1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_param.h" 36 37 #include <sys/param.h> 38 #include <sys/aio.h> /* for aio_swake proto */ 39 #include <sys/domain.h> 40 #include <sys/event.h> 41 #include <sys/eventhandler.h> 42 #include <sys/file.h> /* for maxfiles */ 43 #include <sys/kernel.h> 44 #include <sys/lock.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/mutex.h> 48 #include <sys/proc.h> 49 #include <sys/protosw.h> 50 #include <sys/resourcevar.h> 51 #include <sys/signalvar.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/stat.h> 55 #include <sys/sysctl.h> 56 #include <sys/systm.h> 57 58 void (*aio_swake)(struct socket *, struct sockbuf *); 59 60 /* 61 * Primitive routines for operating on sockets and socket buffers 62 */ 63 64 u_long sb_max = SB_MAX; 65 static u_long sb_max_adj = 66 SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */ 67 68 static u_long sb_efficiency = 8; /* parameter for sbreserve() */ 69 70 /* 71 * Procedures to manipulate state flags of socket 72 * and do appropriate wakeups. Normal sequence from the 73 * active (originating) side is that soisconnecting() is 74 * called during processing of connect() call, 75 * resulting in an eventual call to soisconnected() if/when the 76 * connection is established. When the connection is torn down 77 * soisdisconnecting() is called during processing of disconnect() call, 78 * and soisdisconnected() is called when the connection to the peer 79 * is totally severed. The semantics of these routines are such that 80 * connectionless protocols can call soisconnected() and soisdisconnected() 81 * only, bypassing the in-progress calls when setting up a ``connection'' 82 * takes no time. 83 * 84 * From the passive side, a socket is created with 85 * two queues of sockets: so_incomp for connections in progress 86 * and so_comp for connections already made and awaiting user acceptance. 87 * As a protocol is preparing incoming connections, it creates a socket 88 * structure queued on so_incomp by calling sonewconn(). When the connection 89 * is established, soisconnected() is called, and transfers the 90 * socket structure to so_comp, making it available to accept(). 91 * 92 * If a socket is closed with sockets on either 93 * so_incomp or so_comp, these sockets are dropped. 94 * 95 * If higher level protocols are implemented in 96 * the kernel, the wakeups done here will sometimes 97 * cause software-interrupt process scheduling. 98 */ 99 100 void 101 soisconnecting(so) 102 register struct socket *so; 103 { 104 105 SOCK_LOCK(so); 106 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 107 so->so_state |= SS_ISCONNECTING; 108 SOCK_UNLOCK(so); 109 } 110 111 void 112 soisconnected(so) 113 struct socket *so; 114 { 115 struct socket *head; 116 117 ACCEPT_LOCK(); 118 SOCK_LOCK(so); 119 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 120 so->so_state |= SS_ISCONNECTED; 121 head = so->so_head; 122 if (head != NULL && (so->so_qstate & SQ_INCOMP)) { 123 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 124 SOCK_UNLOCK(so); 125 TAILQ_REMOVE(&head->so_incomp, so, so_list); 126 head->so_incqlen--; 127 so->so_qstate &= ~SQ_INCOMP; 128 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 129 head->so_qlen++; 130 so->so_qstate |= SQ_COMP; 131 ACCEPT_UNLOCK(); 132 sorwakeup(head); 133 wakeup_one(&head->so_timeo); 134 } else { 135 ACCEPT_UNLOCK(); 136 so->so_upcall = 137 head->so_accf->so_accept_filter->accf_callback; 138 so->so_upcallarg = head->so_accf->so_accept_filter_arg; 139 so->so_rcv.sb_flags |= SB_UPCALL; 140 so->so_options &= ~SO_ACCEPTFILTER; 141 SOCK_UNLOCK(so); 142 so->so_upcall(so, so->so_upcallarg, M_DONTWAIT); 143 } 144 return; 145 } 146 SOCK_UNLOCK(so); 147 ACCEPT_UNLOCK(); 148 wakeup(&so->so_timeo); 149 sorwakeup(so); 150 sowwakeup(so); 151 } 152 153 void 154 soisdisconnecting(so) 155 register struct socket *so; 156 { 157 158 /* 159 * XXXRW: This code assumes that SOCK_LOCK(so) and 160 * SOCKBUF_LOCK(&so->so_rcv) are the same. 161 */ 162 SOCKBUF_LOCK(&so->so_rcv); 163 so->so_state &= ~SS_ISCONNECTING; 164 so->so_state |= SS_ISDISCONNECTING; 165 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 166 sorwakeup_locked(so); 167 SOCKBUF_LOCK(&so->so_snd); 168 so->so_snd.sb_state |= SBS_CANTSENDMORE; 169 sowwakeup_locked(so); 170 wakeup(&so->so_timeo); 171 } 172 173 void 174 soisdisconnected(so) 175 register struct socket *so; 176 { 177 178 /* 179 * XXXRW: This code assumes that SOCK_LOCK(so) and 180 * SOCKBUF_LOCK(&so->so_rcv) are the same. 181 */ 182 SOCKBUF_LOCK(&so->so_rcv); 183 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 184 so->so_state |= SS_ISDISCONNECTED; 185 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 186 sorwakeup_locked(so); 187 SOCKBUF_LOCK(&so->so_snd); 188 so->so_snd.sb_state |= SBS_CANTSENDMORE; 189 sbdrop_locked(&so->so_snd, so->so_snd.sb_cc); 190 sowwakeup_locked(so); 191 wakeup(&so->so_timeo); 192 } 193 194 /* 195 * Socantsendmore indicates that no more data will be sent on the 196 * socket; it would normally be applied to a socket when the user 197 * informs the system that no more data is to be sent, by the protocol 198 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 199 * will be received, and will normally be applied to the socket by a 200 * protocol when it detects that the peer will send no more data. 201 * Data queued for reading in the socket may yet be read. 202 */ 203 void 204 socantsendmore_locked(so) 205 struct socket *so; 206 { 207 208 SOCKBUF_LOCK_ASSERT(&so->so_snd); 209 210 so->so_snd.sb_state |= SBS_CANTSENDMORE; 211 sowwakeup_locked(so); 212 mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED); 213 } 214 215 void 216 socantsendmore(so) 217 struct socket *so; 218 { 219 220 SOCKBUF_LOCK(&so->so_snd); 221 socantsendmore_locked(so); 222 mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED); 223 } 224 225 void 226 socantrcvmore_locked(so) 227 struct socket *so; 228 { 229 230 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 231 232 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 233 sorwakeup_locked(so); 234 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED); 235 } 236 237 void 238 socantrcvmore(so) 239 struct socket *so; 240 { 241 242 SOCKBUF_LOCK(&so->so_rcv); 243 socantrcvmore_locked(so); 244 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED); 245 } 246 247 /* 248 * Wait for data to arrive at/drain from a socket buffer. 249 */ 250 int 251 sbwait(sb) 252 struct sockbuf *sb; 253 { 254 255 SOCKBUF_LOCK_ASSERT(sb); 256 257 sb->sb_flags |= SB_WAIT; 258 return (msleep(&sb->sb_cc, &sb->sb_mtx, 259 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", 260 sb->sb_timeo)); 261 } 262 263 /* 264 * Lock a sockbuf already known to be locked; 265 * return any error returned from sleep (EINTR). 266 */ 267 int 268 sb_lock(sb) 269 register struct sockbuf *sb; 270 { 271 int error; 272 273 SOCKBUF_LOCK_ASSERT(sb); 274 275 while (sb->sb_flags & SB_LOCK) { 276 sb->sb_flags |= SB_WANT; 277 error = msleep(&sb->sb_flags, &sb->sb_mtx, 278 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH, 279 "sblock", 0); 280 if (error) 281 return (error); 282 } 283 sb->sb_flags |= SB_LOCK; 284 return (0); 285 } 286 287 /* 288 * Wakeup processes waiting on a socket buffer. Do asynchronous 289 * notification via SIGIO if the socket has the SS_ASYNC flag set. 290 * 291 * Called with the socket buffer lock held; will release the lock by the end 292 * of the function. This allows the caller to acquire the socket buffer lock 293 * while testing for the need for various sorts of wakeup and hold it through 294 * to the point where it's no longer required. We currently hold the lock 295 * through calls out to other subsystems (with the exception of kqueue), and 296 * then release it to avoid lock order issues. It's not clear that's 297 * correct. 298 */ 299 void 300 sowakeup(so, sb) 301 register struct socket *so; 302 register struct sockbuf *sb; 303 { 304 305 SOCKBUF_LOCK_ASSERT(sb); 306 307 selwakeuppri(&sb->sb_sel, PSOCK); 308 sb->sb_flags &= ~SB_SEL; 309 if (sb->sb_flags & SB_WAIT) { 310 sb->sb_flags &= ~SB_WAIT; 311 wakeup(&sb->sb_cc); 312 } 313 KNOTE_LOCKED(&sb->sb_sel.si_note, 0); 314 SOCKBUF_UNLOCK(sb); 315 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL) 316 pgsigio(&so->so_sigio, SIGIO, 0); 317 if (sb->sb_flags & SB_UPCALL) 318 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT); 319 if (sb->sb_flags & SB_AIO) 320 aio_swake(so, sb); 321 mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED); 322 } 323 324 /* 325 * Socket buffer (struct sockbuf) utility routines. 