xref: /freebsd/sys/kern/uipc_sockbuf.c (revision ccfd87fe2ac0e2e6aeb1911a7d7cce6712a8564f)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_kern_tls.h"
38 #include "opt_param.h"
39 
40 #include <sys/param.h>
41 #include <sys/aio.h> /* for aio_swake proto */
42 #include <sys/kernel.h>
43 #include <sys/ktls.h>
44 #include <sys/lock.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/msan.h>
48 #include <sys/mutex.h>
49 #include <sys/proc.h>
50 #include <sys/protosw.h>
51 #include <sys/resourcevar.h>
52 #include <sys/signalvar.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/sx.h>
56 #include <sys/sysctl.h>
57 
58 #include <netinet/in.h>
59 
60 /*
61  * Function pointer set by the AIO routines so that the socket buffer code
62  * can call back into the AIO module if it is loaded.
63  */
64 void	(*aio_swake)(struct socket *, struct sockbuf *);
65 
66 /*
67  * Primitive routines for operating on socket buffers
68  */
69 
70 #define	BUF_MAX_ADJ(_sz)	(((u_quad_t)(_sz)) * MCLBYTES / (MSIZE + MCLBYTES))
71 
72 u_long	sb_max = SB_MAX;
73 u_long sb_max_adj = BUF_MAX_ADJ(SB_MAX);
74 
75 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
76 
77 #ifdef KERN_TLS
78 static void	sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m,
79     struct mbuf *n);
80 #endif
81 static struct mbuf	*sbcut_internal(struct sockbuf *sb, int len);
82 static void	sbflush_internal(struct sockbuf *sb);
83 
84 /*
85  * Our own version of m_clrprotoflags(), that can preserve M_NOTREADY.
86  */
87 static void
88 sbm_clrprotoflags(struct mbuf *m, int flags)
89 {
90 	int mask;
91 
92 	mask = ~M_PROTOFLAGS;
93 	if (flags & PRUS_NOTREADY)
94 		mask |= M_NOTREADY;
95 	while (m) {
96 		m->m_flags &= mask;
97 		m = m->m_next;
98 	}
99 }
100 
101 /*
102  * Compress M_NOTREADY mbufs after they have been readied by sbready().
103  *
104  * sbcompress() skips M_NOTREADY mbufs since the data is not available to
105  * be copied at the time of sbcompress().  This function combines small
106  * mbufs similar to sbcompress() once mbufs are ready.  'm0' is the first
107  * mbuf sbready() marked ready, and 'end' is the first mbuf still not
108  * ready.
109  */
110 static void
111 sbready_compress(struct sockbuf *sb, struct mbuf *m0, struct mbuf *end)
112 {
113 	struct mbuf *m, *n;
114 	int ext_size;
115 
116 	SOCKBUF_LOCK_ASSERT(sb);
117 
118 	if ((sb->sb_flags & SB_NOCOALESCE) != 0)
119 		return;
120 
121 	for (m = m0; m != end; m = m->m_next) {
122 		MPASS((m->m_flags & M_NOTREADY) == 0);
123 		/*
124 		 * NB: In sbcompress(), 'n' is the last mbuf in the
125 		 * socket buffer and 'm' is the new mbuf being copied
126 		 * into the trailing space of 'n'.  Here, the roles
127 		 * are reversed and 'n' is the next mbuf after 'm'
128 		 * that is being copied into the trailing space of
129 		 * 'm'.
130 		 */
131 		n = m->m_next;
132 #ifdef KERN_TLS
133 		/* Try to coalesce adjacent ktls mbuf hdr/trailers. */
134 		if ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
135 		    (m->m_flags & M_EXTPG) &&
136 		    (n->m_flags & M_EXTPG) &&
137 		    !mbuf_has_tls_session(m) &&
138 		    !mbuf_has_tls_session(n)) {
139 			int hdr_len, trail_len;
140 
141 			hdr_len = n->m_epg_hdrlen;
142 			trail_len = m->m_epg_trllen;
143 			if (trail_len != 0 && hdr_len != 0 &&
144 			    trail_len + hdr_len <= MBUF_PEXT_TRAIL_LEN) {
145 				/* copy n's header to m's trailer */
146 				memcpy(&m->m_epg_trail[trail_len],
147 				    n->m_epg_hdr, hdr_len);
148 				m->m_epg_trllen += hdr_len;
149 				m->m_len += hdr_len;
150 				n->m_epg_hdrlen = 0;
151 				n->m_len -= hdr_len;
152 			}
153 		}
154 #endif
155 
156 		/* Compress small unmapped mbufs into plain mbufs. */
157 		if ((m->m_flags & M_EXTPG) && m->m_len <= MLEN &&
158 		    !mbuf_has_tls_session(m)) {
159 			ext_size = m->m_ext.ext_size;
160 			if (mb_unmapped_compress(m) == 0)
161 				sb->sb_mbcnt -= ext_size;
162 		}
163 
164 		while ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
165 		    M_WRITABLE(m) &&
166 		    (m->m_flags & M_EXTPG) == 0 &&
167 		    !mbuf_has_tls_session(n) &&
168 		    !mbuf_has_tls_session(m) &&
169 		    n->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
170 		    n->m_len <= M_TRAILINGSPACE(m) &&
171 		    m->m_type == n->m_type) {
172 			KASSERT(sb->sb_lastrecord != n,
173 		    ("%s: merging start of record (%p) into previous mbuf (%p)",
174 			    __func__, n, m));
175 			m_copydata(n, 0, n->m_len, mtodo(m, m->m_len));
176 			m->m_len += n->m_len;
177 			m->m_next = n->m_next;
178 			m->m_flags |= n->m_flags & M_EOR;
179 			if (sb->sb_mbtail == n)
180 				sb->sb_mbtail = m;
181 
182 			sb->sb_mbcnt -= MSIZE;
183 			if (n->m_flags & M_EXT)
184 				sb->sb_mbcnt -= n->m_ext.ext_size;
185 			m_free(n);
186 			n = m->m_next;
187 		}
188 	}
189 	SBLASTRECORDCHK(sb);
190 	SBLASTMBUFCHK(sb);
191 }
192 
193 /*
194  * Mark ready "count" units of I/O starting with "m".  Most mbufs
195  * count as a single unit of I/O except for M_EXTPG mbufs which
196  * are backed by multiple pages.
197  */
198 int
199 sbready(struct sockbuf *sb, struct mbuf *m0, int count)
200 {
201 	struct mbuf *m;
202 	u_int blocker;
203 
204 	SOCKBUF_LOCK_ASSERT(sb);
205 	KASSERT(sb->sb_fnrdy != NULL, ("%s: sb %p NULL fnrdy", __func__, sb));
206 	KASSERT(count > 0, ("%s: invalid count %d", __func__, count));
207 
208 	m = m0;
209 	blocker = (sb->sb_fnrdy == m) ? M_BLOCKED : 0;
210 
211 	while (count > 0) {
212 		KASSERT(m->m_flags & M_NOTREADY,
213 		    ("%s: m %p !M_NOTREADY", __func__, m));
214 		if ((m->m_flags & M_EXTPG) != 0 && m->m_epg_npgs != 0) {
215 			if (count < m->m_epg_nrdy) {
216 				m->m_epg_nrdy -= count;
217 				count = 0;
218 				break;
219 			}
220 			count -= m->m_epg_nrdy;
221 			m->m_epg_nrdy = 0;
222 		} else
223 			count--;
224 
225 		m->m_flags &= ~(M_NOTREADY | blocker);
226 		if (blocker)
227 			sb->sb_acc += m->m_len;
228 		m = m->m_next;
229 	}
230 
231 	/*
232 	 * If the first mbuf is still not fully ready because only
233 	 * some of its backing pages were readied, no further progress
234 	 * can be made.
235 	 */
236 	if (m0 == m) {
237 		MPASS(m->m_flags & M_NOTREADY);
238 		return (EINPROGRESS);
239 	}
240 
241 	if (!blocker) {
242 		sbready_compress(sb, m0, m);
243 		return (EINPROGRESS);
244 	}
245 
246 	/* This one was blocking all the queue. */
247 	for (; m && (m->m_flags & M_NOTREADY) == 0; m = m->m_next) {
248 		KASSERT(m->m_flags & M_BLOCKED,
249 		    ("%s: m %p !M_BLOCKED", __func__, m));
250 		m->m_flags &= ~M_BLOCKED;
251 		sb->sb_acc += m->m_len;
252 	}
253 
254 	sb->sb_fnrdy = m;
255 	sbready_compress(sb, m0, m);
256 
257 	return (0);
258 }
259 
260 /*
261  * Adjust sockbuf state reflecting allocation of m.
