xref: /freebsd/sys/kern/uipc_sockbuf.c (revision ce834215a70ff69e7e222827437116eee2f9ac6f)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
34  *	$Id: uipc_socket2.c,v 1.24 1997/04/27 20:00:44 wollman Exp $
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/proc.h>
41 #include <sys/file.h>
42 #include <sys/buf.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/protosw.h>
46 #include <sys/stat.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/signalvar.h>
50 #include <sys/sysctl.h>
51 
52 /*
53  * Primitive routines for operating on sockets and socket buffers
54  */
55 
56 u_long	sb_max = SB_MAX;		/* XXX should be static */
57 
58 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
59 
60 /*
61  * Procedures to manipulate state flags of socket
62  * and do appropriate wakeups.  Normal sequence from the
63  * active (originating) side is that soisconnecting() is
64  * called during processing of connect() call,
65  * resulting in an eventual call to soisconnected() if/when the
66  * connection is established.  When the connection is torn down
67  * soisdisconnecting() is called during processing of disconnect() call,
68  * and soisdisconnected() is called when the connection to the peer
69  * is totally severed.  The semantics of these routines are such that
70  * connectionless protocols can call soisconnected() and soisdisconnected()
71  * only, bypassing the in-progress calls when setting up a ``connection''
72  * takes no time.
73  *
74  * From the passive side, a socket is created with
75  * two queues of sockets: so_q0 for connections in progress
76  * and so_q for connections already made and awaiting user acceptance.
77  * As a protocol is preparing incoming connections, it creates a socket
78  * structure queued on so_q0 by calling sonewconn().  When the connection
79  * is established, soisconnected() is called, and transfers the
80  * socket structure to so_q, making it available to accept().
81  *
82  * If a socket is closed with sockets on either
83  * so_q0 or so_q, these sockets are dropped.
84  *
85  * If higher level protocols are implemented in
86  * the kernel, the wakeups done here will sometimes
87  * cause software-interrupt process scheduling.
88  */
89 
90 void
91 soisconnecting(so)
92 	register struct socket *so;
93 {
94 
95 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
96 	so->so_state |= SS_ISCONNECTING;
97 }
98 
99 void
100 soisconnected(so)
101 	register struct socket *so;
102 {
103 	register struct socket *head = so->so_head;
104 
105 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
106 	so->so_state |= SS_ISCONNECTED;
107 	if (head && (so->so_state & SS_INCOMP)) {
108 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
109 		head->so_incqlen--;
110 		so->so_state &= ~SS_INCOMP;
111 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
112 		so->so_state |= SS_COMP;
113 		sorwakeup(head);
114 		wakeup_one(&head->so_timeo);
115 	} else {
116 		wakeup(&so->so_timeo);
117 		sorwakeup(so);
118 		sowwakeup(so);
119 	}
120 }
121 
122 void
123 soisdisconnecting(so)
124 	register struct socket *so;
125 {
126 
127 	so->so_state &= ~SS_ISCONNECTING;
128 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
129 	wakeup((caddr_t)&so->so_timeo);
130 	sowwakeup(so);
131 	sorwakeup(so);
132 }
133 
134 void
135 soisdisconnected(so)
136 	register struct socket *so;
137 {
138 
139 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
140 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
141 	wakeup((caddr_t)&so->so_timeo);
142 	sowwakeup(so);
143 	sorwakeup(so);
144 }
145 
146 /*
147  * Return a random connection that hasn't been serviced yet and
148  * is eligible for discard.  There is a one in qlen chance that
149  * we will return a null, saying that there are no dropable
150  * requests.  In this case, the protocol specific code should drop
151  * the new request.  This insures fairness.
152  *
153  * This may be used in conjunction with protocol specific queue
154  * congestion routines.