326 * 327 * Each socket contains two socket buffers: one for sending data and 328 * one for receiving data. Each buffer contains a queue of mbufs, 329 * information about the number of mbufs and amount of data in the 330 * queue, and other fields allowing select() statements and notification 331 * on data availability to be implemented. 332 * 333 * Data stored in a socket buffer is maintained as a list of records. 334 * Each record is a list of mbufs chained together with the m_next 335 * field. Records are chained together with the m_nextpkt field. The upper 336 * level routine soreceive() expects the following conventions to be 337 * observed when placing information in the receive buffer: 338 * 339 * 1. If the protocol requires each message be preceded by the sender's 340 * name, then a record containing that name must be present before 341 * any associated data (mbuf's must be of type MT_SONAME). 342 * 2. If the protocol supports the exchange of ``access rights'' (really 343 * just additional data associated with the message), and there are 344 * ``rights'' to be received, then a record containing this data 345 * should be present (mbuf's must be of type MT_RIGHTS). 346 * 3. If a name or rights record exists, then it must be followed by 347 * a data record, perhaps of zero length. 348 * 349 * Before using a new socket structure it is first necessary to reserve 350 * buffer space to the socket, by calling sbreserve(). This should commit 351 * some of the available buffer space in the system buffer pool for the 352 * socket (currently, it does nothing but enforce limits). The space 353 * should be released by calling sbrelease() when the socket is destroyed. 354 */ 355 356 int 357 soreserve(so, sndcc, rcvcc) 358 register struct socket *so; 359 u_long sndcc, rcvcc; 360 { 361 struct thread *td = curthread; 362 363 SOCKBUF_LOCK(&so->so_snd); 364 SOCKBUF_LOCK(&so->so_rcv); 365 if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0) 366 goto bad; 367 if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0) 368 goto bad2; 369 if (so->so_rcv.sb_lowat == 0) 370 so->so_rcv.sb_lowat = 1; 371 if (so->so_snd.sb_lowat == 0) 372 so->so_snd.sb_lowat = MCLBYTES; 373 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 374 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 375 SOCKBUF_UNLOCK(&so->so_rcv); 376 SOCKBUF_UNLOCK(&so->so_snd); 377 return (0); 378 bad2: 379 sbrelease_locked(&so->so_snd, so); 380 bad: 381 SOCKBUF_UNLOCK(&so->so_rcv); 382 SOCKBUF_UNLOCK(&so->so_snd); 383 return (ENOBUFS); 384 } 385 386 static int 387 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS) 388 { 389 int error = 0; 390 u_long old_sb_max = sb_max; 391 392 error = SYSCTL_OUT(req, arg1, sizeof(u_long)); 393 if (error || !req->newptr) 394 return (error); 395 error = SYSCTL_IN(req, arg1, sizeof(u_long)); 396 if (error) 397 return (error); 398 if (sb_max < MSIZE + MCLBYTES) { 399 sb_max = old_sb_max; 400 return (EINVAL); 401 } 402 sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES); 403 return (0); 404 } 405 406 /* 407 * Allot mbufs to a sockbuf. 408 * Attempt to scale mbmax so that mbcnt doesn't become limiting 409 * if buffering efficiency is near the normal case. 410 */ 411 int 412 sbreserve_locked(sb, cc, so, td) 413 struct sockbuf *sb; 414 u_long cc; 415 struct socket *so; 416 struct thread *td; 417 { 418 rlim_t sbsize_limit; 419 420 SOCKBUF_LOCK_ASSERT(sb); 421 422 /* 423 * td will only be NULL when we're in an interrupt 424 * (e.g. in tcp_input()) 425 */ 426 if (cc > sb_max_adj) 427 return (0); 428 if (td != NULL) { 429 PROC_LOCK(td->td_proc); 430 sbsize_limit = lim_cur(td->td_proc, RLIMIT_SBSIZE); 431 PROC_UNLOCK(td->td_proc); 432 } else 433 sbsize_limit = RLIM_INFINITY; 434 if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc, 435 sbsize_limit)) 436 return (0); 437 sb->sb_mbmax = min(cc * sb_efficiency, sb_max); 438 if (sb->sb_lowat > sb->sb_hiwat) 439 sb->sb_lowat = sb->sb_hiwat; 440 return (1); 441 } 442 443 int 444 sbreserve(sb, cc, so, td) 445 struct sockbuf *sb; 446 u_long cc; 447 struct socket *so; 448 struct thread *td; 449 { 450 int error; 451 452 SOCKBUF_LOCK(sb); 453 error = sbreserve_locked(sb, cc, so, td); 454 SOCKBUF_UNLOCK(sb); 455 return (error); 456 } 457 458 /* 459 * Free mbufs held by a socket, and reserved mbuf space. 