262  */
263 void
264 sballoc(struct sockbuf *sb, struct mbuf *m)
265 {
266 
267 	SOCKBUF_LOCK_ASSERT(sb);
268 
269 	sb->sb_ccc += m->m_len;
270 
271 	if (sb->sb_fnrdy == NULL) {
272 		if (m->m_flags & M_NOTREADY)
273 			sb->sb_fnrdy = m;
274 		else
275 			sb->sb_acc += m->m_len;
276 	} else
277 		m->m_flags |= M_BLOCKED;
278 
279 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
280 		sb->sb_ctl += m->m_len;
281 
282 	sb->sb_mbcnt += MSIZE;
283 
284 	if (m->m_flags & M_EXT)
285 		sb->sb_mbcnt += m->m_ext.ext_size;
286 }
287 
288 /*
289  * Adjust sockbuf state reflecting freeing of m.
290  */
291 void
292 sbfree(struct sockbuf *sb, struct mbuf *m)
293 {
294 
295 #if 0	/* XXX: not yet: soclose() call path comes here w/o lock. */
296 	SOCKBUF_LOCK_ASSERT(sb);
297 #endif
298 
299 	sb->sb_ccc -= m->m_len;
300 
301 	if (!(m->m_flags & M_NOTAVAIL))
302 		sb->sb_acc -= m->m_len;
303 
304 	if (m == sb->sb_fnrdy) {
305 		struct mbuf *n;
306 
307 		KASSERT(m->m_flags & M_NOTREADY,
308 		    ("%s: m %p !M_NOTREADY", __func__, m));
309 
310 		n = m->m_next;
311 		while (n != NULL && !(n->m_flags & M_NOTREADY)) {
312 			n->m_flags &= ~M_BLOCKED;
313 			sb->sb_acc += n->m_len;
314 			n = n->m_next;
315 		}
316 		sb->sb_fnrdy = n;
317 	}
318 
319 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
320 		sb->sb_ctl -= m->m_len;
321 
322 	sb->sb_mbcnt -= MSIZE;
323 	if (m->m_flags & M_EXT)
324 		sb->sb_mbcnt -= m->m_ext.ext_size;
325 
326 	if (sb->sb_sndptr == m) {
327 		sb->sb_sndptr = NULL;
328 		sb->sb_sndptroff = 0;
329 	}
330 	if (sb->sb_sndptroff != 0)
331 		sb->sb_sndptroff -= m->m_len;
332 }
333 
334 #ifdef KERN_TLS
335 /*
336  * Similar to sballoc/sbfree but does not adjust state associated with
337  * the sb_mb chain such as sb_fnrdy or sb_sndptr*.  Also assumes mbufs
338  * are not ready.
339  */
340 void
341 sballoc_ktls_rx(struct sockbuf *sb, struct mbuf *m)
342 {
343 
344 	SOCKBUF_LOCK_ASSERT(sb);
345 
346 	sb->sb_ccc += m->m_len;
347 	sb->sb_tlscc += m->m_len;
348 
349 	sb->sb_mbcnt += MSIZE;
350 
351 	if (m->m_flags & M_EXT)
352 		sb->sb_mbcnt += m->m_ext.ext_size;
353 }
354 
355 void
356 sbfree_ktls_rx(struct sockbuf *sb, struct mbuf *m)
357 {
358 
359 #if 0	/* XXX: not yet: soclose() call path comes here w/o lock. */
360 	SOCKBUF_LOCK_ASSERT(sb);
361 #endif
362 
363 	sb->sb_ccc -= m->m_len;
364 	sb->sb_tlscc -= m->m_len;
365 
366 	sb->sb_mbcnt -= MSIZE;
367 
368 	if (m->m_flags & M_EXT)
369 		sb->sb_mbcnt -= m->m_ext.ext_size;
370 }
371 #endif
372 
373 /*
374  * Socantsendmore indicates that no more data will be sent on the socket; it
375  * would normally be applied to a socket when the user informs the system
376  * that no more data is to be sent, by the protocol code (in case
377  * PRU_SHUTDOWN).  Socantrcvmore indicates that no more data will be
378  * received, and will normally be applied to the socket by a protocol when it
379  * detects that the peer will send no more data.  Data queued for reading in
380  * the socket may yet be read.
381  */
382 void
383 socantsendmore_locked(struct socket *so)
384 {
385 
386 	SOCK_SENDBUF_LOCK_ASSERT(so);
387 
388 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
389 	sowwakeup_locked(so);
390 	SOCK_SENDBUF_UNLOCK_ASSERT(so);
391 }
392 
393 void
394 socantsendmore(struct socket *so)
395 {
396 
397 	SOCK_SENDBUF_LOCK(so);
398 	socantsendmore_locked(so);
399 	SOCK_SENDBUF_UNLOCK_ASSERT(so);
400 }
401 
402 void
403 socantrcvmore_locked(struct socket *so)
404 {
405 
406 	SOCK_RECVBUF_LOCK_ASSERT(so);
407 
408 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
409 #ifdef KERN_TLS
410 	if (so->so_rcv.sb_flags & SB_TLS_RX)
411 		ktls_check_rx(&so->so_rcv);
412 #endif
413 	sorwakeup_locked(so);
414 	SOCK_RECVBUF_UNLOCK_ASSERT(so);
415 }
416 
417 void
418 socantrcvmore(struct socket *so)
419 {
420 
421 	SOCK_RECVBUF_LOCK(so);
422 	socantrcvmore_locked(so);
423 	SOCK_RECVBUF_UNLOCK_ASSERT(so);
424 }
425 
426 void
427 soroverflow_locked(struct socket *so)
428 {
429 
430 	SOCK_RECVBUF_LOCK_ASSERT(so);
431 
432 	if (so->so_options & SO_RERROR) {
433 		so->so_rerror = ENOBUFS;
434 		sorwakeup_locked(so);
435 	} else
436 		SOCK_RECVBUF_UNLOCK(so);
437 
438 	SOCK_RECVBUF_UNLOCK_ASSERT(so);
439 }
440 
441 void
442 soroverflow(struct socket *so)
443 {
444 
445 	SOCK_RECVBUF_LOCK(so);
446 	soroverflow_locked(so);
447 	SOCK_RECVBUF_UNLOCK_ASSERT(so);
448 }
449 
450 /*
451  * Wait for data to arrive at/drain from a socket buffer.
452  */
453 int
454 sbwait(struct socket *so, sb_which which)
455 {
456 	struct sockbuf *sb;
457 
458 	SOCK_BUF_LOCK_ASSERT(so, which);
459 
460 	sb = sobuf(so, which);
461 	sb->sb_flags |= SB_WAIT;
462 	return (msleep_sbt(&sb->sb_acc, soeventmtx(so, which),
463 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
464 	    sb->sb_timeo, 0, 0));
465 }
466 
467 /*
468  * Wakeup processes waiting on a socket buffer.  Do asynchronous notification
469  * via SIGIO if the socket has the SS_ASYNC flag set.
470  *
471  * Called with the socket buffer lock held; will release the lock by the end
472  * of the function.  This allows the caller to acquire the socket buffer lock
473  * while testing for the need for various sorts of wakeup and hold it through
474  * to the point where it's no longer required.  We currently hold the lock
475  * through calls out to other subsystems (with the exception of kqueue), and
476  * then release it to avoid lock order issues.  It's not clear that's
477  * correct.
