1 /* 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_mac.h" 36 #include "opt_param.h" 37 38 #include <sys/param.h> 39 #include <sys/aio.h> /* for aio_swake proto */ 40 #include <sys/domain.h> 41 #include <sys/event.h> 42 #include <sys/file.h> /* for maxfiles */ 43 #include <sys/kernel.h> 44 #include <sys/lock.h> 45 #include <sys/mac.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/mutex.h> 49 #include <sys/proc.h> 50 #include <sys/protosw.h> 51 #include <sys/resourcevar.h> 52 #include <sys/signalvar.h> 53 #include <sys/socket.h> 54 #include <sys/socketvar.h> 55 #include <sys/stat.h> 56 #include <sys/sysctl.h> 57 #include <sys/systm.h> 58 59 int maxsockets; 60 61 void (*aio_swake)(struct socket *, struct sockbuf *); 62 63 /* 64 * Primitive routines for operating on sockets and socket buffers 65 */ 66 67 u_long sb_max = SB_MAX; 68 static u_long sb_max_adj = 69 SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */ 70 71 static u_long sb_efficiency = 8; /* parameter for sbreserve() */ 72 73 /* 74 * Procedures to manipulate state flags of socket 75 * and do appropriate wakeups. Normal sequence from the 76 * active (originating) side is that soisconnecting() is 77 * called during processing of connect() call, 78 * resulting in an eventual call to soisconnected() if/when the 79 * connection is established. When the connection is torn down 80 * soisdisconnecting() is called during processing of disconnect() call, 81 * and soisdisconnected() is called when the connection to the peer 82 * is totally severed. The semantics of these routines are such that 83 * connectionless protocols can call soisconnected() and soisdisconnected() 84 * only, bypassing the in-progress calls when setting up a ``connection'' 85 * takes no time. 86 * 87 * From the passive side, a socket is created with 88 * two queues of sockets: so_incomp for connections in progress 89 * and so_comp for connections already made and awaiting user acceptance. 90 * As a protocol is preparing incoming connections, it creates a socket 91 * structure queued on so_incomp by calling sonewconn(). When the connection 92 * is established, soisconnected() is called, and transfers the 93 * socket structure to so_comp, making it available to accept(). 94 * 95 * If a socket is closed with sockets on either 96 * so_incomp or so_comp, these sockets are dropped. 97 * 98 * If higher level protocols are implemented in 99 * the kernel, the wakeups done here will sometimes 100 * cause software-interrupt process scheduling. 101 */ 102 103 void 104 soisconnecting(so) 105 register struct socket *so; 106 { 107 108 SOCK_LOCK(so); 109 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 110 so->so_state |= SS_ISCONNECTING; 111 SOCK_UNLOCK(so); 112 } 113 114 void 115 soisconnected(so) 116 struct socket *so; 117 { 118 struct socket *head; 119 120 SOCK_LOCK(so); 121 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 122 so->so_state |= SS_ISCONNECTED; 123 SOCK_UNLOCK(so); 124 ACCEPT_LOCK(); 125 head = so->so_head; 126 if (head != NULL && (so->so_qstate & SQ_INCOMP)) { 127 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 128 TAILQ_REMOVE(&head->so_incomp, so, so_list); 129 head->so_incqlen--; 130 so->so_qstate &= ~SQ_INCOMP; 131 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 132 head->so_qlen++; 133 so->so_qstate |= SQ_COMP; 134 ACCEPT_UNLOCK(); 135 sorwakeup(head); 136 wakeup_one(&head->so_timeo); 137 } else { 138 ACCEPT_UNLOCK(); 139 SOCK_LOCK(so); 140 so->so_upcall = 141 head->so_accf->so_accept_filter->accf_callback; 142 so->so_upcallarg = head->so_accf->so_accept_filter_arg; 143 so->so_rcv.sb_flags |= SB_UPCALL; 144 so->so_options &= ~SO_ACCEPTFILTER; 145 SOCK_UNLOCK(so); 146 so->so_upcall(so, so->so_upcallarg, M_TRYWAIT); 147 } 148 return; 149 } 150 ACCEPT_UNLOCK(); 151 wakeup(&so->so_timeo); 152 sorwakeup(so); 153 sowwakeup(so); 154 } 155 156 void 157 soisdisconnecting(so) 158 register struct socket *so; 159 { 160 161 /* 162 * XXXRW: This code separately acquires SOCK_LOCK(so) and 163 * SOCKBUF_LOCK(&so->so_rcv) even though they are the same mutex to 164 * avoid