460 */ 461 void 462 sbrelease_locked(sb, so) 463 struct sockbuf *sb; 464 struct socket *so; 465 { 466 467 SOCKBUF_LOCK_ASSERT(sb); 468 469 sbflush_locked(sb); 470 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0, 471 RLIM_INFINITY); 472 sb->sb_mbmax = 0; 473 } 474 475 void 476 sbrelease(sb, so) 477 struct sockbuf *sb; 478 struct socket *so; 479 { 480 481 SOCKBUF_LOCK(sb); 482 sbrelease_locked(sb, so); 483 SOCKBUF_UNLOCK(sb); 484 } 485 /* 486 * Routines to add and remove 487 * data from an mbuf queue. 488 * 489 * The routines sbappend() or sbappendrecord() are normally called to 490 * append new mbufs to a socket buffer, after checking that adequate 491 * space is available, comparing the function sbspace() with the amount 492 * of data to be added. sbappendrecord() differs from sbappend() in 493 * that data supplied is treated as the beginning of a new record. 494 * To place a sender's address, optional access rights, and data in a 495 * socket receive buffer, sbappendaddr() should be used. To place 496 * access rights and data in a socket receive buffer, sbappendrights() 497 * should be used. In either case, the new data begins a new record. 498 * Note that unlike sbappend() and sbappendrecord(), these routines check 499 * for the caller that there will be enough space to store the data. 500 * Each fails if there is not enough space, or if it cannot find mbufs 501 * to store additional information in. 502 * 503 * Reliable protocols may use the socket send buffer to hold data 504 * awaiting acknowledgement. Data is normally copied from a socket 505 * send buffer in a protocol with m_copy for output to a peer, 506 * and then removing the data from the socket buffer with sbdrop() 507 * or sbdroprecord() when the data is acknowledged by the peer. 508 */ 509 510 #ifdef SOCKBUF_DEBUG 511 void 512 sblastrecordchk(struct sockbuf *sb, const char *file, int line) 513 { 514 struct mbuf *m = sb->sb_mb; 515 516 SOCKBUF_LOCK_ASSERT(sb); 517 518 while (m && m->m_nextpkt) 519 m = m->m_nextpkt; 520 521 if (m != sb->sb_lastrecord) { 522 printf("%s: sb_mb %p sb_lastrecord %p last %p\n", 523 __func__, sb->sb_mb, sb->sb_lastrecord, m); 524 printf("packet chain:\n"); 525 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) 526 printf("\t%p\n", m); 527 panic("%s from %s:%u", __func__, file, line); 528 } 529 } 530 531 void 532 sblastmbufchk(struct sockbuf *sb, const char *file, int line) 533 { 534 struct mbuf *m = sb->sb_mb; 535 struct mbuf *n; 536 537 SOCKBUF_LOCK_ASSERT(sb); 538 539 while (m && m->m_nextpkt) 540 m = m->m_nextpkt; 541 542 while (m && m->m_next) 543 m = m->m_next; 544 545 if (m != sb->sb_mbtail) { 546 printf("%s: sb_mb %p sb_mbtail %p last %p\n", 547 __func__, sb->sb_mb, sb->sb_mbtail, m); 548 printf("packet tree:\n"); 549 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) { 550 printf("\t"); 551 for (n = m; n != NULL; n = n->m_next) 552 printf("%p ", n); 553 printf("\n"); 554 } 555 panic("%s from %s:%u", __func__, file, line); 556 } 557 } 558 #endif /* SOCKBUF_DEBUG */ 559 560 #define SBLINKRECORD(sb, m0) do { \ 561 SOCKBUF_LOCK_ASSERT(sb); \ 562 if ((sb)->sb_lastrecord != NULL) \ 563 (sb)->sb_lastrecord->m_nextpkt = (m0); \ 564 else \ 565 (sb)->sb_mb = (m0); \ 566 (sb)->sb_lastrecord = (m0); \ 567 } while (/*CONSTCOND*/0) 568 569 /* 570 * Append mbuf chain m to the last record in the 571 * socket buffer sb. The additional space associated 572 * the mbuf chain is recorded in sb. Empty mbufs are 573 * discarded and mbufs are compacted where possible. 574 */ 575 void 576 sbappend_locked(sb, m) 577 struct sockbuf *sb; 578 struct mbuf *m; 579 { 580 register struct mbuf *n; 581 582 SOCKBUF_LOCK_ASSERT(sb); 583 584 if (m == 0) 585 return; 586 587 SBLASTRECORDCHK(sb); 588 n = sb->sb_mb; 589 if (n) { 590 while (n->m_nextpkt) 591 n = n->m_nextpkt; 592 do { 593 if (n->m_flags & M_EOR) { 594 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */ 595 return; 596 } 597 } while (n->m_next && (n = n->m_next)); 598 } else { 599 /* 600 * XXX Would like to simply use sb_mbtail here, but 601 * XXX I need to verify that I won't miss an EOR that 602 * XXX way. 603 */ 604 if ((n = sb->sb_lastrecord) != NULL) { 605 do { 606 if (n->m_flags & M_EOR) { 607 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */ 608 return; 609 } 610 } while (n->m_next && (n = n->m_next)); 611 } else { 612 /* 613 * If this is the first record in the socket buffer, 614 * it's also the last record. 