n->m_flags & M_NOTREADY)) { 312 n->m_flags &= ~M_BLOCKED; 313 sb->sb_acc += n->m_len; 314 n = n->m_next; 315 } 316 sb->sb_fnrdy = n; 317 } 318 319 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA) 320 sb->sb_ctl -= m->m_len; 321 322 sb->sb_mbcnt -= MSIZE; 323 sb->sb_mcnt -= 1; 324 if (m->m_flags & M_EXT) { 325 sb->sb_mbcnt -= m->m_ext.ext_size; 326 sb->sb_ccnt -= 1; 327 } 328 329 if (sb->sb_sndptr == m) { 330 sb->sb_sndptr = NULL; 331 sb->sb_sndptroff = 0; 332 } 333 if (sb->sb_sndptroff != 0) 334 sb->sb_sndptroff -= m->m_len; 335 } 336 337 /* 338 * Socantsendmore indicates that no more data will be sent on the socket; it 339 * would normally be applied to a socket when the user informs the system 340 * that no more data is to be sent, by the protocol code (in case 341 * PRU_SHUTDOWN). Socantrcvmore indicates that no more data will be 342 * received, and will normally be applied to the socket by a protocol when it 343 * detects that the peer will send no more data. Data queued for reading in 344 * the socket may yet be read. 345 */ 346 void 347 socantsendmore_locked(struct socket *so) 348 { 349 350 SOCKBUF_LOCK_ASSERT(&so->so_snd); 351 352 so->so_snd.sb_state |= SBS_CANTSENDMORE; 353 sowwakeup_locked(so); 354 mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED); 355 } 356 357 void 358 socantsendmore(struct socket *so) 359 { 360 361 SOCKBUF_LOCK(&so->so_snd); 362 socantsendmore_locked(so); 363 mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED); 364 } 365 366 void 367 socantrcvmore_locked(struct socket *so) 368 { 369 370 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 371 372 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 373 sorwakeup_locked(so); 374 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED); 375 } 376 377 void 378 socantrcvmore(struct socket *so) 379 { 380 381 SOCKBUF_LOCK(&so->so_rcv); 382 socantrcvmore_locked(so); 383 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED); 384 } 385 386 /* 387 * Wait for data to arrive at/drain from a socket buffer. 388 */ 389 int 390 sbwait(struct sockbuf *sb) 391 { 392 393 SOCKBUF_LOCK_ASSERT(sb); 394 395 sb->sb_flags |= SB_WAIT; 396 return (msleep_sbt(&sb->sb_acc, &sb->sb_mtx, 397 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", 398 sb->sb_timeo, 0, 0)); 399 } 400 401 int 402 sblock(struct sockbuf *sb, int flags) 403 { 404 405 KASSERT((flags & SBL_VALID) == flags, 406 ("sblock: flags invalid (0x%x)", flags)); 407 408 if (flags & SBL_WAIT) { 409 if ((sb->sb_flags & SB_NOINTR) || 410 (flags & SBL_NOINTR)) { 411 sx_xlock(&sb->sb_sx); 412 return (0); 413 } 414 return (sx_xlock_sig(&sb->sb_sx)); 415 } else { 416 if (sx_try_xlock(&sb->sb_sx) == 0) 417 return (EWOULDBLOCK); 418 return (0); 419 } 420 } 421 422 void 423 sbunlock(struct sockbuf *sb) 424 { 425 426 sx_xunlock(&sb->sb_sx); 427 } 428 429 /* 430 * Wakeup processes waiting on a socket buffer. Do asynchronous notification 431 * via SIGIO if the socket has the SS_ASYNC flag set. 432 * 433 * Called with the socket buffer lock held; will release the lock by the end 434 * of the function. This allows the caller to acquire the socket buffer lock 435 * while testing for the need for various sorts of wakeup and hold it through 436 * to the point where it's no longer required. We currently hold the lock 437 * through calls out to other subsystems (with the exception of kqueue), and 438 * then release it to avoid lock order issues. It's not clear that's 439 * correct. 440 */ 441 void 442 sowakeup(struct socket *so, struct sockbuf *sb) 443 { 444 int ret; 445 446 SOCKBUF_LOCK_ASSERT(sb); 447 448 selwakeuppri(sb->sb_sel, PSOCK); 449 if (!SEL_WAITING(sb->sb_sel)) 450 sb->sb_flags &= ~SB_SEL; 451 if (sb->sb_flags & SB_WAIT) { 452 sb->sb_flags &= ~SB_WAIT; 453 wakeup(&sb->sb_acc); 454 } 455 KNOTE_LOCKED(&sb->sb_sel->si_note, 0); 456 if (sb->sb_upcall != NULL) { 457 ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT); 458 if (ret == SU_ISCONNECTED) { 459 KASSERT(sb == &so->so_rcv, 460 ("SO_SND upcall returned SU_ISCONNECTED")); 461 soupcall_clear(so, SO_RCV); 462 } 463 } else 464 ret = SU_OK; 465 if (sb->sb_flags & SB_AIO) 466 sowakeup_aio(so, sb); 467 SOCKBUF_UNLOCK(sb); 468 if (ret == SU_ISCONNECTED) 469 soisconnected(so); 470 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL) 471 pgsigio(&so->so_sigio, SIGIO, 0); 472 mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED); 473 } 474 475 /* 476 * Socket buffer (struct sockbuf) utility routines. 