478  */
479 static __always_inline void
480 sowakeup(struct socket *so, const sb_which which)
481 {
482 	struct sockbuf *sb;
483 	int ret;
484 
485 	SOCK_BUF_LOCK_ASSERT(so, which);
486 
487 	sb = sobuf(so, which);
488 	selwakeuppri(sb->sb_sel, PSOCK);
489 	if (!SEL_WAITING(sb->sb_sel))
490 		sb->sb_flags &= ~SB_SEL;
491 	if (sb->sb_flags & SB_WAIT) {
492 		sb->sb_flags &= ~SB_WAIT;
493 		wakeup(&sb->sb_acc);
494 	}
495 	KNOTE_LOCKED(&sb->sb_sel->si_note, 0);
496 	if (sb->sb_upcall != NULL) {
497 		ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT);
498 		if (ret == SU_ISCONNECTED) {
499 			KASSERT(sb == &so->so_rcv,
500 			    ("SO_SND upcall returned SU_ISCONNECTED"));
501 			soupcall_clear(so, SO_RCV);
502 		}
503 	} else
504 		ret = SU_OK;
505 	if (sb->sb_flags & SB_AIO)
506 		sowakeup_aio(so, which);
507 	SOCK_BUF_UNLOCK(so, which);
508 	if (ret == SU_ISCONNECTED)
509 		soisconnected(so);
510 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
511 		pgsigio(&so->so_sigio, SIGIO, 0);
512 	SOCK_BUF_UNLOCK_ASSERT(so, which);
513 }
514 
515 /*
516  * Do we need to notify the other side when I/O is possible?
517  */
518 static __always_inline bool
519 sb_notify(const struct sockbuf *sb)
520 {
521 	return ((sb->sb_flags & (SB_WAIT | SB_SEL | SB_ASYNC |
522 	    SB_UPCALL | SB_AIO | SB_KNOTE)) != 0);
523 }
524 
525 void
526 sorwakeup_locked(struct socket *so)
527 {
528 	SOCK_RECVBUF_LOCK_ASSERT(so);
529 	if (sb_notify(&so->so_rcv))
530 		sowakeup(so, SO_RCV);
531 	else
532 		SOCK_RECVBUF_UNLOCK(so);
533 }
534 
535 void
536 sowwakeup_locked(struct socket *so)
537 {
538 	SOCK_SENDBUF_LOCK_ASSERT(so);
539 	if (sb_notify(&so->so_snd))
540 		sowakeup(so, SO_SND);
541 	else
542 		SOCK_SENDBUF_UNLOCK(so);
543 }
544 
545 /*
546  * Socket buffer (struct sockbuf) utility routines.
547  *
548  * Each socket contains two socket buffers: one for sending data and one for
549  * receiving data.  Each buffer contains a queue of mbufs, information about
550  * the number of mbufs and amount of data in the queue, and other fields
551  * allowing select() statements and notification on data availability to be
552  * implemented.
553  *
554  * Data stored in a socket buffer is maintained as a list of records.  Each
555  * record is a list of mbufs chained together with the m_next field.  Records
556  * are chained together with the m_nextpkt field. The upper level routine
557  * soreceive() expects the following conventions to be observed when placing
558  * information in the receive buffer:
559  *
560  * 1. If the protocol requires each message be preceded by the sender's name,
561  *    then a record containing that name must be present before any
562  *    associated data (mbuf's must be of type MT_SONAME).
563  * 2. If the protocol supports the exchange of ``access rights'' (really just
564  *    additional data associated with the message), and there are ``rights''
565  *    to be received, then a record containing this data should be present
566  *    (mbuf's must be of type MT_RIGHTS).
567  * 3. If a name or rights record exists, then it must be followed by a data
568  *    record, perhaps of zero length.
569  *
570  * Before using a new socket structure it is first necessary to reserve
571  * buffer space to the socket, by calling sbreserve().  This should commit
572  * some of the available buffer space in the system buffer pool for the
573  * socket (currently, it does nothing but enforce limits).  The space should
574  * be released by calling sbrelease() when the socket is destroyed.
575  */
576 int
577 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
578 {
579 	struct thread *td = curthread;
580 
581 	SOCK_SENDBUF_LOCK(so);
582 	SOCK_RECVBUF_LOCK(so);
583 	if (sbreserve_locked(so, SO_SND, sndcc, td) == 0)
584 		goto bad;
585 	if (sbreserve_locked(so, SO_RCV, rcvcc, td) == 0)
586 		goto bad2;
587 	if (so->so_rcv.sb_lowat == 0)
588 		so->so_rcv.sb_lowat = 1;
589 	if (so->so_snd.sb_lowat == 0)
590 		so->so_snd.sb_lowat = MCLBYTES;
591 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
592 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
593 	SOCK_RECVBUF_UNLOCK(so);
594 	SOCK_SENDBUF_UNLOCK(so);
595 	return (0);
596 bad2:
597 	sbrelease_locked(so, SO_SND);
598 bad:
599 	SOCK_RECVBUF_UNLOCK(so);
600 	SOCK_SENDBUF_UNLOCK(so);
601 	return (ENOBUFS);
602 }
603 
604 static int
605 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
606 {
607 	int error = 0;
608 	u_long tmp_sb_max = sb_max;
609 
610 	error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req);
611 	if (error || !req->newptr)
612 		return (error);
613 	if (tmp_sb_max < MSIZE + MCLBYTES)
614 		return (EINVAL);
615 	sb_max = tmp_sb_max;
616 	sb_max_adj = BUF_MAX_ADJ(sb_max);
617 	return (0);
618 }
619 
620 /*
621  * Allot mbufs to a sockbuf.  Attempt to scale mbmax so that mbcnt doesn't
622  * become limiting if buffering efficiency is near the normal case.
623  */
624 bool
625 sbreserve_locked_limit(struct socket *so, sb_which which, u_long cc,
626     u_long buf_max, struct thread *td)
627 {
628 	struct sockbuf *sb = sobuf(so, which);
629 	rlim_t sbsize_limit;
630 
631 	SOCK_BUF_LOCK_ASSERT(so, which);
632 
633 	/*
634 	 * When a thread is passed, we take into account the thread's socket
635 	 * buffer size limit.  The caller will generally pass curthread, but
636 	 * in the TCP input path, NULL will be passed to indicate that no
637 	 * appropriate thread resource limits are available.  In that case,
638 	 * we don't apply a process limit.
639 	 */
640 	if (cc > BUF_MAX_ADJ(buf_max))
641 		return (false);
642 	if (td != NULL) {
643 		sbsize_limit = lim_cur(td, RLIMIT_SBSIZE);
644 	} else
645 		sbsize_limit = RLIM_INFINITY;
646 	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
647 	    sbsize_limit))
648 		return (false);
649 	sb->sb_mbmax = min(cc * sb_efficiency, buf_max);
650 	if (sb->sb_lowat > sb->sb_hiwat)
651 		sb->sb_lowat = sb->sb_hiwat;
652 	return (true);
653 }
654 
655 bool
656 sbreserve_locked(struct socket *so, sb_which which, u_long cc,
657     struct thread *td)
658 {
659 	return (sbreserve_locked_limit(so, which, cc, sb_max, td));
660 }
661 
662 int
663 sbsetopt(struct socket *so, struct sockopt *sopt)
664 {
665 	struct sockbuf *sb;
666 	sb_which wh;
667 	short *flags;
668 	u_int cc, *hiwat, *lowat;
669 	int error, optval;
670 
671 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
672 	if (error != 0)
673 		return (error);
674 
675 	/*
676 	 * Values < 1 make no sense for any of these options,
677 	 * so disallow them.
678 	 */
679 	if (optval < 1)
680 		return (EINVAL);
681 	cc = optval;
682 
683 	sb = NULL;
684 	SOCK_LOCK(so);
685 	if (SOLISTENING(so)) {
686 		switch (sopt->sopt_name) {
687 			case SO_SNDLOWAT:
688 			case SO_SNDBUF:
689 				lowat = &so->sol_sbsnd_lowat;
690 				hiwat = &so->sol_sbsnd_hiwat;
691 				flags = &so->sol_sbsnd_flags;
692 				break;
693 			case SO_RCVLOWAT:
694 			case SO_RCVBUF:
695 				lowat = &so->sol_sbrcv_lowat;
696 				hiwat = &so->sol_sbrcv_hiwat;
697 				flags = &so->sol_sbrcv_flags;
698 				break;
699 		}
700 	} else {
701 		switch (sopt->sopt_name) {
702 			case SO_SNDLOWAT:
703 			case SO_SNDBUF:
704 				sb = &so->so_snd;
705 				wh = SO_SND;
706 				break;
707 			case SO_RCVLOWAT:
708 			case SO_RCVBUF:
709 				sb = &so->so_rcv;
710 				wh = SO_RCV;
711 				break;
712 		}
713 		flags = &sb->sb_flags;
714 		hiwat = &sb->sb_hiwat;
715 		lowat = &sb->sb_lowat;
716 		SOCK_BUF_LOCK(so, wh);
717 	}
718 
719 	error = 0;
720 	switch (sopt->sopt_name) {
721 	case SO_SNDBUF:
722 	case SO_RCVBUF:
723 		if (SOLISTENING(so)) {
724 			if (cc > sb_max_adj) {
725 				error = ENOBUFS;
726 				break;
727 			}
728 			*hiwat = cc;
729 			if (*lowat > *hiwat)
730 				*lowat = *hiwat;
731 		} else {
732 			if (!sbreserve_locked(so, wh, cc, curthread))
733 				error = ENOBUFS;
734 		}
735 		if (error == 0)
736 			*flags &= ~SB_AUTOSIZE;
737 		break;
738 	case SO_SNDLOWAT:
739 	case SO_RCVLOWAT:
740 		/*
741 		 * Make sure the low-water is never greater than the
742 		 * high-water.