introducing the assumption that they are the same. 165 */ 166 SOCK_LOCK(so); 167 so->so_state &= ~SS_ISCONNECTING; 168 so->so_state |= SS_ISDISCONNECTING; 169 SOCK_UNLOCK(so); 170 SOCKBUF_LOCK(&so->so_rcv); 171 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 172 sorwakeup_locked(so); 173 SOCKBUF_LOCK(&so->so_snd); 174 so->so_snd.sb_state |= SBS_CANTSENDMORE; 175 sowwakeup_locked(so); 176 wakeup(&so->so_timeo); 177 } 178 179 void 180 soisdisconnected(so) 181 register struct socket *so; 182 { 183 184 /* 185 * XXXRW: This code separately acquires SOCK_LOCK(so) and 186 * SOCKBUF_LOCK(&so->so_rcv) even though they are the same mutex to 187 * avoid introducing the assumption that they are the same. 188 */ 189 /* XXXRW: so_state locking? */ 190 SOCK_LOCK(so); 191 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 192 so->so_state |= SS_ISDISCONNECTED; 193 SOCK_UNLOCK(so); 194 SOCKBUF_LOCK(&so->so_rcv); 195 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 196 sorwakeup_locked(so); 197 SOCKBUF_LOCK(&so->so_snd); 198 so->so_snd.sb_state |= SBS_CANTSENDMORE; 199 sbdrop_locked(&so->so_snd, so->so_snd.sb_cc); 200 sowwakeup_locked(so); 201 wakeup(&so->so_timeo); 202 } 203 204 /* 205 * When an attempt at a new connection is noted on a socket 206 * which accepts connections, sonewconn is called. If the 207 * connection is possible (subject to space constraints, etc.) 208 * then we allocate a new structure, propoerly linked into the 209 * data structure of the original socket, and return this. 210 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. 211 * 212 * note: the ref count on the socket is 0 on return 213 */ 214 struct socket * 215 sonewconn(head, connstatus) 216 register struct socket *head; 217 int connstatus; 218 { 219 register struct socket *so; 220 int over; 221 222 ACCEPT_LOCK(); 223 over = (head->so_qlen > 3 * head->so_qlimit / 2); 224 ACCEPT_UNLOCK(); 225 if (over) 226 return ((struct socket *)0); 227 so = soalloc(M_NOWAIT); 228 if (so == NULL) 229 return ((struct socket *)0); 230 if ((head->so_options & SO_ACCEPTFILTER) != 0) 231 connstatus = 0; 232 so->so_head = head; 233 so->so_type = head->so_type; 234 so->so_options = head->so_options &~ SO_ACCEPTCONN; 235 so->so_linger = head->so_linger; 236 so->so_state = head->so_state | SS_NOFDREF; 237 so->so_proto = head->so_proto; 238 so->so_timeo = head->so_timeo; 239 so->so_cred = crhold(head->so_cred); 240 #ifdef MAC 241 SOCK_LOCK(head); 242 mac_create_socket_from_socket(head, so); 243 SOCK_UNLOCK(head); 244 #endif 245 knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 246 knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 247 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) || 248 (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 249 sodealloc(so); 250 return ((struct socket *)0); 251 } 252 ACCEPT_LOCK(); 253 if (connstatus) { 254 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 255 so->so_qstate |= SQ_COMP; 256 head->so_qlen++; 257 } else { 258 /* 259 * XXXRW: Keep removing sockets from the head until there's 260 * room for us to insert on the tail. In pre-locking 261 * revisions, this was a simple if(), but as we could be 262 * racing with other threads and soabort() requires dropping 263 * locks, we must loop waiting for the condition to be true. 264 */ 265 while (head->so_incqlen > head->so_qlimit) { 266 struct socket *sp; 267 sp = TAILQ_FIRST(&head->so_incomp); 268 TAILQ_REMOVE(&so->so_incomp, sp, so_list); 269 head->so_incqlen--; 270 sp->so_qstate &= ~SQ_INCOMP; 271 sp->so_head = NULL; 272 ACCEPT_UNLOCK(); 273 (void) soabort(sp); 274 ACCEPT_LOCK(); 275 } 276 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 277 so->so_qstate |= SQ_INCOMP; 278 head->so_incqlen++; 279 } 280 ACCEPT_UNLOCK(); 281 if (connstatus) { 282 so->so_state |= connstatus; 283 sorwakeup(head); 284 wakeup_one(&head->so_timeo); 285 } 286 return (so); 287 } 288 289 /* 290 * Socantsendmore indicates that no more data will be sent on the 291 * socket; it would normally be applied to a socket when the user 292 * informs the system that no more data is to be