477 * 478 * Each socket contains two socket buffers: one for sending data and one for 479 * receiving data. Each buffer contains a queue of mbufs, information about 480 * the number of mbufs and amount of data in the queue, and other fields 481 * allowing select() statements and notification on data availability to be 482 * implemented. 483 * 484 * Data stored in a socket buffer is maintained as a list of records. Each 485 * record is a list of mbufs chained together with the m_next field. Records 486 * are chained together with the m_nextpkt field. The upper level routine 487 * soreceive() expects the following conventions to be observed when placing 488 * information in the receive buffer: 489 * 490 * 1. If the protocol requires each message be preceded by the sender's name, 491 * then a record containing that name must be present before any 492 * associated data (mbuf's must be of type MT_SONAME). 493 * 2. If the protocol supports the exchange of ``access rights'' (really just 494 * additional data associated with the message), and there are ``rights'' 495 * to be received, then a record containing this data should be present 496 * (mbuf's must be of type MT_RIGHTS). 497 * 3. If a name or rights record exists, then it must be followed by a data 498 * record, perhaps of zero length. 499 * 500 * Before using a new socket structure it is first necessary to reserve 501 * buffer space to the socket, by calling sbreserve(). This should commit 502 * some of the available buffer space in the system buffer pool for the 503 * socket (currently, it does nothing but enforce limits). The space should 504 * be released by calling sbrelease() when the socket is destroyed. 505 */ 506 int 507 soreserve(struct socket *so, u_long sndcc, u_long rcvcc) 508 { 509 struct thread *td = curthread; 510 511 SOCKBUF_LOCK(&so->so_snd); 512 SOCKBUF_LOCK(&so->so_rcv); 513 if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0) 514 goto bad; 515 if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0) 516 goto bad2; 517 if (so->so_rcv.sb_lowat == 0) 518 so->so_rcv.sb_lowat = 1; 519 if (so->so_snd.sb_lowat == 0) 520 so->so_snd.sb_lowat = MCLBYTES; 521 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 522 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 523 SOCKBUF_UNLOCK(&so->so_rcv); 524 SOCKBUF_UNLOCK(&so->so_snd); 525 return (0); 526 bad2: 527 sbrelease_locked(&so->so_snd, so); 528 bad: 529 SOCKBUF_UNLOCK(&so->so_rcv); 530 SOCKBUF_UNLOCK(&so->so_snd); 531 return (ENOBUFS); 532 } 533 534 static int 535 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS) 536 { 537 int error = 0; 538 u_long tmp_sb_max = sb_max; 539 540 error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req); 541 if (error || !req->newptr) 542 return (error); 543 if (tmp_sb_max < MSIZE + MCLBYTES) 544 return (EINVAL); 545 sb_max = tmp_sb_max; 546 sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES); 547 return (0); 548 } 549 550 /* 551 * Allot mbufs to a sockbuf. Attempt to scale mbmax so that mbcnt doesn't 552 * become limiting if buffering efficiency is near the normal case. 553 */ 554 int 555 sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so, 556 struct thread *td) 557 { 558 rlim_t sbsize_limit; 559 560 SOCKBUF_LOCK_ASSERT(sb); 561 562 /* 563 * When a thread is passed, we take into account the thread's socket 564 * buffer size limit. The caller will generally pass curthread, but 565 * in the TCP input path, NULL will be passed to indicate that no 566 * appropriate thread resource limits are available. In that case, 567 * we don't apply a process limit. 