743 		 */
744 		*lowat = (cc > *hiwat) ? *hiwat : cc;
745 		break;
746 	}
747 
748 	if (!SOLISTENING(so))
749 		SOCK_BUF_UNLOCK(so, wh);
750 	SOCK_UNLOCK(so);
751 	return (error);
752 }
753 
754 /*
755  * Free mbufs held by a socket, and reserved mbuf space.
756  */
757 static void
758 sbrelease_internal(struct socket *so, sb_which which)
759 {
760 	struct sockbuf *sb = sobuf(so, which);
761 
762 	sbflush_internal(sb);
763 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
764 	    RLIM_INFINITY);
765 	sb->sb_mbmax = 0;
766 }
767 
768 void
769 sbrelease_locked(struct socket *so, sb_which which)
770 {
771 
772 	SOCK_BUF_LOCK_ASSERT(so, which);
773 
774 	sbrelease_internal(so, which);
775 }
776 
777 void
778 sbrelease(struct socket *so, sb_which which)
779 {
780 
781 	SOCK_BUF_LOCK(so, which);
782 	sbrelease_locked(so, which);
783 	SOCK_BUF_UNLOCK(so, which);
784 }
785 
786 void
787 sbdestroy(struct socket *so, sb_which which)
788 {
789 #ifdef KERN_TLS
790 	struct sockbuf *sb = sobuf(so, which);
791 
792 	if (sb->sb_tls_info != NULL)
793 		ktls_free(sb->sb_tls_info);
794 	sb->sb_tls_info = NULL;
795 #endif
796 	sbrelease_internal(so, which);
797 }
798 
799 /*
800  * Routines to add and remove data from an mbuf queue.
801  *
802  * The routines sbappend() or sbappendrecord() are normally called to append
803  * new mbufs to a socket buffer, after checking that adequate space is
804  * available, comparing the function sbspace() with the amount of data to be
805  * added.  sbappendrecord() differs from sbappend() in that data supplied is
806  * treated as the beginning of a new record.  To place a sender's address,
807  * optional access rights, and data in a socket receive buffer,
808  * sbappendaddr() should be used.  To place access rights and data in a
809  * socket receive buffer, sbappendrights() should be used.  In either case,
810  * the new data begins a new record.  Note that unlike sbappend() and
811  * sbappendrecord(), these routines check for the caller that there will be
812  * enough space to store the data.  Each fails if there is not enough space,
813  * or if it cannot find mbufs to store additional information in.
814  *
815  * Reliable protocols may use the socket send buffer to hold data awaiting
816  * acknowledgement.  Data is normally copied from a socket send buffer in a
817  * protocol with m_copy for output to a peer, and then removing the data from
818  * the socket buffer with sbdrop() or sbdroprecord() when the data is
819  * acknowledged by the peer.
820  */
821 #ifdef SOCKBUF_DEBUG
822 void
823 sblastrecordchk(struct sockbuf *sb, const char *file, int line)
824 {
825 	struct mbuf *m = sb->sb_mb;
826 
827 	SOCKBUF_LOCK_ASSERT(sb);
828 
829 	while (m && m->m_nextpkt)
830 		m = m->m_nextpkt;
831 
832 	if (m != sb->sb_lastrecord) {
833 		printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
834 			__func__, sb->sb_mb, sb->sb_lastrecord, m);
835 		printf("packet chain:\n");
836 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
837 			printf("\t%p\n", m);
838 		panic("%s from %s:%u", __func__, file, line);
839 	}
840 }
841 
842 void
843 sblastmbufchk(struct sockbuf *sb, const char *file, int line)
844 {
845 	struct mbuf *m = sb->sb_mb;
846 	struct mbuf *n;
847 
848 	SOCKBUF_LOCK_ASSERT(sb);
849 
850 	while (m && m->m_nextpkt)
851 		m = m->m_nextpkt;
852 
853 	while (m && m->m_next)
854 		m = m->m_next;
855 
856 	if (m != sb->sb_mbtail) {
857 		printf("%s: sb_mb %p sb_mbtail %p last %p\n",
858 			__func__, sb->sb_mb, sb->sb_mbtail, m);
859 		printf("packet tree:\n");
860 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
861 			printf("\t");
862 			for (n = m; n != NULL; n = n->m_next)
863 				printf("%p ", n);
864 			printf("\n");
865 		}
866 		panic("%s from %s:%u", __func__, file, line);
867 	}
868 
869 #ifdef KERN_TLS
870 	m = sb->sb_mtls;
871 	while (m && m->m_next)
872 		m = m->m_next;
873 
874 	if (m != sb->sb_mtlstail) {
875 		printf("%s: sb_mtls %p sb_mtlstail %p last %p\n",
876 			__func__, sb->sb_mtls, sb->sb_mtlstail, m);
877 		printf("TLS packet tree:\n");
878 		printf("\t");
879 		for (m = sb->sb_mtls; m != NULL; m = m->m_next) {
880 			printf("%p ", m);
881 		}
882 		printf("\n");
883 		panic("%s from %s:%u", __func__, file, line);
884 	}
885 #endif
886 }
887 #endif /* SOCKBUF_DEBUG */
888 
889 #define SBLINKRECORD(sb, m0) do {					\
890 	SOCKBUF_LOCK_ASSERT(sb);					\
891 	if ((sb)->sb_lastrecord != NULL)				\
892 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
893 	else								\
894 		(sb)->sb_mb = (m0);					\
895 	(sb)->sb_lastrecord = (m0);					\
896 } while (/*CONSTCOND*/0)
897 
898 /*
899  * Append mbuf chain m to the last record in the socket buffer sb.  The
900  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
901  * are discarded and mbufs are compacted where possible.
902  */
903 void
904 sbappend_locked(struct sockbuf *sb, struct mbuf *m, int flags)
905 {
906 	struct mbuf *n;
907 
908 	SOCKBUF_LOCK_ASSERT(sb);
909 
910 	if (m == NULL)
911 		return;
912 	kmsan_check_mbuf(m, "sbappend");
913 	sbm_clrprotoflags(m, flags);
914 	SBLASTRECORDCHK(sb);
915 	n = sb->sb_mb;
916 	if (n) {
917 		while (n->m_nextpkt)
918 			n = n->m_nextpkt;
919 		do {
920 			if (n->m_flags & M_EOR) {
921 				sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
922 				return;
923 			}
924 		} while (n->m_next && (n = n->m_next));
925 	} else {
926 		/*
927 		 * XXX Would like to simply use sb_mbtail here, but
928 		 * XXX I need to verify that I won't miss an EOR that
929 		 * XXX way.
930 		 */
931 		if ((n = sb->sb_lastrecord) != NULL) {
932 			do {
933 				if (n->m_flags & M_EOR) {
934 					sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
935 					return;
936 				}
937 			} while (n->m_next && (n = n->m_next));
938 		} else {
939 			/*
940 			 * If this is the first record in the socket buffer,
941 			 * it's also the last record.
942 			 */
943 			sb->sb_lastrecord = m;
944 		}
945 	}
946 	sbcompress(sb, m, n);
947 	SBLASTRECORDCHK(sb);
948 }
949 
950 /*
951  * Append mbuf chain m to the last record in the socket buffer sb.  The
952  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
953  * are discarded and mbufs are compacted where possible.