615 */ 616 sb->sb_lastrecord = m; 617 } 618 } 619 sbcompress(sb, m, n); 620 SBLASTRECORDCHK(sb); 621 } 622 623 /* 624 * Append mbuf chain m to the last record in the 625 * socket buffer sb. The additional space associated 626 * the mbuf chain is recorded in sb. Empty mbufs are 627 * discarded and mbufs are compacted where possible. 628 */ 629 void 630 sbappend(sb, m) 631 struct sockbuf *sb; 632 struct mbuf *m; 633 { 634 635 SOCKBUF_LOCK(sb); 636 sbappend_locked(sb, m); 637 SOCKBUF_UNLOCK(sb); 638 } 639 640 /* 641 * This version of sbappend() should only be used when the caller 642 * absolutely knows that there will never be more than one record 643 * in the socket buffer, that is, a stream protocol (such as TCP). 644 */ 645 void 646 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m) 647 { 648 SOCKBUF_LOCK_ASSERT(sb); 649 650 KASSERT(m->m_nextpkt == NULL,("sbappendstream 0")); 651 KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1")); 652 653 SBLASTMBUFCHK(sb); 654 655 sbcompress(sb, m, sb->sb_mbtail); 656 657 sb->sb_lastrecord = sb->sb_mb; 658 SBLASTRECORDCHK(sb); 659 } 660 661 /* 662 * This version of sbappend() should only be used when the caller 663 * absolutely knows that there will never be more than one record 664 * in the socket buffer, that is, a stream protocol (such as TCP). 665 */ 666 void 667 sbappendstream(struct sockbuf *sb, struct mbuf *m) 668 { 669 670 SOCKBUF_LOCK(sb); 671 sbappendstream_locked(sb, m); 672 SOCKBUF_UNLOCK(sb); 673 } 674 675 #ifdef SOCKBUF_DEBUG 676 void 677 sbcheck(sb) 678 struct sockbuf *sb; 679 { 680 struct mbuf *m; 681 struct mbuf *n = 0; 682 u_long len = 0, mbcnt = 0; 683 684 SOCKBUF_LOCK_ASSERT(sb); 685 686 for (m = sb->sb_mb; m; m = n) { 687 n = m->m_nextpkt; 688 for (; m; m = m->m_next) { 689 len += m->m_len; 690 mbcnt += MSIZE; 691 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ 692 mbcnt += m->m_ext.ext_size; 693 } 694 } 695 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 696 printf("cc %ld != %u || mbcnt %ld != %u\n", len, sb->sb_cc, 697 mbcnt, sb->sb_mbcnt); 698 panic("sbcheck"); 699 } 700 } 701 #endif 702 703 /* 704 * As above, except the mbuf chain 705 * begins a new record. 706 */ 707 void 708 sbappendrecord_locked(sb, m0) 709 register struct sockbuf *sb; 710 register struct mbuf *m0; 711 { 712 register struct mbuf *m; 713 714 SOCKBUF_LOCK_ASSERT(sb); 715 716 if (m0 == 0) 717 return; 718 m = sb->sb_mb; 719 if (m) 720 while (m->m_nextpkt) 721 m = m->m_nextpkt; 722 /* 723 * Put the first mbuf on the queue. 724 * Note this permits zero length records. 725 */ 726 sballoc(sb, m0); 727 SBLASTRECORDCHK(sb); 728 SBLINKRECORD(sb, m0); 729 if (m) 730 m->m_nextpkt = m0; 731 else 732 sb->sb_mb = m0; 733 m = m0->m_next; 734 m0->m_next = 0; 735 if (m && (m0->m_flags & M_EOR)) { 736 m0->m_flags &= ~M_EOR; 737 m->m_flags |= M_EOR; 738 } 739 sbcompress(sb, m, m0); 740 } 741 742 /* 743 * As above, except the mbuf chain 744 * begins a new record. 745 */ 746 void 747 sbappendrecord(sb, m0) 748 register struct sockbuf *sb; 749 register struct mbuf *m0; 750 { 751 752 SOCKBUF_LOCK(sb); 753 sbappendrecord_locked(sb, m0); 754 SOCKBUF_UNLOCK(sb); 755 } 756 757 /* 758 * Append address and data, and optionally, control (ancillary) data 759 * to the receive queue of a socket. If present, 760 * m0 must include a packet header with total length. 761 * Returns 0 if no space in sockbuf or insufficient mbufs. 762 */ 763 int 764 sbappendaddr_locked(sb, asa, m0, control) 765 struct sockbuf *sb; 766 const struct sockaddr *asa; 767 struct mbuf *m0, *control; 768 { 769 struct mbuf *m, *n, *nlast; 770 int space = asa->sa_len; 771 772 SOCKBUF_LOCK_ASSERT(sb); 773 774 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 775 panic("sbappendaddr_locked"); 776 if (m0) 777 space += m0->m_pkthdr.len; 778 space += m_length(control, &n); 779 780 if (space > sbspace(sb)) 781 return (0); 782 #if MSIZE <= 256 783 if (asa->sa_len > MLEN) 784 return (0); 785 #endif 786 MGET(m, M_DONTWAIT, MT_SONAME); 787 if (m == 0) 788 return (0); 789 m->m_len = asa->sa_len; 790 bcopy(asa, mtod(m, caddr_t), asa->sa_len); 791 if (n) 792 n->m_next = m0; /* concatenate data to control */ 793 else 794 control = m0; 795 m->m_next = control; 796 for (n = m; n->m_next != NULL; n = n->m_next) 797 sballoc(sb, n); 798 sballoc(sb, n); 799 nlast = n; 800 SBLINKRECORD(sb, m); 801 802 sb->sb_mbtail = nlast; 803 SBLASTMBUFCHK(sb); 804 805 SBLASTRECORDCHK(sb); 806 return (1); 807 } 808 809 /* 810 * Append address and data, and optionally, control (ancillary) data 811 * to the receive queue of a socket. If present, 812 * m0 must include a packet header with total length. 