155  */
156 struct socket *
157 sodropablereq(head)
158 	register struct socket *head;
159 {
160 	register struct socket *so;
161 	unsigned int i, j, qlen;
162 
163 	static int rnd;
164 	static long old_mono_secs;
165 	static unsigned int cur_cnt, old_cnt;
166 
167 	if ((i = (mono_time.tv_sec - old_mono_secs)) != 0) {
168 		old_mono_secs = mono_time.tv_sec;
169 		old_cnt = cur_cnt / i;
170 		cur_cnt = 0;
171 	}
172 
173 	so = TAILQ_FIRST(&head->so_incomp);
174 	if (!so)
175 		return (so);
176 
177 	qlen = head->so_incqlen;
178 	if (++cur_cnt > qlen || old_cnt > qlen) {
179 		rnd = (314159 * rnd + 66329) & 0xffff;
180 		j = ((qlen + 1) * rnd) >> 16;
181 
182 		while (j-- && so)
183 		    so = TAILQ_NEXT(so, so_list);
184 	}
185 
186 	return (so);
187 }
188 
189 /*
190  * When an attempt at a new connection is noted on a socket
191  * which accepts connections, sonewconn is called.  If the
192  * connection is possible (subject to space constraints, etc.)
193  * then we allocate a new structure, propoerly linked into the
194  * data structure of the original socket, and return this.
195  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
196  *
197  * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
198  * to catch calls that are missing the (new) second parameter.
199  */
200 struct socket *
201 sonewconn1(head, connstatus)
202 	register struct socket *head;
203 	int connstatus;
204 {
205 	register struct socket *so;
206 
207 	if (head->so_qlen > 3 * head->so_qlimit / 2)
208 		return ((struct socket *)0);
209 	MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
210 	if (so == NULL)
211 		return ((struct socket *)0);
212 	bzero((caddr_t)so, sizeof(*so));
213 	so->so_head = head;
214 	so->so_type = head->so_type;
215 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
216 	so->so_linger = head->so_linger;
217 	so->so_state = head->so_state | SS_NOFDREF;
218 	so->so_proto = head->so_proto;
219 	so->so_timeo = head->so_timeo;
220 	so->so_pgid = head->so_pgid;
221 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
222 
223 	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, curproc)) { /*XXX*/
224 		(void) free((caddr_t)so, M_SOCKET);
225 		return ((struct socket *)0);
226 	}
227 
228 	if (connstatus) {
229 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
230 		so->so_state |= SS_COMP;
231 	} else {
232 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
233 		so->so_state |= SS_INCOMP;
234 		head->so_incqlen++;
235 	}
236 	head->so_qlen++;
237 	if (connstatus) {
238 		sorwakeup(head);
239 		wakeup((caddr_t)&head->so_timeo);
240 		so->so_state |= connstatus;
241 	}
242 	return (so);
243 }
244 
245 /*
246  * Socantsendmore indicates that no more data will be sent on the
247  * socket; it would normally be applied to a socket when the user
248  * informs the system that no more data is to be sent, by the protocol
249  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
250  * will be received, and will normally be applied to the socket by a
251  * protocol when it detects that the peer will send no more data.
252  * Data queued for reading in the socket may yet be read.
253  */
254 
255 void
256 socantsendmore(so)
257 	struct socket *so;
258 {
259 
260 	so->so_state |= SS_CANTSENDMORE;
261 	sowwakeup(so);
262 }
263 
264 void
265 socantrcvmore(so)
266 	struct socket *so;
267 {
268 
269 	so->so_state |= SS_CANTRCVMORE;
270 	sorwakeup(so);
271 }
272 
273 /*
274  * Wait for data to arrive at/drain from a socket buffer.
275  */
276 int
277 sbwait(sb)
278 	struct sockbuf *sb;
279 {
280 
281 	sb->sb_flags |= SB_WAIT;
282 	return (tsleep((caddr_t)&sb->sb_cc,
283 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
284 	    sb->sb_timeo));
285 }
286 
287 /*
288  * Lock a sockbuf already known to be locked;
289  * return any error returned from sleep (EINTR).