954  */
955 void
956 sbappend(struct sockbuf *sb, struct mbuf *m, int flags)
957 {
958 
959 	SOCKBUF_LOCK(sb);
960 	sbappend_locked(sb, m, flags);
961 	SOCKBUF_UNLOCK(sb);
962 }
963 
964 #ifdef KERN_TLS
965 /*
966  * Append an mbuf containing encrypted TLS data.  The data
967  * is marked M_NOTREADY until it has been decrypted and
968  * stored as a TLS record.
969  */
970 static void
971 sbappend_ktls_rx(struct sockbuf *sb, struct mbuf *m)
972 {
973 	struct ifnet *ifp;
974 	struct mbuf *n;
975 	int flags;
976 
977 	ifp = NULL;
978 	flags = M_NOTREADY;
979 
980 	SBLASTMBUFCHK(sb);
981 
982 	/* Mbuf chain must start with a packet header. */
983 	MPASS((m->m_flags & M_PKTHDR) != 0);
984 
985 	/* Remove all packet headers and mbuf tags to get a pure data chain. */
986 	for (n = m; n != NULL; n = n->m_next) {
987 		if (n->m_flags & M_PKTHDR) {
988 			ifp = m->m_pkthdr.leaf_rcvif;
989 			if ((n->m_pkthdr.csum_flags & CSUM_TLS_MASK) ==
990 			    CSUM_TLS_DECRYPTED) {
991 				/* Mark all mbufs in this packet decrypted. */
992 				flags = M_NOTREADY | M_DECRYPTED;
993 			} else {
994 				flags = M_NOTREADY;
995 			}
996 			m_demote_pkthdr(n);
997 		}
998 
999 		n->m_flags &= M_DEMOTEFLAGS;
1000 		n->m_flags |= flags;
1001 
1002 		MPASS((n->m_flags & M_NOTREADY) != 0);
1003 	}
1004 
1005 	sbcompress_ktls_rx(sb, m, sb->sb_mtlstail);
1006 	ktls_check_rx(sb);
1007 
1008 	/* Check for incoming packet route changes: */
1009 	if (ifp != NULL && sb->sb_tls_info->rx_ifp != NULL &&
1010 	    sb->sb_tls_info->rx_ifp != ifp)
1011 		ktls_input_ifp_mismatch(sb, ifp);
1012 }
1013 #endif
1014 
1015 /*
1016  * This version of sbappend() should only be used when the caller absolutely
1017  * knows that there will never be more than one record in the socket buffer,
1018  * that is, a stream protocol (such as TCP).
1019  */
1020 void
1021 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags)
1022 {
1023 	SOCKBUF_LOCK_ASSERT(sb);
1024 
1025 	KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
1026 
1027 	kmsan_check_mbuf(m, "sbappend");
1028 
1029 #ifdef KERN_TLS
1030 	/*
1031 	 * Decrypted TLS records are appended as records via
1032 	 * sbappendrecord().  TCP passes encrypted TLS records to this
1033 	 * function which must be scheduled for decryption.
1034 	 */
1035 	if (sb->sb_flags & SB_TLS_RX) {
1036 		sbappend_ktls_rx(sb, m);
1037 		return;
1038 	}
1039 #endif
1040 
1041 	KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
1042 
1043 	SBLASTMBUFCHK(sb);
1044 
1045 #ifdef KERN_TLS
1046 	if (sb->sb_tls_info != NULL)
1047 		ktls_seq(sb, m);
1048 #endif
1049 
1050 	/* Remove all packet headers and mbuf tags to get a pure data chain. */
1051 	m_demote(m, 1, flags & PRUS_NOTREADY ? M_NOTREADY : 0);
1052 
1053 	sbcompress(sb, m, sb->sb_mbtail);
1054 
1055 	sb->sb_lastrecord = sb->sb_mb;
1056 	SBLASTRECORDCHK(sb);
1057 }
1058 
1059 /*
1060  * This version of sbappend() should only be used when the caller absolutely
1061  * knows that there will never be more than one record in the socket buffer,
1062  * that is, a stream protocol (such as TCP).
1063  */
1064 void
1065 sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags)
1066 {
1067 
1068 	SOCKBUF_LOCK(sb);
1069 	sbappendstream_locked(sb, m, flags);
1070 	SOCKBUF_UNLOCK(sb);
1071 }
1072 
1073 #ifdef SOCKBUF_DEBUG
1074 void
1075 sbcheck(struct sockbuf *sb, const char *file, int line)
1076 {
1077 	struct mbuf *m, *n, *fnrdy;
1078 	u_long acc, ccc, mbcnt;
1079 #ifdef KERN_TLS
1080 	u_long tlscc;
1081 #endif
1082 
1083 	SOCKBUF_LOCK_ASSERT(sb);
1084 
1085 	acc = ccc = mbcnt = 0;
1086 	fnrdy = NULL;
1087 
1088 	for (m = sb->sb_mb; m; m = n) {
1089 	    n = m->m_nextpkt;
1090 	    for (; m; m = m->m_next) {
1091 		if (m->m_len == 0) {
1092 			printf("sb %p empty mbuf %p\n", sb, m);
1093 			goto fail;
1094 		}
1095 		if ((m->m_flags & M_NOTREADY) && fnrdy == NULL) {
1096 			if (m != sb->sb_fnrdy) {
1097 				printf("sb %p: fnrdy %p != m %p\n",
1098 				    sb, sb->sb_fnrdy, m);
1099 				goto fail;
1100 			}
1101 			fnrdy = m;
1102 		}
1103 		if (fnrdy) {
1104 			if (!(m->m_flags & M_NOTAVAIL)) {
1105 				printf("sb %p: fnrdy %p, m %p is avail\n",
1106 				    sb, sb->sb_fnrdy, m);
1107 				goto fail;
1108 			}
1109 		} else
1110 			acc += m->m_len;
1111 		ccc += m->m_len;
1112 		mbcnt += MSIZE;
1113 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1114 			mbcnt += m->m_ext.ext_size;
1115 	    }
1116 	}
1117 #ifdef KERN_TLS
1118 	/*
1119 	 * Account for mbufs "detached" by ktls_detach_record() while
1120 	 * they are decrypted by ktls_decrypt().  tlsdcc gives a count
1121 	 * of the detached bytes that are included in ccc.  The mbufs
1122 	 * and clusters are not included in the socket buffer
1123 	 * accounting.
1124 	 */
1125 	ccc += sb->sb_tlsdcc;
1126 
1127 	tlscc = 0;
1128 	for (m = sb->sb_mtls; m; m = m->m_next) {
1129 		if (m->m_nextpkt != NULL) {
1130 			printf("sb %p TLS mbuf %p with nextpkt\n", sb, m);
1131 			goto fail;
1132 		}
1133 		if ((m->m_flags & M_NOTREADY) == 0) {
1134 			printf("sb %p TLS mbuf %p ready\n", sb, m);
1135 			goto fail;
1136 		}
1137 		tlscc += m->m_len;
1138 		ccc += m->m_len;
1139 		mbcnt += MSIZE;
1140 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1141 			mbcnt += m->m_ext.ext_size;
1142 	}
1143 
1144 	if (sb->sb_tlscc != tlscc) {
1145 		printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
1146 		    sb->sb_tlsdcc);
1147 		goto fail;
1148 	}
1149 #endif
1150 	if (acc != sb->sb_acc || ccc != sb->sb_ccc || mbcnt != sb->sb_mbcnt) {
1151 		printf("acc %ld/%u ccc %ld/%u mbcnt %ld/%u\n",
1152 		    acc, sb->sb_acc, ccc, sb->sb_ccc, mbcnt, sb->sb_mbcnt);
1153 #ifdef KERN_TLS
1154 		printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
1155 		    sb->sb_tlsdcc);
1156 #endif
1157 		goto fail;
1158 	}
1159 	return;
1160 fail:
1161 	panic("%s from %s:%u", __func__, file, line);
1162 }
1163 #endif
1164 
1165 /*
1166  * As above, except the mbuf chain begins a new record.
1167  */
1168 void
1169 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
1170 {
1171 	struct mbuf *m;
1172 
1173 	SOCKBUF_LOCK_ASSERT(sb);
1174 
1175 	if (m0 == NULL)
1176 		return;
1177 
1178 	kmsan_check_mbuf(m0, "sbappend");
1179 	m_clrprotoflags(m0);
1180 
1181 	/*
1182 	 * Put the first mbuf on the queue.  Note this permits zero length
1183 	 * records.