813 * Returns 0 if no space in sockbuf or insufficient mbufs. 814 */ 815 int 816 sbappendaddr(sb, asa, m0, control) 817 struct sockbuf *sb; 818 const struct sockaddr *asa; 819 struct mbuf *m0, *control; 820 { 821 int retval; 822 823 SOCKBUF_LOCK(sb); 824 retval = sbappendaddr_locked(sb, asa, m0, control); 825 SOCKBUF_UNLOCK(sb); 826 return (retval); 827 } 828 829 int 830 sbappendcontrol_locked(sb, m0, control) 831 struct sockbuf *sb; 832 struct mbuf *control, *m0; 833 { 834 struct mbuf *m, *n, *mlast; 835 int space; 836 837 SOCKBUF_LOCK_ASSERT(sb); 838 839 if (control == 0) 840 panic("sbappendcontrol_locked"); 841 space = m_length(control, &n) + m_length(m0, NULL); 842 843 if (space > sbspace(sb)) 844 return (0); 845 n->m_next = m0; /* concatenate data to control */ 846 847 SBLASTRECORDCHK(sb); 848 849 for (m = control; m->m_next; m = m->m_next) 850 sballoc(sb, m); 851 sballoc(sb, m); 852 mlast = m; 853 SBLINKRECORD(sb, control); 854 855 sb->sb_mbtail = mlast; 856 SBLASTMBUFCHK(sb); 857 858 SBLASTRECORDCHK(sb); 859 return (1); 860 } 861 862 int 863 sbappendcontrol(sb, m0, control) 864 struct sockbuf *sb; 865 struct mbuf *control, *m0; 866 { 867 int retval; 868 869 SOCKBUF_LOCK(sb); 870 retval = sbappendcontrol_locked(sb, m0, control); 871 SOCKBUF_UNLOCK(sb); 872 return (retval); 873 } 874 875 /* 876 * Append the data in mbuf chain (m) into the socket buffer sb following mbuf 877 * (n). If (n) is NULL, the buffer is presumed empty. 878 * 879 * When the data is compressed, mbufs in the chain may be handled in one of 880 * three ways: 881 * 882 * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no 883 * record boundary, and no change in data type). 884 * 885 * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into 886 * an mbuf already in the socket buffer. This can occur if an 887 * appropriate mbuf exists, there is room, and no merging of data types 888 * will occur. 889 * 890 * (3) The mbuf may be appended to the end of the existing mbuf chain. 891 * 892 * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as 893 * end-of-record. 894 */ 895 void 896 sbcompress(sb, m, n) 897 register struct sockbuf *sb; 898 register struct mbuf *m, *n; 899 { 900 register int eor = 0; 901 register struct mbuf *o; 902 903 SOCKBUF_LOCK_ASSERT(sb); 904 905 while (m) { 906 eor |= m->m_flags & M_EOR; 907 if (m->m_len == 0 && 908 (eor == 0 || 909 (((o = m->m_next) || (o = n)) && 910 o->m_type == m->m_type))) { 911 if (sb->sb_lastrecord == m) 912 sb->sb_lastrecord = m->m_next; 913 m = m_free(m); 914 continue; 915 } 916 if (n && (n->m_flags & M_EOR) == 0 && 917 M_WRITABLE(n) && 918 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ 919 m->m_len <= M_TRAILINGSPACE(n) && 920 n->m_type == m->m_type) { 921 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, 922 (unsigned)m->m_len); 923 n->m_len += m->m_len; 924 sb->sb_cc += m->m_len; 925 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA) 926 /* XXX: Probably don't need.*/ 927 sb->sb_ctl += m->m_len; 928 m = m_free(m); 929 continue; 930 } 931 if (n) 932 n->m_next = m; 933 else 934 sb->sb_mb = m; 935 sb->sb_mbtail = m; 936 sballoc(sb, m); 937 n = m; 938 m->m_flags &= ~M_EOR; 939 m = m->m_next; 940 n->m_next = 0; 941 } 942 if (eor) { 943 KASSERT(n != NULL, ("sbcompress: eor && n == NULL")); 944 n->m_flags |= eor; 945 } 946 SBLASTMBUFCHK(sb); 947 } 948 949 /* 950 * Free all mbufs in a sockbuf. 951 * Check that all resources are reclaimed. 952 */ 953 void 954 sbflush_locked(sb) 955 register struct sockbuf *sb; 956 { 957 958 SOCKBUF_LOCK_ASSERT(sb); 959 960 if (sb->sb_flags & SB_LOCK) 961 panic("sbflush_locked: locked"); 962 while (sb->sb_mbcnt) { 963 /* 964 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty: 965 * we would loop forever. Panic instead. 