290  */
291 int
292 sb_lock(sb)
293 	register struct sockbuf *sb;
294 {
295 	int error;
296 
297 	while (sb->sb_flags & SB_LOCK) {
298 		sb->sb_flags |= SB_WANT;
299 		error = tsleep((caddr_t)&sb->sb_flags,
300 		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
301 		    "sblock", 0);
302 		if (error)
303 			return (error);
304 	}
305 	sb->sb_flags |= SB_LOCK;
306 	return (0);
307 }
308 
309 /*
310  * Wakeup processes waiting on a socket buffer.
311  * Do asynchronous notification via SIGIO
312  * if the socket has the SS_ASYNC flag set.
313  */
314 void
315 sowakeup(so, sb)
316 	register struct socket *so;
317 	register struct sockbuf *sb;
318 {
319 	struct proc *p;
320 
321 	selwakeup(&sb->sb_sel);
322 	sb->sb_flags &= ~SB_SEL;
323 	if (sb->sb_flags & SB_WAIT) {
324 		sb->sb_flags &= ~SB_WAIT;
325 		wakeup((caddr_t)&sb->sb_cc);
326 	}
327 	if (so->so_state & SS_ASYNC) {
328 		if (so->so_pgid < 0)
329 			gsignal(-so->so_pgid, SIGIO);
330 		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
331 			psignal(p, SIGIO);
332 	}
333 }
334 
335 /*
336  * Socket buffer (struct sockbuf) utility routines.
337  *
338  * Each socket contains two socket buffers: one for sending data and
339  * one for receiving data.  Each buffer contains a queue of mbufs,
340  * information about the number of mbufs and amount of data in the
341  * queue, and other fields allowing select() statements and notification
342  * on data availability to be implemented.
343  *
344  * Data stored in a socket buffer is maintained as a list of records.
345  * Each record is a list of mbufs chained together with the m_next
346  * field.  Records are chained together with the m_nextpkt field. The upper
347  * level routine soreceive() expects the following conventions to be
348  * observed when placing information in the receive buffer:
349  *
350  * 1. If the protocol requires each message be preceded by the sender's
351  *    name, then a record containing that name must be present before
352  *    any associated data (mbuf's must be of type MT_SONAME).
353  * 2. If the protocol supports the exchange of ``access rights'' (really
354  *    just additional data associated with the message), and there are
355  *    ``rights'' to be received, then a record containing this data
356  *    should be present (mbuf's must be of type MT_RIGHTS).
357  * 3. If a name or rights record exists, then it must be followed by
358  *    a data record, perhaps of zero length.
359  *
360  * Before using a new socket structure it is first necessary to reserve
361  * buffer space to the socket, by calling sbreserve().  This should commit
362  * some of the available buffer space in the system buffer pool for the
363  * socket (currently, it does nothing but enforce limits).  The space
364  * should be released by calling sbrelease() when the socket is destroyed.
365  */
366 
367 int
368 soreserve(so, sndcc, rcvcc)
369 	register struct socket *so;
370 	u_long sndcc, rcvcc;
371 {
372 
373 	if (sbreserve(&so->so_snd, sndcc) == 0)
374 		goto bad;
375 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
376 		goto bad2;
377 	if (so->so_rcv.sb_lowat == 0)
378 		so->so_rcv.sb_lowat = 1;
379 	if (so->so_snd.sb_lowat == 0)
380 		so->so_snd.sb_lowat = MCLBYTES;
381 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
382 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
383 	return (0);
384 bad2:
385 	sbrelease(&so->so_snd);
386 bad:
387 	return (ENOBUFS);
388 }
389 
390 /*
391  * Allot mbufs to a sockbuf.
392  * Attempt to scale mbmax so that mbcnt doesn't become limiting
393  * if buffering efficiency is near the normal case.