sent, by the protocol 293 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 294 * will be received, and will normally be applied to the socket by a 295 * protocol when it detects that the peer will send no more data. 296 * Data queued for reading in the socket may yet be read. 297 */ 298 void 299 socantsendmore_locked(so) 300 struct socket *so; 301 { 302 303 SOCKBUF_LOCK_ASSERT(&so->so_snd); 304 305 so->so_snd.sb_state |= SBS_CANTSENDMORE; 306 sowwakeup_locked(so); 307 mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED); 308 } 309 310 void 311 socantsendmore(so) 312 struct socket *so; 313 { 314 315 SOCKBUF_LOCK(&so->so_snd); 316 socantsendmore_locked(so); 317 mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED); 318 } 319 320 void 321 socantrcvmore_locked(so) 322 struct socket *so; 323 { 324 325 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 326 327 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 328 sorwakeup_locked(so); 329 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED); 330 } 331 332 void 333 socantrcvmore(so) 334 struct socket *so; 335 { 336 337 SOCKBUF_LOCK(&so->so_rcv); 338 socantrcvmore_locked(so); 339 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED); 340 } 341 342 /* 343 * Wait for data to arrive at/drain from a socket buffer. 344 */ 345 int 346 sbwait(sb) 347 struct sockbuf *sb; 348 { 349 350 SOCKBUF_LOCK_ASSERT(sb); 351 352 sb->sb_flags |= SB_WAIT; 353 return (msleep(&sb->sb_cc, &sb->sb_mtx, 354 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", 355 sb->sb_timeo)); 356 } 357 358 /* 359 * Lock a sockbuf already known to be locked; 360 * return any error returned from sleep (EINTR). 361 */ 362 int 363 sb_lock(sb) 364 register struct sockbuf *sb; 365 { 366 int error; 367 368 SOCKBUF_LOCK_ASSERT(sb); 369 370 while (sb->sb_flags & SB_LOCK) { 371 sb->sb_flags |= SB_WANT; 372 error = msleep(&sb->sb_flags, &sb->sb_mtx, 373 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH, 374 "sblock", 0); 375 if (error) 376 return (error); 377 } 378 sb->sb_flags |= SB_LOCK; 379 return (0); 380 } 381 382 /* 383 * Wakeup processes waiting on a socket buffer. Do asynchronous 384 * notification via SIGIO if the socket has the SS_ASYNC flag set. 385 * 386 * Called with the socket buffer lock held; will release the lock by the end 387 * of the function. This allows the caller to acquire the socket buffer lock 388 * while testing for the need for various sorts of wakeup and hold it through 389 * to the point where it's no longer required. We currently hold the lock 390 * through calls out to other subsystems (with the exception of kqueue), and 391 * then release it to avoid lock order issues. It's not clear that's 392 * correct. 393 */ 394 void 395 sowakeup(so, sb) 396 register struct socket *so; 397 register struct sockbuf *sb; 398 { 399 400 SOCKBUF_LOCK_ASSERT(sb); 401 402 selwakeuppri(&sb->sb_sel, PSOCK); 403 sb->sb_flags &= ~SB_SEL; 404 if (sb->sb_flags & SB_WAIT) { 405 sb->sb_flags &= ~SB_WAIT; 406 wakeup(&sb->sb_cc); 407 } 408 KNOTE_LOCKED(&sb->sb_sel.si_note, 0); 409 SOCKBUF_UNLOCK(sb); 410 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL) 411 pgsigio(&so->so_sigio, SIGIO, 0); 412 if (sb->sb_flags & SB_UPCALL) 413 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT); 414 if (sb->sb_flags & SB_AIO) 415 aio_swake(so, sb); 416 mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED); 417 } 418 419 /* 420 * Socket buffer (struct sockbuf) utility routines. 421 * 422 * Each socket contains two socket buffers: one for sending data and 423 * one for receiving data. Each buffer contains a queue of mbufs, 424 * information about the number of mbufs and amount of data in the 425 * queue, and other fields allowing select() statements and notification 426 * on data availability to be implemented. 427 * 428 * Data stored in a socket buffer is maintained as a list of records. 