966 */ 967 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len)) 968 break; 969 sbdrop_locked(sb, (int)sb->sb_cc); 970 } 971 if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt) 972 panic("sbflush_locked: cc %u || mb %p || mbcnt %u", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt); 973 } 974 975 void 976 sbflush(sb) 977 register struct sockbuf *sb; 978 { 979 980 SOCKBUF_LOCK(sb); 981 sbflush_locked(sb); 982 SOCKBUF_UNLOCK(sb); 983 } 984 985 /* 986 * Drop data from (the front of) a sockbuf. 987 */ 988 void 989 sbdrop_locked(sb, len) 990 register struct sockbuf *sb; 991 register int len; 992 { 993 register struct mbuf *m; 994 struct mbuf *next; 995 996 SOCKBUF_LOCK_ASSERT(sb); 997 998 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 999 while (len > 0) { 1000 if (m == 0) { 1001 if (next == 0) 1002 panic("sbdrop"); 1003 m = next; 1004 next = m->m_nextpkt; 1005 continue; 1006 } 1007 if (m->m_len > len) { 1008 m->m_len -= len; 1009 m->m_data += len; 1010 sb->sb_cc -= len; 1011 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA) 1012 sb->sb_ctl -= len; 1013 break; 1014 } 1015 len -= m->m_len; 1016 sbfree(sb, m); 1017 m = m_free(m); 1018 } 1019 while (m && m->m_len == 0) { 1020 sbfree(sb, m); 1021 m = m_free(m); 1022 } 1023 if (m) { 1024 sb->sb_mb = m; 1025 m->m_nextpkt = next; 1026 } else 1027 sb->sb_mb = next; 1028 /* 1029 * First part is an inline SB_EMPTY_FIXUP(). Second part 1030 * makes sure sb_lastrecord is up-to-date if we dropped 1031 * part of the last record. 1032 */ 1033 m = sb->sb_mb; 1034 if (m == NULL) { 1035 sb->sb_mbtail = NULL; 1036 sb->sb_lastrecord = NULL; 1037 } else if (m->m_nextpkt == NULL) { 1038 sb->sb_lastrecord = m; 1039 } 1040 } 1041 1042 /* 1043 * Drop data from (the front of) a sockbuf. 1044 */ 1045 void 1046 sbdrop(sb, len) 1047 register struct sockbuf *sb; 1048 register int len; 1049 { 1050 1051 SOCKBUF_LOCK(sb); 1052 sbdrop_locked(sb, len); 1053 SOCKBUF_UNLOCK(sb); 1054 } 1055 1056 /* 1057 * Drop a record off the front of a sockbuf 1058 * and move the next record to the front. 1059 */ 1060 void 1061 sbdroprecord_locked(sb) 1062 register struct sockbuf *sb; 1063 { 1064 register struct mbuf *m; 1065 1066 SOCKBUF_LOCK_ASSERT(sb); 1067 1068 m = sb->sb_mb; 1069 if (m) { 1070 sb->sb_mb = m->m_nextpkt; 1071 do { 1072 sbfree(sb, m); 1073 m = m_free(m); 1074 } while (m); 1075 } 1076 SB_EMPTY_FIXUP(sb); 1077 } 1078 1079 /* 1080 * Drop a record off the front of a sockbuf 1081 * and move the next record to the front. 1082 */ 1083 void 1084 sbdroprecord(sb) 1085 register struct sockbuf *sb; 1086 { 1087 1088 SOCKBUF_LOCK(sb); 1089 sbdroprecord_locked(sb); 1090 SOCKBUF_UNLOCK(sb); 1091 } 1092 1093 /* 1094 * Create a "control" mbuf containing the specified data 1095 * with the specified type for presentation on a socket buffer. 1096 */ 1097 struct mbuf * 1098 sbcreatecontrol(p, size, type, level) 1099 caddr_t p; 1100 register int size; 1101 int type, level; 1102 { 1103 register struct cmsghdr *cp; 1104 struct mbuf *m; 1105 1106 if (CMSG_SPACE((u_int)size) > MCLBYTES) 1107 return ((struct mbuf *) NULL); 1108 if (CMSG_SPACE((u_int)size) > MLEN) 1109 m = m_getcl(M_DONTWAIT, MT_CONTROL, 0); 1110 else 1111 m = m_get(M_DONTWAIT, MT_CONTROL); 1112 if (m == NULL) 1113 return ((struct mbuf *) NULL); 1114 cp = mtod(m, struct cmsghdr *); 1115 m->m_len = 0; 1116 KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m), 1117 ("sbcreatecontrol: short mbuf")); 1118 if (p != NULL) 1119 (void)memcpy(CMSG_DATA(cp), p, size); 1120 m->m_len = CMSG_SPACE(size); 1121 cp->cmsg_len = CMSG_LEN(size); 1122 cp->cmsg_level = level; 1123 cp->cmsg_type = type; 1124 return (m); 1125 } 1126 1127 /* 1128 * Some routines that return EOPNOTSUPP for entry points that are not 1129 * supported by a protocol. Fill in as needed. 1130 */ 1131 int 1132 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 1133 { 1134 return EOPNOTSUPP; 1135 } 1136 1137 int 1138 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 1139 { 1140 return EOPNOTSUPP; 1141 } 1142 1143 int 1144 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 1145 { 1146 return EOPNOTSUPP; 1147 } 1148 1149 int 1150 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 1151 { 1152 return EOPNOTSUPP; 1153 } 1154 1155 int 1156 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 1157 { 1158 return EOPNOTSUPP; 1159 } 1160 1161 int 1162 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 1163 struct ifnet *ifp, struct thread *td) 1164 { 1165 return EOPNOTSUPP; 1166 } 1167 