394  */
395 int
396 sbreserve(sb, cc)
397 	struct sockbuf *sb;
398 	u_long cc;
399 {
400 	if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES))
401 		return (0);
402 	sb->sb_hiwat = cc;
403 	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
404 	if (sb->sb_lowat > sb->sb_hiwat)
405 		sb->sb_lowat = sb->sb_hiwat;
406 	return (1);
407 }
408 
409 /*
410  * Free mbufs held by a socket, and reserved mbuf space.
411  */
412 void
413 sbrelease(sb)
414 	struct sockbuf *sb;
415 {
416 
417 	sbflush(sb);
418 	sb->sb_hiwat = sb->sb_mbmax = 0;
419 }
420 
421 /*
422  * Routines to add and remove
423  * data from an mbuf queue.
424  *
425  * The routines sbappend() or sbappendrecord() are normally called to
426  * append new mbufs to a socket buffer, after checking that adequate
427  * space is available, comparing the function sbspace() with the amount
428  * of data to be added.  sbappendrecord() differs from sbappend() in
429  * that data supplied is treated as the beginning of a new record.
430  * To place a sender's address, optional access rights, and data in a
431  * socket receive buffer, sbappendaddr() should be used.  To place
432  * access rights and data in a socket receive buffer, sbappendrights()
433  * should be used.  In either case, the new data begins a new record.
434  * Note that unlike sbappend() and sbappendrecord(), these routines check
435  * for the caller that there will be enough space to store the data.
436  * Each fails if there is not enough space, or if it cannot find mbufs
437  * to store additional information in.
438  *
439  * Reliable protocols may use the socket send buffer to hold data
440  * awaiting acknowledgement.  Data is normally copied from a socket
441  * send buffer in a protocol with m_copy for output to a peer,
442  * and then removing the data from the socket buffer with sbdrop()
443  * or sbdroprecord() when the data is acknowledged by the peer.
444  */
445 
446 /*
447  * Append mbuf chain m to the last record in the
448  * socket buffer sb.  The additional space associated
449  * the mbuf chain is recorded in sb.  Empty mbufs are
450  * discarded and mbufs are compacted where possible.
451  */
452 void
453 sbappend(sb, m)
454 	struct sockbuf *sb;
455 	struct mbuf *m;
456 {
457 	register struct mbuf *n;
458 
459 	if (m == 0)
460 		return;
461 	n = sb->sb_mb;
462 	if (n) {
463 		while (n->m_nextpkt)
464 			n = n->m_nextpkt;
465 		do {
466 			if (n->m_flags & M_EOR) {
467 				sbappendrecord(sb, m); /* XXXXXX!!!! */
468 				return;
469 			}
470 		} while (n->m_next && (n = n->m_next));
471 	}
472 	sbcompress(sb, m, n);
473 }
474 
475 #ifdef SOCKBUF_DEBUG
476 void
477 sbcheck(sb)
478 	register struct sockbuf *sb;
479 {
480 	register struct mbuf *m;
481 	register int len = 0, mbcnt = 0;
482 
483 	for (m = sb->sb_mb; m; m = m->m_next) {
484 		len += m->m_len;
485 		mbcnt += MSIZE;
486 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
487 			mbcnt += m->m_ext.ext_size;
488 		if (m->m_nextpkt)
489 			panic("sbcheck nextpkt");
490 	}
491 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
492 		printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
493 		    mbcnt, sb->sb_mbcnt);
494 		panic("sbcheck");
495 	}
496 }
497 #endif
498 
499 /*
500  * As above, except the mbuf chain
501  * begins a new record.
502  */
503 void
504 sbappendrecord(sb, m0)
505 	register struct sockbuf *sb;
506 	register struct mbuf *m0;
507 {
508 	register struct mbuf *m;
509 
510 	if (m0 == 0)
511 		return;
512 	m = sb->sb_mb;
513 	if (m)
514 		while (m->m_nextpkt)
515 			m = m->m_nextpkt;
516 	/*
517 	 * Put the first mbuf on the queue.
518 	 * Note this permits zero length records.