568 */ 569 if (cc > sb_max_adj) 570 return (0); 571 if (td != NULL) { 572 sbsize_limit = lim_cur(td, RLIMIT_SBSIZE); 573 } else 574 sbsize_limit = RLIM_INFINITY; 575 if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc, 576 sbsize_limit)) 577 return (0); 578 sb->sb_mbmax = min(cc * sb_efficiency, sb_max); 579 if (sb->sb_lowat > sb->sb_hiwat) 580 sb->sb_lowat = sb->sb_hiwat; 581 return (1); 582 } 583 584 int 585 sbsetopt(struct socket *so, int cmd, u_long cc) 586 { 587 struct sockbuf *sb; 588 short *flags; 589 u_int *hiwat, *lowat; 590 int error; 591 592 sb = NULL; 593 SOCK_LOCK(so); 594 if (SOLISTENING(so)) { 595 switch (cmd) { 596 case SO_SNDLOWAT: 597 case SO_SNDBUF: 598 lowat = &so->sol_sbsnd_lowat; 599 hiwat = &so->sol_sbsnd_hiwat; 600 flags = &so->sol_sbsnd_flags; 601 break; 602 case SO_RCVLOWAT: 603 case SO_RCVBUF: 604 lowat = &so->sol_sbrcv_lowat; 605 hiwat = &so->sol_sbrcv_hiwat; 606 flags = &so->sol_sbrcv_flags; 607 break; 608 } 609 } else { 610 switch (cmd) { 611 case SO_SNDLOWAT: 612 case SO_SNDBUF: 613 sb = &so->so_snd; 614 break; 615 case SO_RCVLOWAT: 616 case SO_RCVBUF: 617 sb = &so->so_rcv; 618 break; 619 } 620 flags = &sb->sb_flags; 621 hiwat = &sb->sb_hiwat; 622 lowat = &sb->sb_lowat; 623 SOCKBUF_LOCK(sb); 624 } 625 626 error = 0; 627 switch (cmd) { 628 case SO_SNDBUF: 629 case SO_RCVBUF: 630 if (SOLISTENING(so)) { 631 if (cc > sb_max_adj) { 632 error = ENOBUFS; 633 break; 634 } 635 *hiwat = cc; 636 if (*lowat > *hiwat) 637 *lowat = *hiwat; 638 } else { 639 if (!sbreserve_locked(sb, cc, so, curthread)) 640 error = ENOBUFS; 641 } 642 if (error == 0) 643 *flags &= ~SB_AUTOSIZE; 644 break; 645 case SO_SNDLOWAT: 646 case SO_RCVLOWAT: 647 /* 648 * Make sure the low-water is never greater than the 649 * high-water. 650 */ 651 *lowat = (cc > *hiwat) ? *hiwat : cc; 652 break; 653 } 654 655 if (!SOLISTENING(so)) 656 SOCKBUF_UNLOCK(sb); 657 SOCK_UNLOCK(so); 658 return (error); 659 } 660 661 /* 662 * Free mbufs held by a socket, and reserved mbuf space. 663 */ 664 void 665 sbrelease_internal(struct sockbuf *sb, struct socket *so) 666 { 667 668 sbflush_internal(sb); 669 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0, 670 RLIM_INFINITY); 671 sb->sb_mbmax = 0; 672 } 673 674 void 675 sbrelease_locked(struct sockbuf *sb, struct socket *so) 676 { 677 678 SOCKBUF_LOCK_ASSERT(sb); 679 680 sbrelease_internal(sb, so); 681 } 682 683 void 684 sbrelease(struct sockbuf *sb, struct socket *so) 685 { 686 687 SOCKBUF_LOCK(sb); 688 sbrelease_locked(sb, so); 689 SOCKBUF_UNLOCK(sb); 690 } 691 692 void 693 sbdestroy(struct sockbuf *sb, struct socket *so) 694 { 695 696 sbrelease_internal(sb, so); 697 #ifdef KERN_TLS 698 if (sb->sb_tls_info != NULL) 699 ktls_free(sb->sb_tls_info); 700 sb->sb_tls_info = NULL; 701 #endif 702 } 703 704 /* 705 * Routines to add and remove data from an mbuf queue. 706 * 707 * The routines sbappend() or sbappendrecord() are normally called to append 708 * new mbufs to a socket buffer, after checking that adequate space is 709 * available, comparing the function sbspace() with the amount of data to be 710 * added. sbappendrecord() differs from sbappend() in that data supplied is 711 * treated as the beginning of a new record. To place a sender's address, 712 * optional access rights, and data in a socket receive buffer, 713 * sbappendaddr() should be used. To place access rights and data in a 714 * socket receive buffer, sbappendrights() should be used. In either case, 715 * the new data begins a new record. Note that unlike sbappend() and 716 * sbappendrecord(), these routines check for the caller that there will be 717 * enough space to store the data. Each fails if there is not enough space, 718 * or if it cannot find mbufs to store additional information in. 719 * 720 * Reliable protocols may use the socket send buffer to hold data awaiting 721 * acknowledgement. Data is normally copied from a socket send buffer in a 722 * protocol with m_copy for output to a peer, and then removing the data from 723 * the socket buffer with sbdrop() or sbdroprecord() when the data is 724 * acknowledged by the peer. 725 */ 726 #ifdef SOCKBUF_DEBUG 727 void 728 sblastrecordchk(struct sockbuf *sb, const char *file, int line) 729 { 730 struct mbuf *m = sb->sb_mb; 731 732 SOCKBUF_LOCK_ASSERT(sb); 733 734 while (m && m->m_nextpkt) 735 m = m->m_nextpkt; 736 737 if (m != sb->sb_lastrecord) { 738 printf("%s: sb_mb %p sb_lastrecord %p last %p\n", 739 __func__, sb->sb_mb, sb->sb_lastrecord, m); 740 printf("packet chain:\n"); 741 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) 742 printf("\t%p\n", m); 743 panic("%s from %s:%u", __func__, file, line); 744 } 745 } 746 747 