1168 int 1169 pru_disconnect_notsupp(struct socket *so) 1170 { 1171 return EOPNOTSUPP; 1172 } 1173 1174 int 1175 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 1176 { 1177 return EOPNOTSUPP; 1178 } 1179 1180 int 1181 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 1182 { 1183 return EOPNOTSUPP; 1184 } 1185 1186 int 1187 pru_rcvd_notsupp(struct socket *so, int flags) 1188 { 1189 return EOPNOTSUPP; 1190 } 1191 1192 int 1193 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 1194 { 1195 return EOPNOTSUPP; 1196 } 1197 1198 int 1199 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 1200 struct sockaddr *addr, struct mbuf *control, struct thread *td) 1201 { 1202 return EOPNOTSUPP; 1203 } 1204 1205 /* 1206 * This isn't really a ``null'' operation, but it's the default one 1207 * and doesn't do anything destructive. 1208 */ 1209 int 1210 pru_sense_null(struct socket *so, struct stat *sb) 1211 { 1212 sb->st_blksize = so->so_snd.sb_hiwat; 1213 return 0; 1214 } 1215 1216 int 1217 pru_shutdown_notsupp(struct socket *so) 1218 { 1219 return EOPNOTSUPP; 1220 } 1221 1222 int 1223 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 1224 { 1225 return EOPNOTSUPP; 1226 } 1227 1228 int 1229 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 1230 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1231 { 1232 return EOPNOTSUPP; 1233 } 1234 1235 int 1236 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 1237 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, 1238 int *flagsp) 1239 { 1240 return EOPNOTSUPP; 1241 } 1242 1243 int 1244 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 1245 struct thread *td) 1246 { 1247 return EOPNOTSUPP; 1248 } 1249 1250 /* 1251 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 1252 */ 1253 struct sockaddr * 1254 sodupsockaddr(const struct sockaddr *sa, int mflags) 1255 { 1256 struct sockaddr *sa2; 1257 1258 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 1259 if (sa2) 1260 bcopy(sa, sa2, sa->sa_len); 1261 return sa2; 1262 } 1263 1264 /* 1265 * Create an external-format (``xsocket'') structure using the information 1266 * in the kernel-format socket structure pointed to by so. This is done 1267 * to reduce the spew of irrelevant information over this interface, 1268 * to isolate user code from changes in the kernel structure, and 1269 * potentially to provide information-hiding if we decide that 1270 * some of this information should be hidden from users. 1271 */ 1272 void 1273 sotoxsocket(struct socket *so, struct xsocket *xso) 1274 { 1275 xso->xso_len = sizeof *xso; 1276 xso->xso_so = so; 1277 xso->so_type = so->so_type; 1278 xso->so_options = so->so_options; 1279 xso->so_linger = so->so_linger; 1280 xso->so_state = so->so_state; 1281 xso->so_pcb = so->so_pcb; 1282 xso->xso_protocol = so->so_proto->pr_protocol; 1283 xso->xso_family = so->so_proto->pr_domain->dom_family; 1284 xso->so_qlen = so->so_qlen; 1285 xso->so_incqlen = so->so_incqlen; 1286 xso->so_qlimit = so->so_qlimit; 1287 xso->so_timeo = so->so_timeo; 1288 xso->so_error = so->so_error; 1289 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 1290 xso->so_oobmark = so->so_oobmark; 1291 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 1292 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 1293 xso->so_uid = so->so_cred->cr_uid; 1294 } 1295 1296 /* 1297 * This does the same for sockbufs. Note that the xsockbuf structure, 1298 * since it is always embedded in a socket, does not include a self 1299 * pointer nor a length. We make this entry point public in case 1300 * some other mechanism needs it. 1301 */ 1302 void 1303 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb) 1304 { 1305 xsb->sb_cc = sb->sb_cc; 1306 xsb->sb_hiwat = sb->sb_hiwat; 1307 xsb->sb_mbcnt = sb->sb_mbcnt; 1308 xsb->sb_mbmax = sb->sb_mbmax; 1309 xsb->sb_lowat = sb->sb_lowat; 1310 xsb->sb_flags = sb->sb_flags; 1311 xsb->sb_timeo = sb->sb_timeo; 1312 } 1313 1314 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */ 1315 static int dummy; 1316 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, ""); 1317 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_ULONG|CTLFLAG_RW, 1318 &sb_max, 0, sysctl_handle_sb_max, "LU", "Maximum socket buffer size"); 1319 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW, 1320 &sb_efficiency, 0, ""); 1321