519 	 */
520 	sballoc(sb, m0);
521 	if (m)
522 		m->m_nextpkt = m0;
523 	else
524 		sb->sb_mb = m0;
525 	m = m0->m_next;
526 	m0->m_next = 0;
527 	if (m && (m0->m_flags & M_EOR)) {
528 		m0->m_flags &= ~M_EOR;
529 		m->m_flags |= M_EOR;
530 	}
531 	sbcompress(sb, m, m0);
532 }
533 
534 /*
535  * As above except that OOB data
536  * is inserted at the beginning of the sockbuf,
537  * but after any other OOB data.
538  */
539 void
540 sbinsertoob(sb, m0)
541 	register struct sockbuf *sb;
542 	register struct mbuf *m0;
543 {
544 	register struct mbuf *m;
545 	register struct mbuf **mp;
546 
547 	if (m0 == 0)
548 		return;
549 	for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
550 	    m = *mp;
551 	    again:
552 		switch (m->m_type) {
553 
554 		case MT_OOBDATA:
555 			continue;		/* WANT next train */
556 
557 		case MT_CONTROL:
558 			m = m->m_next;
559 			if (m)
560 				goto again;	/* inspect THIS train further */
561 		}
562 		break;
563 	}
564 	/*
565 	 * Put the first mbuf on the queue.
566 	 * Note this permits zero length records.
567 	 */
568 	sballoc(sb, m0);
569 	m0->m_nextpkt = *mp;
570 	*mp = m0;
571 	m = m0->m_next;
572 	m0->m_next = 0;
573 	if (m && (m0->m_flags & M_EOR)) {
574 		m0->m_flags &= ~M_EOR;
575 		m->m_flags |= M_EOR;
576 	}
577 	sbcompress(sb, m, m0);
578 }
579 
580 /*
581  * Append address and data, and optionally, control (ancillary) data
582  * to the receive queue of a socket.  If present,
583  * m0 must include a packet header with total length.
584  * Returns 0 if no space in sockbuf or insufficient mbufs.
585  */
586 int
587 sbappendaddr(sb, asa, m0, control)
588 	register struct sockbuf *sb;
589 	struct sockaddr *asa;
590 	struct mbuf *m0, *control;
591 {
592 	register struct mbuf *m, *n;
593 	int space = asa->sa_len;
594 
595 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
596 panic("sbappendaddr");
597 	if (m0)
598 		space += m0->m_pkthdr.len;
599 	for (n = control; n; n = n->m_next) {
600 		space += n->m_len;
601 		if (n->m_next == 0)	/* keep pointer to last control buf */
602 			break;
603 	}
604 	if (space > sbspace(sb))
605 		return (0);
606 	if (asa->sa_len > MLEN)
607 		return (0);
608 	MGET(m, M_DONTWAIT, MT_SONAME);
609 	if (m == 0)
610 		return (0);
611 	m->m_len = asa->sa_len;
612 	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
613 	if (n)
614 		n->m_next = m0;		/* concatenate data to control */
615 	else
616 		control = m0;
617 	m->m_next = control;
618 	for (n = m; n; n = n->m_next)
619 		sballoc(sb, n);
620 	n = sb->sb_mb;
621 	if (n) {
622 		while (n->m_nextpkt)
623 			n = n->m_nextpkt;
624 		n->m_nextpkt = m;
625 	} else
626 		sb->sb_mb = m;
627 	return (1);
628 }
629 
630 int
631 sbappendcontrol(sb, m0, control)
632 	struct sockbuf *sb;
633 	struct mbuf *control, *m0;
634 {
635 	register struct mbuf *m, *n;
636 	int space = 0;
637 
638 	if (control == 0)
639 		panic("sbappendcontrol");
640 	for (m = control; ; m = m->m_next) {
641 		space += m->m_len;
642 		if (m->m_next == 0)
643 			break;
644 	}
645 	n = m;			/* save pointer to last control buffer */
646 	for (m = m0; m; m = m->m_next)
647 		space += m->m_len;
648 	if (space > sbspace(sb))
649 		return (0);
650 	n->m_next = m0;			/* concatenate data to control */
651 	for (m = control; m; m = m->m_next)
652 		sballoc(sb, m);
653 	n = sb->sb_mb;
654 	if (n) {
655 		while (n->m_nextpkt)
656 			n = n->m_nextpkt;
657 		n->m_nextpkt = control;
658 	} else
659 		sb->sb_mb = control;
660 	return (1);
661 }
662 
663 /*
664  * Compress mbuf chain m into the socket
665  * buffer sb following mbuf n.  If n
666  * is null, the buffer is presumed empty.