1184 	 */
1185 	sballoc(sb, m0);
1186 	SBLASTRECORDCHK(sb);
1187 	SBLINKRECORD(sb, m0);
1188 	sb->sb_mbtail = m0;
1189 	m = m0->m_next;
1190 	m0->m_next = 0;
1191 	if (m && (m0->m_flags & M_EOR)) {
1192 		m0->m_flags &= ~M_EOR;
1193 		m->m_flags |= M_EOR;
1194 	}
1195 	/* always call sbcompress() so it can do SBLASTMBUFCHK() */
1196 	sbcompress(sb, m, m0);
1197 }
1198 
1199 /*
1200  * As above, except the mbuf chain begins a new record.
1201  */
1202 void
1203 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
1204 {
1205 
1206 	SOCKBUF_LOCK(sb);
1207 	sbappendrecord_locked(sb, m0);
1208 	SOCKBUF_UNLOCK(sb);
1209 }
1210 
1211 /* Helper routine that appends data, control, and address to a sockbuf. */
1212 static int
1213 sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa,
1214     struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last)
1215 {
1216 	struct mbuf *m, *n, *nlast;
1217 
1218 	if (m0 != NULL)
1219 		kmsan_check_mbuf(m0, "sbappend");
1220 	if (control != NULL)
1221 		kmsan_check_mbuf(control, "sbappend");
1222 
1223 #if MSIZE <= 256
1224 	if (asa->sa_len > MLEN)
1225 		return (0);
1226 #endif
1227 	m = m_get(M_NOWAIT, MT_SONAME);
1228 	if (m == NULL)
1229 		return (0);
1230 	m->m_len = asa->sa_len;
1231 	bcopy(asa, mtod(m, caddr_t), asa->sa_len);
1232 	if (m0) {
1233 		M_ASSERT_NO_SND_TAG(m0);
1234 		m_clrprotoflags(m0);
1235 		m_tag_delete_chain(m0, NULL);
1236 		/*
1237 		 * Clear some persistent info from pkthdr.
1238 		 * We don't use m_demote(), because some netgraph consumers
1239 		 * expect M_PKTHDR presence.
1240 		 */
1241 		m0->m_pkthdr.rcvif = NULL;
1242 		m0->m_pkthdr.flowid = 0;
1243 		m0->m_pkthdr.csum_flags = 0;
1244 		m0->m_pkthdr.fibnum = 0;
1245 		m0->m_pkthdr.rsstype = 0;
1246 	}
1247 	if (ctrl_last)
1248 		ctrl_last->m_next = m0;	/* concatenate data to control */
1249 	else
1250 		control = m0;
1251 	m->m_next = control;
1252 	for (n = m; n->m_next != NULL; n = n->m_next)
1253 		sballoc(sb, n);
1254 	sballoc(sb, n);
1255 	nlast = n;
1256 	SBLINKRECORD(sb, m);
1257 
1258 	sb->sb_mbtail = nlast;
1259 	SBLASTMBUFCHK(sb);
1260 
1261 	SBLASTRECORDCHK(sb);
1262 	return (1);
1263 }
1264 
1265 /*
1266  * Append address and data, and optionally, control (ancillary) data to the
1267  * receive queue of a socket.  If present, m0 must include a packet header
1268  * with total length.  Returns 0 if no space in sockbuf or insufficient
1269  * mbufs.
1270  */
1271 int
1272 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
1273     struct mbuf *m0, struct mbuf *control)
1274 {
1275 	struct mbuf *ctrl_last;
1276 	int space = asa->sa_len;
1277 
1278 	SOCKBUF_LOCK_ASSERT(sb);
1279 
1280 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1281 		panic("sbappendaddr_locked");
1282 	if (m0)
1283 		space += m0->m_pkthdr.len;
1284 	space += m_length(control, &ctrl_last);
1285 
1286 	if (space > sbspace(sb))
1287 		return (0);
1288 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1289 }
1290 
1291 /*
1292  * Append address and data, and optionally, control (ancillary) data to the
1293  * receive queue of a socket.  If present, m0 must include a packet header
1294  * with total length.  Returns 0 if insufficient mbufs.  Does not validate space
1295  * on the receiving sockbuf.
1296  */
1297 int
1298 sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa,
1299     struct mbuf *m0, struct mbuf *control)
1300 {
1301 	struct mbuf *ctrl_last;
1302 
1303 	SOCKBUF_LOCK_ASSERT(sb);
1304 
1305 	ctrl_last = (control == NULL) ? NULL : m_last(control);
1306 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1307 }
1308 
1309 /*
1310  * Append address and data, and optionally, control (ancillary) data to the
1311  * receive queue of a socket.  If present, m0 must include a packet header
1312  * with total length.  Returns 0 if no space in sockbuf or insufficient
1313  * mbufs.
1314  */
1315 int
1316 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
1317     struct mbuf *m0, struct mbuf *control)
1318 {
1319 	int retval;
1320 
1321 	SOCKBUF_LOCK(sb);
1322 	retval = sbappendaddr_locked(sb, asa, m0, control);
1323 	SOCKBUF_UNLOCK(sb);
1324 	return (retval);
1325 }
1326 
1327 void
1328 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
1329     struct mbuf *control, int flags)
1330 {
1331 	struct mbuf *m, *mlast;
1332 
1333 	kmsan_check_mbuf(m0, "sbappend");
1334 	kmsan_check_mbuf(control, "sbappend");
1335 
1336 	sbm_clrprotoflags(m0, flags);
1337 	m_last(control)->m_next = m0;
1338 
1339 	SBLASTRECORDCHK(sb);
1340 
1341 	for (m = control; m->m_next; m = m->m_next)
1342 		sballoc(sb, m);
1343 	sballoc(sb, m);
1344 	mlast = m;
1345 	SBLINKRECORD(sb, control);
1346 
1347 	sb->sb_mbtail = mlast;
1348 	SBLASTMBUFCHK(sb);
1349 
1350 	SBLASTRECORDCHK(sb);
1351 }
1352 
1353 void
1354 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control,
1355     int flags)
1356 {
1357 
1358 	SOCKBUF_LOCK(sb);
1359 	sbappendcontrol_locked(sb, m0, control, flags);
1360 	SOCKBUF_UNLOCK(sb);
1361 }
1362 
1363 /*
1364  * Append the data in mbuf chain (m) into the socket buffer sb following mbuf
1365  * (n).  If (n) is NULL, the buffer is presumed empty.
1366  *
1367  * When the data is compressed, mbufs in the chain may be handled in one of
1368  * three ways:
1369  *
1370  * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
1371  *     record boundary, and no change in data type).
1372  *
1373  * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
1374  *     an mbuf already in the socket buffer.  This can occur if an
1375  *     appropriate mbuf exists, there is room, both mbufs are not marked as
1376  *     not ready, and no merging of data types will occur.
1377  *
1378  * (3) The mbuf may be appended to the end of the existing mbuf chain.
1379  *
1380  * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
1381  * end-of-record.