429 * Each record is a list of mbufs chained together with the m_next 430 * field. Records are chained together with the m_nextpkt field. The upper 431 * level routine soreceive() expects the following conventions to be 432 * observed when placing information in the receive buffer: 433 * 434 * 1. If the protocol requires each message be preceded by the sender's 435 * name, then a record containing that name must be present before 436 * any associated data (mbuf's must be of type MT_SONAME). 437 * 2. If the protocol supports the exchange of ``access rights'' (really 438 * just additional data associated with the message), and there are 439 * ``rights'' to be received, then a record containing this data 440 * should be present (mbuf's must be of type MT_RIGHTS). 441 * 3. If a name or rights record exists, then it must be followed by 442 * a data record, perhaps of zero length. 443 * 444 * Before using a new socket structure it is first necessary to reserve 445 * buffer space to the socket, by calling sbreserve(). This should commit 446 * some of the available buffer space in the system buffer pool for the 447 * socket (currently, it does nothing but enforce limits). The space 448 * should be released by calling sbrelease() when the socket is destroyed. 449 */ 450 451 int 452 soreserve(so, sndcc, rcvcc) 453 register struct socket *so; 454 u_long sndcc, rcvcc; 455 { 456 struct thread *td = curthread; 457 458 SOCKBUF_LOCK(&so->so_snd); 459 SOCKBUF_LOCK(&so->so_rcv); 460 if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0) 461 goto bad; 462 if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0) 463 goto bad2; 464 if (so->so_rcv.sb_lowat == 0) 465 so->so_rcv.sb_lowat = 1; 466 if (so->so_snd.sb_lowat == 0) 467 so->so_snd.sb_lowat = MCLBYTES; 468 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 469 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 470 SOCKBUF_UNLOCK(&so->so_rcv); 471 SOCKBUF_UNLOCK(&so->so_snd); 472 return (0); 473 bad2: 474 sbrelease_locked(&so->so_snd, so); 475 bad: 476 SOCKBUF_UNLOCK(&so->so_rcv); 477 SOCKBUF_UNLOCK(&so->so_snd); 478 return (ENOBUFS); 479 } 480 481 static int 482 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS) 483 { 484 int error = 0; 485 u_long old_sb_max = sb_max; 486 487 error = SYSCTL_OUT(req, arg1, sizeof(u_long)); 488 if (error || !req->newptr) 489 return (error); 490 error = SYSCTL_IN(req, arg1, sizeof(u_long)); 491 if (error) 492 return (error); 493 if (sb_max < MSIZE + MCLBYTES) { 494 sb_max = old_sb_max; 495 return (EINVAL); 496 } 497 sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES); 498 return (0); 499 } 500 501 /* 502 * Allot mbufs to a sockbuf. 503 * Attempt to scale mbmax so that mbcnt doesn't become limiting 504 * if buffering efficiency is near the normal case. 505 */ 506 int 507 sbreserve_locked(sb, cc, so, td) 508 struct sockbuf *sb; 509 u_long cc; 510 struct socket *so; 511 struct thread *td; 512 { 513 rlim_t sbsize_limit; 514 515 SOCKBUF_LOCK_ASSERT(sb); 516 517 /* 518 * td will only be NULL when we're in an interrupt 519 * (e.g. in tcp_input()) 520 */ 521 if (cc > sb_max_adj) 522 return (0); 523 if (td != NULL) { 524 PROC_LOCK(td->td_proc); 525 sbsize_limit = lim_cur(td->td_proc, RLIMIT_SBSIZE); 526 PROC_UNLOCK(td->td_proc); 527 } else 528 sbsize_limit = RLIM_INFINITY; 529 if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc, 530 sbsize_limit)) 531 return (0); 532 sb->sb_mbmax = min(cc * sb_efficiency, sb_max); 533 if (sb->sb_lowat > sb->sb_hiwat) 534 sb->sb_lowat = sb->sb_hiwat; 535 return (1); 536 } 537 538 int 539 sbreserve(sb, cc, so, td) 540 struct sockbuf *sb; 541 u_long cc; 542 struct socket *so; 543 struct thread *td; 544 { 545 int error; 546 547 SOCKBUF_LOCK(sb); 548 error = sbreserve_locked(sb, cc, so, td); 549 SOCKBUF_UNLOCK(sb); 550 return (error); 551 } 552 553 /* 554 * Free mbufs held by a socket, and reserved mbuf space. 555 */ 556 void 557 sbrelease_locked(sb, so) 558 struct sockbuf *sb; 559 struct socket *so; 560 { 561 562 SOCKBUF_LOCK_ASSERT(sb); 563 564 sbflush_locked(sb); 565 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0, 566 RLIM_INFINITY); 567 sb->sb_mbmax = 0; 568 } 569 570 void 571 sbrelease(sb, so) 572 struct sockbuf *sb; 573 struct socket *so; 574 { 575 576 SOCKBUF_LOCK(sb); 577 sbrelease_locked(sb, so); 578 SOCKBUF_UNLOCK(sb); 579 } 580 /* 581 * Routines to add and remove 582 * data from an mbuf queue. 