void 748 sblastmbufchk(struct sockbuf *sb, const char *file, int line) 749 { 750 struct mbuf *m = sb->sb_mb; 751 struct mbuf *n; 752 753 SOCKBUF_LOCK_ASSERT(sb); 754 755 while (m && m->m_nextpkt) 756 m = m->m_nextpkt; 757 758 while (m && m->m_next) 759 m = m->m_next; 760 761 if (m != sb->sb_mbtail) { 762 printf("%s: sb_mb %p sb_mbtail %p last %p\n", 763 __func__, sb->sb_mb, sb->sb_mbtail, m); 764 printf("packet tree:\n"); 765 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) { 766 printf("\t"); 767 for (n = m; n != NULL; n = n->m_next) 768 printf("%p ", n); 769 printf("\n"); 770 } 771 panic("%s from %s:%u", __func__, file, line); 772 } 773 } 774 #endif /* SOCKBUF_DEBUG */ 775 776 #define SBLINKRECORD(sb, m0) do { \ 777 SOCKBUF_LOCK_ASSERT(sb); \ 778 if ((sb)->sb_lastrecord != NULL) \ 779 (sb)->sb_lastrecord->m_nextpkt = (m0); \ 780 else \ 781 (sb)->sb_mb = (m0); \ 782 (sb)->sb_lastrecord = (m0); \ 783 } while (/*CONSTCOND*/0) 784 785 /* 786 * Append mbuf chain m to the last record in the socket buffer sb. The 787 * additional space associated the mbuf chain is recorded in sb. Empty mbufs 788 * are discarded and mbufs are compacted where possible. 789 */ 790 void 791 sbappend_locked(struct sockbuf *sb, struct mbuf *m, int flags) 792 { 793 struct mbuf *n; 794 795 SOCKBUF_LOCK_ASSERT(sb); 796 797 if (m == NULL) 798 return; 799 sbm_clrprotoflags(m, flags); 800 SBLASTRECORDCHK(sb); 801 n = sb->sb_mb; 802 if (n) { 803 while (n->m_nextpkt) 804 n = n->m_nextpkt; 805 do { 806 if (n->m_flags & M_EOR) { 807 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */ 808 return; 809 } 810 } while (n->m_next && (n = n->m_next)); 811 } else { 812 /* 813 * XXX Would like to simply use sb_mbtail here, but 814 * XXX I need to verify that I won't miss an EOR that 815 * XXX way. 816 */ 817 if ((n = sb->sb_lastrecord) != NULL) { 818 do { 819 if (n->m_flags & M_EOR) { 820 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */ 821 return; 822 } 823 } while (n->m_next && (n = n->m_next)); 824 } else { 825 /* 826 * If this is the first record in the socket buffer, 827 * it's also the last record. 828 */ 829 sb->sb_lastrecord = m; 830 } 831 } 832 sbcompress(sb, m, n); 833 SBLASTRECORDCHK(sb); 834 } 835 836 /* 837 * Append mbuf chain m to the last record in the socket buffer sb. The 838 * additional space associated the mbuf chain is recorded in sb. Empty mbufs 839 * are discarded and mbufs are compacted where possible. 840 */ 841 void 842 sbappend(struct sockbuf *sb, struct mbuf *m, int flags) 843 { 844 845 SOCKBUF_LOCK(sb); 846 sbappend_locked(sb, m, flags); 847 SOCKBUF_UNLOCK(sb); 848 } 849 850 /* 851 * This version of sbappend() should only be used when the caller absolutely 852 * knows that there will never be more than one record in the socket buffer, 853 * that is, a stream protocol (such as TCP). 854 */ 855 void 856 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags) 857 { 858 SOCKBUF_LOCK_ASSERT(sb); 859 860 KASSERT(m->m_nextpkt == NULL,("sbappendstream 0")); 861 KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1")); 862 863 SBLASTMBUFCHK(sb); 864 865 #ifdef KERN_TLS 866 if (sb->sb_tls_info != NULL) 867 ktls_seq(sb, m); 868 #endif 869 870 /* Remove all packet headers and mbuf tags to get a pure data chain. */ 871 m_demote(m, 1, flags & PRUS_NOTREADY ? M_NOTREADY : 0); 872 873 sbcompress(sb, m, sb->sb_mbtail); 874 875 sb->sb_lastrecord = sb->sb_mb; 876 SBLASTRECORDCHK(sb); 877 } 878 879 /* 880 * This version of sbappend() should only be used when the caller absolutely 881 * knows that there will never be more than one record in the socket buffer, 882 * that is, a stream protocol (such as TCP). 883 */ 884 void 885 sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags) 886 { 887 888 SOCKBUF_LOCK(sb); 889 sbappendstream_locked(sb, m, flags); 890 SOCKBUF_UNLOCK(sb); 891 } 892 893 #ifdef SOCKBUF_DEBUG 894 void 895 sbcheck(struct sockbuf *sb, const char *file, int line) 896 { 897 struct mbuf *m, *n, *fnrdy; 898 u_long acc, ccc, mbcnt; 899 900 SOCKBUF_LOCK_ASSERT(sb); 901 902 acc = ccc = mbcnt = 0; 903 fnrdy = NULL; 904 905 for (m = sb->sb_mb; m; m = n) { 906 n = m->m_nextpkt; 907 for (; m; m = m->m_next) { 908 if (m->m_len == 0) { 909 printf("sb %p empty mbuf %p\n", sb, m); 910 goto fail; 911 } 912 if ((m->m_flags & M_NOTREADY) && fnrdy == NULL) { 913 if (m != sb->sb_fnrdy) { 914 printf("sb %p: fnrdy %p != m %p\n", 915 sb, sb->sb_fnrdy, m); 916 goto fail; 917 } 918 fnrdy = m; 919 } 920 if (fnrdy) { 921 if (!