1382  */
1383 void
1384 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1385 {
1386 	int eor = 0;
1387 	struct mbuf *o;
1388 
1389 	SOCKBUF_LOCK_ASSERT(sb);
1390 
1391 	while (m) {
1392 		eor |= m->m_flags & M_EOR;
1393 		if (m->m_len == 0 &&
1394 		    (eor == 0 ||
1395 		     (((o = m->m_next) || (o = n)) &&
1396 		      o->m_type == m->m_type))) {
1397 			if (sb->sb_lastrecord == m)
1398 				sb->sb_lastrecord = m->m_next;
1399 			m = m_free(m);
1400 			continue;
1401 		}
1402 		if (n && (n->m_flags & M_EOR) == 0 &&
1403 		    M_WRITABLE(n) &&
1404 		    ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
1405 		    !(m->m_flags & M_NOTREADY) &&
1406 		    !(n->m_flags & (M_NOTREADY | M_EXTPG)) &&
1407 		    !mbuf_has_tls_session(m) &&
1408 		    !mbuf_has_tls_session(n) &&
1409 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1410 		    m->m_len <= M_TRAILINGSPACE(n) &&
1411 		    n->m_type == m->m_type) {
1412 			m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1413 			n->m_len += m->m_len;
1414 			sb->sb_ccc += m->m_len;
1415 			if (sb->sb_fnrdy == NULL)
1416 				sb->sb_acc += m->m_len;
1417 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1418 				/* XXX: Probably don't need.*/
1419 				sb->sb_ctl += m->m_len;
1420 			m = m_free(m);
1421 			continue;
1422 		}
1423 		if (m->m_len <= MLEN && (m->m_flags & M_EXTPG) &&
1424 		    (m->m_flags & M_NOTREADY) == 0 &&
1425 		    !mbuf_has_tls_session(m))
1426 			(void)mb_unmapped_compress(m);
1427 		if (n)
1428 			n->m_next = m;
1429 		else
1430 			sb->sb_mb = m;
1431 		sb->sb_mbtail = m;
1432 		sballoc(sb, m);
1433 		n = m;
1434 		m->m_flags &= ~M_EOR;
1435 		m = m->m_next;
1436 		n->m_next = 0;
1437 	}
1438 	if (eor) {
1439 		KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
1440 		n->m_flags |= eor;
1441 	}
1442 	SBLASTMBUFCHK(sb);
1443 }
1444 
1445 #ifdef KERN_TLS
1446 /*
1447  * A version of sbcompress() for encrypted TLS RX mbufs.  These mbufs
1448  * are appended to the 'sb_mtls' chain instead of 'sb_mb' and are also
1449  * a bit simpler (no EOR markers, always MT_DATA, etc.).
1450  */
1451 static void
1452 sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1453 {
1454 
1455 	SOCKBUF_LOCK_ASSERT(sb);
1456 
1457 	while (m) {
1458 		KASSERT((m->m_flags & M_EOR) == 0,
1459 		    ("TLS RX mbuf %p with EOR", m));
1460 		KASSERT(m->m_type == MT_DATA,
1461 		    ("TLS RX mbuf %p is not MT_DATA", m));
1462 		KASSERT((m->m_flags & M_NOTREADY) != 0,
1463 		    ("TLS RX mbuf %p ready", m));
1464 		KASSERT((m->m_flags & M_EXTPG) == 0,
1465 		    ("TLS RX mbuf %p unmapped", m));
1466 
1467 		if (m->m_len == 0) {
1468 			m = m_free(m);
1469 			continue;
1470 		}
1471 
1472 		/*
1473 		 * Even though both 'n' and 'm' are NOTREADY, it's ok
1474 		 * to coalesce the data.
1475 		 */
1476 		if (n &&
1477 		    M_WRITABLE(n) &&
1478 		    ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
1479 		    !((m->m_flags ^ n->m_flags) & M_DECRYPTED) &&
1480 		    !(n->m_flags & M_EXTPG) &&
1481 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1482 		    m->m_len <= M_TRAILINGSPACE(n)) {
1483 			m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1484 			n->m_len += m->m_len;
1485 			sb->sb_ccc += m->m_len;
1486 			sb->sb_tlscc += m->m_len;
1487 			m = m_free(m);
1488 			continue;
1489 		}
1490 		if (n)
1491 			n->m_next = m;
1492 		else
1493 			sb->sb_mtls = m;
1494 		sb->sb_mtlstail = m;
1495 		sballoc_ktls_rx(sb, m);
1496 		n = m;
1497 		m = m->m_next;
1498 		n->m_next = NULL;
1499 	}
1500 	SBLASTMBUFCHK(sb);
1501 }
1502 #endif
1503 
1504 /*
1505  * Free all mbufs in a sockbuf.  Check that all resources are reclaimed.
1506  */
1507 static void
1508 sbflush_internal(struct sockbuf *sb)
1509 {
1510 
1511 	while (sb->sb_mbcnt || sb->sb_tlsdcc) {
1512 		/*
1513 		 * Don't call sbcut(sb, 0) if the leading mbuf is non-empty:
1514 		 * we would loop forever. Panic instead.
1515 		 */
1516 		if (sb->sb_ccc == 0 && (sb->sb_mb == NULL || sb->sb_mb->m_len))
1517 			break;
1518 		m_freem(sbcut_internal(sb, (int)sb->sb_ccc));
1519 	}
1520 	KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
1521 	    ("%s: ccc %u mb %p mbcnt %u", __func__,
1522 	    sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
1523 }
1524 
1525 void
1526 sbflush_locked(struct sockbuf *sb)
1527 {
1528 
1529 	SOCKBUF_LOCK_ASSERT(sb);
1530 	sbflush_internal(sb);
1531 }
1532 
1533 void
1534 sbflush(struct sockbuf *sb)
1535 {
1536 
1537 	SOCKBUF_LOCK(sb);
1538 	sbflush_locked(sb);
1539 	SOCKBUF_UNLOCK(sb);
1540 }
1541 
1542 /*
1543  * Cut data from (the front of) a sockbuf.
1544  */
1545 static struct mbuf *
1546 sbcut_internal(struct sockbuf *sb, int len)
1547 {
1548 	struct mbuf *m, *next, *mfree;
1549 	bool is_tls;
1550 
1551 	KASSERT(len >= 0, ("%s: len is %d but it is supposed to be >= 0",
1552 	    __func__, len));
1553 	KASSERT(len <= sb->sb_ccc, ("%s: len: %d is > ccc: %u",
1554 	    __func__, len, sb->sb_ccc));
1555 
1556 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1557 	is_tls = false;
1558 	mfree = NULL;
1559 
1560 	while (len > 0) {
1561 		if (m == NULL) {
1562 #ifdef KERN_TLS
1563 			if (next == NULL && !is_tls) {
1564 				if (sb->sb_tlsdcc != 0) {
1565 					MPASS(len >= sb->sb_tlsdcc);
1566 					len -= sb->sb_tlsdcc;
1567 					sb->sb_ccc -= sb->sb_tlsdcc;
1568 					sb->sb_tlsdcc = 0;
1569 					if (len == 0)
1570 						break;
1571 				}
1572 				next = sb->sb_mtls;
1573 				is_tls = true;
1574 			}
1575 #endif
1576 			KASSERT(next, ("%s: no next, len %d", __func__, len));
1577 			m = next;
1578 			next = m->m_nextpkt;
1579 		}
1580 		if (m->m_len > len) {
1581 			KASSERT(!(m->m_flags & M_NOTAVAIL),
1582 			    ("%s: m %p M_NOTAVAIL", __func__, m));
1583 			m->m_len -= len;
1584 			m->m_data += len;
1585 			sb->sb_ccc -= len;
1586 			sb->sb_acc -= len;
1587 			if (sb->sb_sndptroff != 0)
1588 				sb->sb_sndptroff -= len;
1589 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1590 				sb->sb_ctl -= len;
1591 			break;
1592 		}
1593 		len -= m->m_len;
1594 #ifdef KERN_TLS
1595 		if (is_tls)
1596 			sbfree_ktls_rx(sb, m);
1597 		else
1598 #endif
1599 			sbfree(sb, m);
1600 		/*
1601 		 * Do not put M_NOTREADY buffers to the free list, they
1602 		 * are referenced from outside.
1603 		 */
1604 		if (m->m_flags & M_NOTREADY && !is_tls)
1605 			m = m->m_next;
1606 		else {
1607 			struct mbuf *n;
1608 
1609 			n = m->m_next;
1610 			m->m_next = mfree;
1611 			mfree = m;
1612 			m = n;
1613 		}
1614 	}
1615 	/*
1616 	 * Free any zero-length mbufs from the buffer.
1617 	 * For SOCK_DGRAM sockets such mbufs represent empty records.
1618 	 * XXX: For SOCK_STREAM sockets such mbufs can appear in the buffer,
1619 	 * when sosend_generic() needs to send only control data.
1620 	 */
1621 	while (m && m->m_len == 0) {
1622 		struct mbuf *n;
1623 
1624 		sbfree(sb, m);
1625 		n = m->m_next;
1626 		m->m_next = mfree;
1627 		mfree = m;
1628 		m = n;
1629 	}
1630 #ifdef KERN_TLS
1631 	if (is_tls) {
1632 		sb->sb_mb = NULL;
1633 		sb->sb_mtls = m;
1634 		if (m == NULL)
1635 			sb->sb_mtlstail = NULL;
1636 	} else
1637 #endif
1638 	if (m) {
1639 		sb->sb_mb = m;
1640 		m->m_nextpkt = next;
1641 	} else
1642 		sb->sb_mb = next;
1643 	/*
1644 	 * First part is an inline SB_EMPTY_FIXUP().  Second part makes sure
1645 	 * sb_lastrecord is up-to-date if we dropped part of the last record.