667  */
668 void
669 sbcompress(sb, m, n)
670 	register struct sockbuf *sb;
671 	register struct mbuf *m, *n;
672 {
673 	register int eor = 0;
674 	register struct mbuf *o;
675 
676 	while (m) {
677 		eor |= m->m_flags & M_EOR;
678 		if (m->m_len == 0 &&
679 		    (eor == 0 ||
680 		     (((o = m->m_next) || (o = n)) &&
681 		      o->m_type == m->m_type))) {
682 			m = m_free(m);
683 			continue;
684 		}
685 		if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
686 		    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
687 		    n->m_type == m->m_type) {
688 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
689 			    (unsigned)m->m_len);
690 			n->m_len += m->m_len;
691 			sb->sb_cc += m->m_len;
692 			m = m_free(m);
693 			continue;
694 		}
695 		if (n)
696 			n->m_next = m;
697 		else
698 			sb->sb_mb = m;
699 		sballoc(sb, m);
700 		n = m;
701 		m->m_flags &= ~M_EOR;
702 		m = m->m_next;
703 		n->m_next = 0;
704 	}
705 	if (eor) {
706 		if (n)
707 			n->m_flags |= eor;
708 		else
709 			printf("semi-panic: sbcompress\n");
710 	}
711 }
712 
713 /*
714  * Free all mbufs in a sockbuf.
715  * Check that all resources are reclaimed.
716  */
717 void
718 sbflush(sb)
719 	register struct sockbuf *sb;
720 {
721 
722 	if (sb->sb_flags & SB_LOCK)
723 		panic("sbflush");
724 	while (sb->sb_mbcnt)
725 		sbdrop(sb, (int)sb->sb_cc);
726 	if (sb->sb_cc || sb->sb_mb)
727 		panic("sbflush 2");
728 }
729 
730 /*
731  * Drop data from (the front of) a sockbuf.
732  */
733 void
734 sbdrop(sb, len)
735 	register struct sockbuf *sb;
736 	register int len;
737 {
738 	register struct mbuf *m, *mn;
739 	struct mbuf *next;
740 
741 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
742 	while (len > 0) {
743 		if (m == 0) {
744 			if (next == 0)
745 				panic("sbdrop");
746 			m = next;
747 			next = m->m_nextpkt;
748 			continue;
749 		}
750 		if (m->m_len > len) {
751 			m->m_len -= len;
752 			m->m_data += len;
753 			sb->sb_cc -= len;
754 			break;
755 		}
756 		len -= m->m_len;
757 		sbfree(sb, m);
758 		MFREE(m, mn);
759 		m = mn;
760 	}
761 	while (m && m->m_len == 0) {
762 		sbfree(sb, m);
763 		MFREE(m, mn);
764 		m = mn;
765 	}
766 	if (m) {
767 		sb->sb_mb = m;
768 		m->m_nextpkt = next;
769 	} else
770 		sb->sb_mb = next;
771 }
772 
773 /*
774  * Drop a record off the front of a sockbuf
775  * and move the next record to the front.