(m->m_flags & M_NOTAVAIL)) { 922 printf("sb %p: fnrdy %p, m %p is avail\n", 923 sb, sb->sb_fnrdy, m); 924 goto fail; 925 } 926 } else 927 acc += m->m_len; 928 ccc += m->m_len; 929 mbcnt += MSIZE; 930 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ 931 mbcnt += m->m_ext.ext_size; 932 } 933 } 934 if (acc != sb->sb_acc || ccc != sb->sb_ccc || mbcnt != sb->sb_mbcnt) { 935 printf("acc %ld/%u ccc %ld/%u mbcnt %ld/%u\n", 936 acc, sb->sb_acc, ccc, sb->sb_ccc, mbcnt, sb->sb_mbcnt); 937 goto fail; 938 } 939 return; 940 fail: 941 panic("%s from %s:%u", __func__, file, line); 942 } 943 #endif 944 945 /* 946 * As above, except the mbuf chain begins a new record. 947 */ 948 void 949 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0) 950 { 951 struct mbuf *m; 952 953 SOCKBUF_LOCK_ASSERT(sb); 954 955 if (m0 == NULL) 956 return; 957 m_clrprotoflags(m0); 958 /* 959 * Put the first mbuf on the queue. Note this permits zero length 960 * records. 961 */ 962 sballoc(sb, m0); 963 SBLASTRECORDCHK(sb); 964 SBLINKRECORD(sb, m0); 965 sb->sb_mbtail = m0; 966 m = m0->m_next; 967 m0->m_next = 0; 968 if (m && (m0->m_flags & M_EOR)) { 969 m0->m_flags &= ~M_EOR; 970 m->m_flags |= M_EOR; 971 } 972 /* always call sbcompress() so it can do SBLASTMBUFCHK() */ 973 sbcompress(sb, m, m0); 974 } 975 976 /* 977 * As above, except the mbuf chain begins a new record. 978 */ 979 void 980 sbappendrecord(struct sockbuf *sb, struct mbuf *m0) 981 { 982 983 SOCKBUF_LOCK(sb); 984 sbappendrecord_locked(sb, m0); 985 SOCKBUF_UNLOCK(sb); 986 } 987 988 /* Helper routine that appends data, control, and address to a sockbuf. */ 989 static int 990 sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa, 991 struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last) 992 { 993 struct mbuf *m, *n, *nlast; 994 #if MSIZE <= 256 995 if (asa->sa_len > MLEN) 996 return (0); 997 #endif 998 m = m_get(M_NOWAIT, MT_SONAME); 999 if (m == NULL) 1000 return (0); 1001 m->m_len = asa->sa_len; 1002 bcopy(asa, mtod(m, caddr_t), asa->sa_len); 1003 if (m0) { 1004 m_clrprotoflags(m0); 1005 m_tag_delete_chain(m0, NULL); 1006 /* 1007 * Clear some persistent info from pkthdr. 1008 * We don't use m_demote(), because some netgraph consumers 1009 * expect M_PKTHDR presence. 1010 */ 1011 m0->m_pkthdr.rcvif = NULL; 1012 m0->m_pkthdr.flowid = 0; 1013 m0->m_pkthdr.csum_flags = 0; 1014 m0->m_pkthdr.fibnum = 0; 1015 m0->m_pkthdr.rsstype = 0; 1016 } 1017 if (ctrl_last) 1018 ctrl_last->m_next = m0; /* concatenate data to control */ 1019 else 1020 control = m0; 1021 m->m_next = control; 1022 for (n = m; n->m_next != NULL; n = n->m_next) 1023 sballoc(sb, n); 1024 sballoc(sb, n); 1025 nlast = n; 1026 SBLINKRECORD(sb, m); 1027 1028 sb->sb_mbtail = nlast; 1029 SBLASTMBUFCHK(sb); 1030 1031 SBLASTRECORDCHK(sb); 1032 return (1); 1033 } 1034 1035 /* 1036 * Append address and data, and optionally, control (ancillary) data to the 1037 * receive queue of a socket. If present, m0 must include a packet header 1038 * with total length. Returns 0 if no space in sockbuf or insufficient 1039 * mbufs. 1040 */ 1041 int 1042 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa, 1043 struct mbuf *m0, struct mbuf *control) 1044 { 1045 struct mbuf *ctrl_last; 1046 int space = asa->sa_len; 1047 1048 SOCKBUF_LOCK_ASSERT(sb); 1049 1050 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 1051 panic("sbappendaddr_locked"); 1052 if (m0) 1053 space += m0->m_pkthdr.len; 1054 space += m_length(control, &ctrl_last); 1055 1056 if (space > sbspace(sb)) 1057 return (0); 1058 return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last)); 1059 } 1060 1061 /* 1062 * Append address and data, and optionally, control (ancillary) data to the 1063 * receive queue of a socket. If present, m0 must include a packet header 1064 * with total length. Returns 0 if insufficient mbufs. Does not validate space 1065 * on the receiving sockbuf. 