1646 	 */
1647 	m = sb->sb_mb;
1648 	if (m == NULL) {
1649 		sb->sb_mbtail = NULL;
1650 		sb->sb_lastrecord = NULL;
1651 	} else if (m->m_nextpkt == NULL) {
1652 		sb->sb_lastrecord = m;
1653 	}
1654 
1655 	return (mfree);
1656 }
1657 
1658 /*
1659  * Drop data from (the front of) a sockbuf.
1660  */
1661 void
1662 sbdrop_locked(struct sockbuf *sb, int len)
1663 {
1664 
1665 	SOCKBUF_LOCK_ASSERT(sb);
1666 	m_freem(sbcut_internal(sb, len));
1667 }
1668 
1669 /*
1670  * Drop data from (the front of) a sockbuf,
1671  * and return it to caller.
1672  */
1673 struct mbuf *
1674 sbcut_locked(struct sockbuf *sb, int len)
1675 {
1676 
1677 	SOCKBUF_LOCK_ASSERT(sb);
1678 	return (sbcut_internal(sb, len));
1679 }
1680 
1681 void
1682 sbdrop(struct sockbuf *sb, int len)
1683 {
1684 	struct mbuf *mfree;
1685 
1686 	SOCKBUF_LOCK(sb);
1687 	mfree = sbcut_internal(sb, len);
1688 	SOCKBUF_UNLOCK(sb);
1689 
1690 	m_freem(mfree);
1691 }
1692 
1693 struct mbuf *
1694 sbsndptr_noadv(struct sockbuf *sb, uint32_t off, uint32_t *moff)
1695 {
1696 	struct mbuf *m;
1697 
1698 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1699 	if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1700 		*moff = off;
1701 		if (sb->sb_sndptr == NULL) {
1702 			sb->sb_sndptr = sb->sb_mb;
1703 			sb->sb_sndptroff = 0;
1704 		}
1705 		return (sb->sb_mb);
1706 	} else {
1707 		m = sb->sb_sndptr;
1708 		off -= sb->sb_sndptroff;
1709 	}
1710 	*moff = off;
1711 	return (m);
1712 }
1713 
1714 void
1715 sbsndptr_adv(struct sockbuf *sb, struct mbuf *mb, uint32_t len)
1716 {
1717 	/*
1718 	 * A small copy was done, advance forward the sb_sbsndptr to cover
1719 	 * it.
1720 	 */
1721 	struct mbuf *m;
1722 
1723 	if (mb != sb->sb_sndptr) {
1724 		/* Did not copyout at the same mbuf */
1725 		return;
1726 	}
1727 	m = mb;
1728 	while (m && (len > 0)) {
1729 		if (len >= m->m_len) {
1730 			len -= m->m_len;
1731 			if (m->m_next) {
1732 				sb->sb_sndptroff += m->m_len;
1733 				sb->sb_sndptr = m->m_next;
1734 			}
1735 			m = m->m_next;
1736 		} else {
1737 			len = 0;
1738 		}
1739 	}
1740 }
1741 
1742 /*
1743  * Return the first mbuf and the mbuf data offset for the provided
1744  * send offset without changing the "sb_sndptroff" field.
1745  */
1746 struct mbuf *
1747 sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff)
1748 {
1749 	struct mbuf *m;
1750 
1751 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1752 
1753 	/*
1754 	 * If the "off" is below the stored offset, which happens on
1755 	 * retransmits, just use "sb_mb":
1756 	 */
1757 	if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1758 		m = sb->sb_mb;
1759 	} else {
1760 		m = sb->sb_sndptr;
1761 		off -= sb->sb_sndptroff;
1762 	}
1763 	while (off > 0 && m != NULL) {
1764 		if (off < m->m_len)
1765 			break;
1766 		off -= m->m_len;
1767 		m = m->m_next;
1768 	}
1769 	*moff = off;
1770 	return (m);
1771 }
1772 
1773 /*
1774  * Drop a record off the front of a sockbuf and move the next record to the
1775  * front.
1776  */
1777 void
1778 sbdroprecord_locked(struct sockbuf *sb)
1779 {
1780 	struct mbuf *m;
1781 
1782 	SOCKBUF_LOCK_ASSERT(sb);
1783 
1784 	m = sb->sb_mb;
1785 	if (m) {
1786 		sb->sb_mb = m->m_nextpkt;
1787 		do {
1788 			sbfree(sb, m);
1789 			m = m_free(m);
1790 		} while (m);
1791 	}
1792 	SB_EMPTY_FIXUP(sb);
1793 }
1794 
1795 /*
1796  * Drop a record off the front of a sockbuf and move the next record to the
1797  * front.
1798  */
1799 void
1800 sbdroprecord(struct sockbuf *sb)
1801 {
1802 
1803 	SOCKBUF_LOCK(sb);
1804 	sbdroprecord_locked(sb);
1805 	SOCKBUF_UNLOCK(sb);
1806 }
1807 
1808 /*
1809  * Create a "control" mbuf containing the specified data with the specified
1810  * type for presentation on a socket buffer.
1811  */
1812 struct mbuf *
1813 sbcreatecontrol(const void *p, u_int size, int type, int level, int wait)
1814 {
1815 	struct cmsghdr *cp;
1816 	struct mbuf *m;
1817 
1818 	MBUF_CHECKSLEEP(wait);
1819 
1820 	if (wait == M_NOWAIT) {
1821 		if (CMSG_SPACE(size) > MCLBYTES)
1822 			return (NULL);
1823 	} else
1824 		KASSERT(CMSG_SPACE(size) <= MCLBYTES,
1825 		    ("%s: passed CMSG_SPACE(%u) > MCLBYTES", __func__, size));
1826 
1827 	if (CMSG_SPACE(size) > MLEN)
1828 		m = m_getcl(wait, MT_CONTROL, 0);
1829 	else
1830 		m = m_get(wait, MT_CONTROL);
1831 	if (m == NULL)
1832 		return (NULL);
1833 
1834 	KASSERT(CMSG_SPACE(size) <= M_TRAILINGSPACE(m),
1835 	    ("sbcreatecontrol: short mbuf"));
1836 	/*
1837 	 * Don't leave the padding between the msg header and the
1838 	 * cmsg data and the padding after the cmsg data un-initialized.
1839 	 */
1840 	cp = mtod(m, struct cmsghdr *);
1841 	bzero(cp, CMSG_SPACE(size));
1842 	if (p != NULL)
1843 		(void)memcpy(CMSG_DATA(cp), p, size);
1844 	m->m_len = CMSG_SPACE(size);
1845 	cp->cmsg_len = CMSG_LEN(size);
1846 	cp->cmsg_level = level;
1847 	cp->cmsg_type = type;
1848 	return (m);
1849 }
1850 
1851 /*
1852  * This does the same for socket buffers that sotoxsocket does for sockets:
1853  * generate an user-format data structure describing the socket buffer.  Note
1854  * that the xsockbuf structure, since it is always embedded in a socket, does
1855  * not include a self pointer nor a length.  We make this entry point public
1856  * in case some other mechanism needs it.
1857  */
1858 void
1859 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1860 {
1861 
1862 	xsb->sb_cc = sb->sb_ccc;
1863 	xsb->sb_hiwat = sb->sb_hiwat;
1864 	xsb->sb_mbcnt = sb->sb_mbcnt;
1865 	xsb->sb_mbmax = sb->sb_mbmax;
1866 	xsb->sb_lowat = sb->sb_lowat;
1867 	xsb->sb_flags = sb->sb_flags;
1868 	xsb->sb_timeo = sb->sb_timeo;
1869 }
1870 
1871 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1872 static int dummy;
1873 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW | CTLFLAG_SKIP, &dummy, 0, "");
1874 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf,
1875     CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, &sb_max, 0,
1876     sysctl_handle_sb_max, "LU",
1877     "Maximum socket buffer size");
1878 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1879     &sb_efficiency, 0, "Socket buffer size waste factor");
1880