776  */
777 void
778 sbdroprecord(sb)
779 	register struct sockbuf *sb;
780 {
781 	register struct mbuf *m, *mn;
782 
783 	m = sb->sb_mb;
784 	if (m) {
785 		sb->sb_mb = m->m_nextpkt;
786 		do {
787 			sbfree(sb, m);
788 			MFREE(m, mn);
789 			m = mn;
790 		} while (m);
791 	}
792 }
793 
794 /*
795  * Create a "control" mbuf containing the specified data
796  * with the specified type for presentation on a socket buffer.
797  */
798 struct mbuf *
799 sbcreatecontrol(p, size, type, level)
800 	caddr_t p;
801 	register int size;
802 	int type, level;
803 {
804 	register struct cmsghdr *cp;
805 	struct mbuf *m;
806 
807 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
808 		return ((struct mbuf *) NULL);
809 	cp = mtod(m, struct cmsghdr *);
810 	/* XXX check size? */
811 	(void)memcpy(CMSG_DATA(cp), p, size);
812 	size += sizeof(*cp);
813 	m->m_len = size;
814 	cp->cmsg_len = size;
815 	cp->cmsg_level = level;
816 	cp->cmsg_type = type;
817 	return (m);
818 }
819 
820 #ifdef PRU_OLDSTYLE
821 /*
822  * The following routines mediate between the old-style `pr_usrreq'
823  * protocol implementations and the new-style `struct pr_usrreqs'
824  * calling convention.
825  */
826 
827 /* syntactic sugar */
828 #define	nomb	(struct mbuf *)0
829 
830 static int
831 old_abort(struct socket *so)
832 {
833 	return so->so_proto->pr_ousrreq(so, PRU_ABORT, nomb, nomb, nomb);
834 }
835 
836 static int
837 old_accept(struct socket *so, struct mbuf *nam)
838 {
839 	return so->so_proto->pr_ousrreq(so, PRU_ACCEPT, nomb,  nam, nomb);
840 }
841 
842 static int
843 old_attach(struct socket *so, int proto)
844 {
845 	return so->so_proto->pr_ousrreq(so, PRU_ATTACH, nomb,
846 				       (struct mbuf *)proto, /* XXX */
847 				       nomb);
848 }
849 
850 static int
851 old_bind(struct socket *so, struct mbuf *nam)
852 {
853 	return so->so_proto->pr_ousrreq(so, PRU_BIND, nomb, nam, nomb);
854 }
855 
856 static int
857 old_connect(struct socket *so, struct mbuf *nam)
858 {
859 	return so->so_proto->pr_ousrreq(so, PRU_CONNECT, nomb, nam, nomb);
860 }
861 
862 static int
863 old_connect2(struct socket *so1, struct socket *so2)
864 {
865 	return so1->so_proto->pr_ousrreq(so1, PRU_CONNECT2, nomb,
866 				       (struct mbuf *)so2, nomb);
867 }
868 
869 static int
870 old_control(struct socket *so, int cmd, caddr_t data, struct ifnet *ifp)
871 {
872 	return so->so_proto->pr_ousrreq(so, PRU_CONTROL, (struct mbuf *)cmd,
873 				       (struct mbuf *)data,
874 				       (struct mbuf *)ifp);
875 }
876 
877 static int
878 old_detach(struct socket *so)
879 {
880 	return so->so_proto->pr_ousrreq(so, PRU_DETACH, nomb, nomb, nomb);
881 }
882 
883 static int
884 old_disconnect(struct socket *so)
885 {
886 	return so->so_proto->pr_ousrreq(so, PRU_DISCONNECT, nomb, nomb, nomb);
887 }
888 
889 static int
890 old_listen(struct socket *so)
891 {
892 	return so->so_proto->pr_ousrreq(so, PRU_LISTEN, nomb, nomb, nomb);
893 }
894 
895 static int
896 old_peeraddr(struct socket *so, struct mbuf *nam)
897 {
898 	return so->so_proto->pr_ousrreq(so, PRU_PEERADDR, nomb, nam, nomb);
899 }
900 
901 static int
902 old_rcvd(struct socket *so, int flags)
903 {
904 	return so->so_proto->pr_ousrreq(so, PRU_RCVD, nomb,