1066 */ 1067 int 1068 sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa, 1069 struct mbuf *m0, struct mbuf *control) 1070 { 1071 struct mbuf *ctrl_last; 1072 1073 SOCKBUF_LOCK_ASSERT(sb); 1074 1075 ctrl_last = (control == NULL) ? NULL : m_last(control); 1076 return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last)); 1077 } 1078 1079 /* 1080 * Append address and data, and optionally, control (ancillary) data to the 1081 * receive queue of a socket. If present, m0 must include a packet header 1082 * with total length. Returns 0 if no space in sockbuf or insufficient 1083 * mbufs. 1084 */ 1085 int 1086 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, 1087 struct mbuf *m0, struct mbuf *control) 1088 { 1089 int retval; 1090 1091 SOCKBUF_LOCK(sb); 1092 retval = sbappendaddr_locked(sb, asa, m0, control); 1093 SOCKBUF_UNLOCK(sb); 1094 return (retval); 1095 } 1096 1097 void 1098 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0, 1099 struct mbuf *control, int flags) 1100 { 1101 struct mbuf *m, *mlast; 1102 1103 sbm_clrprotoflags(m0, flags); 1104 m_last(control)->m_next = m0; 1105 1106 SBLASTRECORDCHK(sb); 1107 1108 for (m = control; m->m_next; m = m->m_next) 1109 sballoc(sb, m); 1110 sballoc(sb, m); 1111 mlast = m; 1112 SBLINKRECORD(sb, control); 1113 1114 sb->sb_mbtail = mlast; 1115 SBLASTMBUFCHK(sb); 1116 1117 SBLASTRECORDCHK(sb); 1118 } 1119 1120 void 1121 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control, 1122 int flags) 1123 { 1124 1125 SOCKBUF_LOCK(sb); 1126 sbappendcontrol_locked(sb, m0, control, flags); 1127 SOCKBUF_UNLOCK(sb); 1128 } 1129 1130 /* 1131 * Append the data in mbuf chain (m) into the socket buffer sb following mbuf 1132 * (n). If (n) is NULL, the buffer is presumed empty. 1133 * 1134 * When the data is compressed, mbufs in the chain may be handled in one of 1135 * three ways: 1136 * 1137 * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no 1138 * record boundary, and no change in data type). 1139 * 1140 * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into 1141 * an mbuf already in the socket buffer. This can occur if an 1142 * appropriate mbuf exists, there is room, both mbufs are not marked as 1143 * not ready, and no merging of data types will occur. 1144 * 1145 * (3) The mbuf may be appended to the end of the existing mbuf chain. 1146 * 1147 * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as 1148 * end-of-record. 1149 */ 1150 void 1151 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n) 1152 { 1153 int eor = 0; 1154 struct mbuf *o; 1155 1156 SOCKBUF_LOCK_ASSERT(sb); 1157 1158 while (m) { 1159 eor |= m->m_flags & M_EOR; 1160 if (m->m_len == 0 && 1161 (eor == 0 || 1162 (((o = m->m_next) || (o = n)) && 1163 o->m_type == m->m_type))) { 1164 if (sb->sb_lastrecord == m) 1165 sb->sb_lastrecord = m->m_next; 1166 m = m_free(m); 1167 continue; 1168 } 1169 if (n && (n->m_flags & M_EOR) == 0 && 1170 M_WRITABLE(n) && 1171 ((sb->sb_flags & SB_NOCOALESCE) == 0) && 1172 !(m->m_flags & M_NOTREADY) && 1173 !(n->m_flags & (M_NOTREADY | M_EXTPG)) && 1174 !mbuf_has_tls_session(m) && 1175 !mbuf_has_tls_session(n) && 1176 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ 1177 m->m_len <= M_TRAILINGSPACE(n) && 1178 n->m_type == m->m_type) { 1179 m_copydata(m, 0, m->m_len, mtodo(n, n->m_len)); 1180 n->m_len += m->m_len; 1181 sb->sb_ccc += m->m_len; 1182 if (sb->sb_fnrdy == NULL) 1183 sb->sb_acc += m->m_len; 1184 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA) 1185 /* XXX: Probably don't need.*/ 1186 sb->sb_ctl += m->m_len; 1187 m = m_free(m); 1188 continue; 1189 } 1190 if (m->m_len <= MLEN && (m->m_flags & M_EXTPG) && 1191 (m->m_flags & M_NOTREADY) == 0 && 1192 !mbuf_has_tls_session(m)) 1193 (void)mb_unmapped_compress(m); 1194 if (n) 1195 n->m_next = m; 1196 else 1197 sb->sb_mb = m; 1198 sb->sb_mbtail = m; 1199 sballoc(sb, m); 1200 n = m; 1201 m->m_flags &= ~M_EOR; 1202 m = m->m_next; 1203 n->m_next = 0; 1204 } 1205 if (eor) { 1206 KASSERT(n != NULL, ("sbcompress: eor && n == NULL")); 1207 n->m_flags |= eor; 1208 } 1209 SBLASTMBUFCHK(sb); 1210 } 1211 1212 /* 1213 * Free all mbufs in a sockbuf. Check that all resources are reclaimed. 1214 */ 1215 static void 1216 sbflush_internal(struct sockbuf *sb) 1217 { 1218 1219 while (sb->sb_mbcnt) { 1220 /* 1221 * Don't call sbcut(sb, 0) if the leading mbuf is non-empty: 1222 * we would loop forever. Panic instead. 