905 				       (struct mbuf *)flags, /* XXX */
906 				       nomb);
907 }
908 
909 static int
910 old_rcvoob(struct socket *so, struct mbuf *m, int flags)
911 {
912 	return so->so_proto->pr_ousrreq(so, PRU_RCVOOB, m,
913 				       (struct mbuf *)flags, /* XXX */
914 				       nomb);
915 }
916 
917 static int
918 old_send(struct socket *so, int flags, struct mbuf *m, struct mbuf *addr,
919 	 struct mbuf *control)
920 {
921 	int req;
922 
923 	if (flags & PRUS_OOB) {
924 		req = PRU_SENDOOB;
925 	} else if(flags & PRUS_EOF) {
926 		req = PRU_SEND_EOF;
927 	} else {
928 		req = PRU_SEND;
929 	}
930 	return so->so_proto->pr_ousrreq(so, req, m, addr, control);
931 }
932 
933 static int
934 old_sense(struct socket *so, struct stat *sb)
935 {
936 	return so->so_proto->pr_ousrreq(so, PRU_SENSE, (struct mbuf *)sb,
937 				       nomb, nomb);
938 }
939 
940 static int
941 old_shutdown(struct socket *so)
942 {
943 	return so->so_proto->pr_ousrreq(so, PRU_SHUTDOWN, nomb, nomb, nomb);
944 }
945 
946 static int
947 old_sockaddr(struct socket *so, struct mbuf *nam)
948 {
949 	return so->so_proto->pr_ousrreq(so, PRU_SOCKADDR, nomb, nam, nomb);
950 }
951 
952 struct pr_usrreqs pru_oldstyle = {
953 	old_abort, old_accept, old_attach, old_bind, old_connect,
954 	old_connect2, old_control, old_detach, old_disconnect,
955 	old_listen, old_peeraddr, old_rcvd, old_rcvoob, old_send,
956 	old_sense, old_shutdown, old_sockaddr
957 };
958 
959 #endif /* PRU_OLDSTYLE */
960 
961 /*
962  * Some routines that return EOPNOTSUPP for entry points that are not
963  * supported by a protocol.  Fill in as needed.
964  */
965 int
966 pru_accept_notsupp(struct socket *so, struct mbuf *nam)
967 {
968 	return EOPNOTSUPP;
969 }
970 
971 int
972 pru_connect_notsupp(struct socket *so, struct mbuf *nam, struct proc *p)
973 {
974 	return EOPNOTSUPP;
975 }
976 
977 int
978 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
979 {
980 	return EOPNOTSUPP;
981 }
982 
983 int
984 pru_control_notsupp(struct socket *so, int cmd, caddr_t data,
985 		    struct ifnet *ifp, struct proc *p)
986 {
987 	return EOPNOTSUPP;
988 }
989 
990 int
991 pru_listen_notsupp(struct socket *so, struct proc *p)
992 {
993 	return EOPNOTSUPP;
994 }
995 
996 int
997 pru_rcvd_notsupp(struct socket *so, int flags)
998 {
999 	return EOPNOTSUPP;
1000 }
1001 
1002 int
1003 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
1004 {
1005 	return EOPNOTSUPP;
1006 }
1007 
1008 /*
1009  * This isn't really a ``null'' operation, but it's the default one
1010  * and doesn't do anything destructive.
1011  */
1012 int
1013 pru_sense_null(struct socket *so, struct stat *sb)
1014 {
1015 	sb->st_blksize = so->so_snd.sb_hiwat;
1016 	return 0;
1017 }
1018 
1019 /*
1020  * Here is the definition of some of the basic objects in the kern.ipc
1021  * branch of the MIB.
1022  */
1023 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
1024 
1025 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1026 static int dummy;
1027 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
1028 
1029 SYSCTL_INT(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW, &sb_max, 0, "")
1030 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1031 	   &sb_efficiency, 0, "");
1032