1223 */ 1224 if (sb->sb_ccc == 0 && (sb->sb_mb == NULL || sb->sb_mb->m_len)) 1225 break; 1226 m_freem(sbcut_internal(sb, (int)sb->sb_ccc)); 1227 } 1228 KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0, 1229 ("%s: ccc %u mb %p mbcnt %u", __func__, 1230 sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt)); 1231 } 1232 1233 void 1234 sbflush_locked(struct sockbuf *sb) 1235 { 1236 1237 SOCKBUF_LOCK_ASSERT(sb); 1238 sbflush_internal(sb); 1239 } 1240 1241 void 1242 sbflush(struct sockbuf *sb) 1243 { 1244 1245 SOCKBUF_LOCK(sb); 1246 sbflush_locked(sb); 1247 SOCKBUF_UNLOCK(sb); 1248 } 1249 1250 /* 1251 * Cut data from (the front of) a sockbuf. 1252 */ 1253 static struct mbuf * 1254 sbcut_internal(struct sockbuf *sb, int len) 1255 { 1256 struct mbuf *m, *next, *mfree; 1257 1258 KASSERT(len >= 0, ("%s: len is %d but it is supposed to be >= 0", 1259 __func__, len)); 1260 KASSERT(len <= sb->sb_ccc, ("%s: len: %d is > ccc: %u", 1261 __func__, len, sb->sb_ccc)); 1262 1263 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 1264 mfree = NULL; 1265 1266 while (len > 0) { 1267 if (m == NULL) { 1268 KASSERT(next, ("%s: no next, len %d", __func__, len)); 1269 m = next; 1270 next = m->m_nextpkt; 1271 } 1272 if (m->m_len > len) { 1273 KASSERT(!(m->m_flags & M_NOTAVAIL), 1274 ("%s: m %p M_NOTAVAIL", __func__, m)); 1275 m->m_len -= len; 1276 m->m_data += len; 1277 sb->sb_ccc -= len; 1278 sb->sb_acc -= len; 1279 if (sb->sb_sndptroff != 0) 1280 sb->sb_sndptroff -= len; 1281 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA) 1282 sb->sb_ctl -= len; 1283 break; 1284 } 1285 len -= m->m_len; 1286 sbfree(sb, m); 1287 /* 1288 * Do not put M_NOTREADY buffers to the free list, they 1289 * are referenced from outside. 1290 */ 1291 if (m->m_flags & M_NOTREADY) 1292 m = m->m_next; 1293 else { 1294 struct mbuf *n; 1295 1296 n = m->m_next; 1297 m->m_next = mfree; 1298 mfree = m; 1299 m = n; 1300 } 1301 } 1302 /* 1303 * Free any zero-length mbufs from the buffer. 1304 * For SOCK_DGRAM sockets such mbufs represent empty records. 1305 * XXX: For SOCK_STREAM sockets such mbufs can appear in the buffer, 1306 * when sosend_generic() needs to send only control data. 1307 */ 1308 while (m && m->m_len == 0) { 1309 struct mbuf *n; 1310 1311 sbfree(sb, m); 1312 n = m->m_next; 1313 m->m_next = mfree; 1314 mfree = m; 1315 m = n; 1316 } 1317 if (m) { 1318 sb->sb_mb = m; 1319 m->m_nextpkt = next; 1320 } else 1321 sb->sb_mb = next; 1322 /* 1323 * First part is an inline SB_EMPTY_FIXUP(). Second part makes sure 1324 * sb_lastrecord is up-to-date if we dropped part of the last record. 1325 */ 1326 m = sb->sb_mb; 1327 if (m == NULL) { 1328 sb->sb_mbtail = NULL; 1329 sb->sb_lastrecord = NULL; 1330 } else if (m->m_nextpkt == NULL) { 1331 sb->sb_lastrecord = m; 1332 } 1333 1334 return (mfree); 1335 } 1336 1337 /* 1338 * Drop data from (the front of) a sockbuf. 1339 */ 1340 void 1341 sbdrop_locked(struct sockbuf *sb, int len) 1342 { 1343 1344 SOCKBUF_LOCK_ASSERT(sb); 1345 m_freem(sbcut_internal(sb, len)); 1346 } 1347 1348 /* 1349 * Drop data from (the front of) a sockbuf, 1350 * and return it to caller. 1351 */ 1352 struct mbuf * 1353 sbcut_locked(struct sockbuf *sb, int len) 1354 { 1355 1356 SOCKBUF_LOCK_ASSERT(sb); 1357 return (sbcut_internal(sb, len)); 1358 } 1359 1360 void 1361 sbdrop(struct sockbuf *sb, int len) 1362 { 1363 struct mbuf *mfree; 1364 1365 SOCKBUF_LOCK(sb); 1366 mfree = sbcut_internal(sb, len); 1367 SOCKBUF_UNLOCK(sb); 1368 1369 m_freem(mfree); 1370 } 1371 1372 struct mbuf * 1373 sbsndptr_noadv(struct sockbuf *sb, uint32_t off, uint32_t *moff) 1374 { 1375 struct mbuf *m; 1376 1377 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__)); 1378 if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) { 1379 *moff = off; 1380 if (sb->sb_sndptr == NULL) { 1381 sb->sb_sndptr = sb->sb_mb; 1382 sb->sb_sndptroff = 0; 1383 } 1384 return (sb->sb_mb); 1385 } else { 1386 m = sb->sb_sndptr; 1387 off -= sb->sb_sndptroff; 1388 } 1389 *moff = off; 1390 return (m); 1391 } 1392 1393 void 1394 sbsndptr_adv(struct sockbuf *sb, struct mbuf *mb, uint32_t len) 1395 { 1396 /* 1397 * A small copy was done, advance forward the sb_sbsndptr to cover 1398 * it. 1399 */ 1400 struct mbuf *m; 1401 1402 if (mb != sb->sb_sndptr) { 1403 /* Did not copyout at the same mbuf */ 1404 return; 1405 } 1406 m = mb; 1407 while (m && (len > 0)) { 1408 if (len >= m->m_len) { 1409 len -= m->m_len; 1410 if (m->m_next) { 1411 sb->sb_sndptroff += m->m_len; 1412 sb->sb_sndptr = m->m_next; 1413 } 1414 m = m->m_next; 1415 } else { 1416 len = 0; 1417 } 1418 } 1419 } 1420 1421 /* 1422 * Return the first mbuf and the mbuf data offset for the provided 1423 * send offset without changing the "sb_sndptroff" field. 1424 */ 1425 struct mbuf * 1426 sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff) 1427 { 1428 struct mbuf *m; 1429 1430 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__)); 1431 1432 /* 1433 * If the "off" is below the stored offset, which happens on 1434 * retransmits, just use "sb_mb": 1435 */ 1436 if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) { 1437 m = sb->sb_mb; 1438 } else { 1439 m = sb->sb_sndptr; 1440 off -= sb->sb_sndptroff; 1441 } 1442 while (off > 0 && m != NULL) { 1443 if (off < m->m_len) 1444 break; 1445 off -= m->m_len; 1446 m = m->m_next; 1447 } 1448 *moff = off; 1449 return (m); 1450 } 1451 1452 /* 1453 * Drop a record off the front of a sockbuf and move the next record to the 1454 * front. 1455 */ 1456 void 1457 sbdroprecord_locked(struct sockbuf *sb) 1458 { 1459 struct mbuf *m; 1460 1461 SOCKBUF_LOCK_ASSERT(sb); 1462 1463 m = sb->sb_mb; 1464 if (m) { 1465 sb->sb_mb = m->m_nextpkt; 1466 do { 1467 sbfree(sb, m); 1468 m = m_free(m); 1469 } while (m); 1470 } 1471 SB_EMPTY_FIXUP(sb); 1472 } 1473 1474 /* 1475 * Drop a record off the front of a sockbuf and move the next record to the 1476 * front. 1477 */ 1478 void 1479 sbdroprecord(struct sockbuf *sb) 1480 { 1481 1482 SOCKBUF_LOCK(sb); 1483 sbdroprecord_locked(sb); 1484 SOCKBUF_UNLOCK(sb); 1485 } 1486 1487 /* 1488 * Create a "control" mbuf containing the specified data with the specified 1489 * type for presentation on a socket buffer. 1490 */ 1491 struct mbuf * 1492 sbcreatecontrol(caddr_t p, int size, int type, int level) 1493 { 1494 struct cmsghdr *cp; 1495 struct mbuf *m; 1496 1497 if (CMSG_SPACE((u_int)size) > MCLBYTES) 1498 return ((struct mbuf *) NULL); 1499 if (CMSG_SPACE((u_int)size) > MLEN) 1500 m = m_getcl(M_NOWAIT, MT_CONTROL, 0); 1501 else 1502 m = m_get(M_NOWAIT, MT_CONTROL); 1503 if (m == NULL) 1504 return ((struct mbuf *) NULL); 1505 cp = mtod(m, struct cmsghdr *); 1506 m->m_len = 0; 1507 KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m), 1508 ("sbcreatecontrol: short mbuf")); 1509 /* 1510 * Don't leave the padding between the msg header and the 1511 * cmsg data and the padding after the cmsg data un-initialized. 1512 */ 1513 bzero(cp, CMSG_SPACE((u_int)size)); 1514 if (p != NULL) 1515 (void)memcpy(CMSG_DATA(cp), p, size); 1516 m->m_len = CMSG_SPACE(size); 1517 cp->cmsg_len = CMSG_LEN(size); 1518 cp->cmsg_level = level; 1519 cp->cmsg_type = type; 1520 return (m); 1521 } 1522 1523 /* 1524 * This does the same for socket buffers that sotoxsocket does for sockets: 1525 * generate an user-format data structure describing the socket buffer. Note 1526 * that the xsockbuf structure, since it is always embedded in a socket, does 1527 * not include a self pointer nor a length. We make this entry point public 1528 * in case some other mechanism needs it. 1529 */ 1530 void 1531 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb) 1532 { 1533 1534 xsb->sb_cc = sb->sb_ccc; 1535 xsb->sb_hiwat = sb->sb_hiwat; 1536 xsb->sb_mbcnt = sb->sb_mbcnt; 1537 xsb->sb_mcnt = sb->sb_mcnt; 1538 xsb->sb_ccnt = sb->sb_ccnt; 1539 xsb->sb_mbmax = sb->sb_mbmax; 1540 xsb->sb_lowat = sb->sb_lowat; 1541 xsb->sb_flags = sb->sb_flags; 1542 xsb->sb_timeo = sb->sb_timeo; 1543 } 1544 1545 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */ 1546 static int dummy; 1547 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW | CTLFLAG_SKIP, &dummy, 0, ""); 1548 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, 1549 CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sb_max, 0, 1550 sysctl_handle_sb_max, "LU", 1551 "Maximum socket buffer size"); 1552 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW, 1553 &sb_efficiency, 0, "Socket buffer size waste factor"); 1554