583 * 584 * The routines sbappend() or sbappendrecord() are normally called to 585 * append new mbufs to a socket buffer, after checking that adequate 586 * space is available, comparing the function sbspace() with the amount 587 * of data to be added. sbappendrecord() differs from sbappend() in 588 * that data supplied is treated as the beginning of a new record. 589 * To place a sender's address, optional access rights, and data in a 590 * socket receive buffer, sbappendaddr() should be used. To place 591 * access rights and data in a socket receive buffer, sbappendrights() 592 * should be used. In either case, the new data begins a new record. 593 * Note that unlike sbappend() and sbappendrecord(), these routines check 594 * for the caller that there will be enough space to store the data. 595 * Each fails if there is not enough space, or if it cannot find mbufs 596 * to store additional information in. 597 * 598 * Reliable protocols may use the socket send buffer to hold data 599 * awaiting acknowledgement. Data is normally copied from a socket 600 * send buffer in a protocol with m_copy for output to a peer, 601 * and then removing the data from the socket buffer with sbdrop() 602 * or sbdroprecord() when the data is acknowledged by the peer. 603 */ 604 605 #ifdef SOCKBUF_DEBUG 606 void 607 sblastrecordchk(struct sockbuf *sb, const char *file, int line) 608 { 609 struct mbuf *m = sb->sb_mb; 610 611 SOCKBUF_LOCK_ASSERT(sb); 612 613 while (m && m->m_nextpkt) 614 m = m->m_nextpkt; 615 616 if (m != sb->sb_lastrecord) { 617 printf("%s: sb_mb %p sb_lastrecord %p last %p\n", 618 __func__, sb->sb_mb, sb->sb_lastrecord, m); 619 printf("packet chain:\n"); 620 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) 621 printf("\t%p\n", m); 622 panic("%s from %s:%u", __func__, file, line); 623 } 624 } 625 626 void 627 sblastmbufchk(struct sockbuf *sb, const char *file, int line) 628 { 629 struct mbuf *m = sb->sb_mb; 630 struct mbuf *n; 631 632 SOCKBUF_LOCK_ASSERT(sb); 633 634 while (m && m->m_nextpkt) 635 m = m->m_nextpkt; 636 637 while (m && m->m_next) 638 m = m->m_next; 639 640 if (m != sb->sb_mbtail) { 641 printf("%s: sb_mb %p sb_mbtail %p last %p\n", 642 __func__, sb->sb_mb, sb->sb_mbtail, m); 643 printf("packet tree:\n"); 644 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) { 645 printf("\t"); 646 for (n = m; n != NULL; n = n->m_next) 647 printf("%p ", n); 648 printf("\n"); 649 } 650 panic("%s from %s:%u", __func__, file, line); 651 } 652 } 653 #endif /* SOCKBUF_DEBUG */ 654 655 #define SBLINKRECORD(sb, m0) do { \ 656 SOCKBUF_LOCK_ASSERT(sb); \ 657 if ((sb)->sb_lastrecord != NULL) \ 658 (sb)->sb_lastrecord->m_nextpkt = (m0); \ 659 else \ 660 (sb)->sb_mb = (m0); \ 661 (sb)->sb_lastrecord = (m0); \ 662 } while (/*CONSTCOND*/0) 663 664 /* 665 * Append mbuf chain m to the last record in the 666 * socket buffer sb. The additional space associated 667 * the mbuf chain is recorded in sb. Empty mbufs are 668 * discarded and mbufs are compacted where possible. 669 */ 670 void 671 sbappend_locked(sb, m) 672 struct sockbuf *sb; 673 struct mbuf *m; 674 { 675 register struct mbuf *n; 676 677 SOCKBUF_LOCK_ASSERT(sb); 678 679 if (m == 0) 680 return; 681 682 SBLASTRECORDCHK(sb); 683 n = sb->sb_mb; 684 if (n) { 685 while (n->m_nextpkt) 686 n = n->m_nextpkt; 687 do { 688 if (n->m_flags & M_EOR) { 689 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */ 690 return; 691 } 692 } while (n->m_next && (n = n->m_next)); 693 } else { 694 /* 695 * XXX Would like to simply use sb_mbtail here, but 696 * XXX I need to verify that I won't miss an EOR that 697 * XXX way. 698 */ 699 if ((n = sb->sb_lastrecord) != NULL) { 700 do { 701 if (n->m_flags & M_EOR) { 702 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */ 703 return; 704 } 705 } while (n->m_next && (n = n->m_next)); 706 } else { 707 /* 708 * If this is the first record in the socket buffer, 709 * it's also the last record. 710 */ 711 sb->sb_lastrecord = m; 712 } 713 } 714 sbcompress(sb, m, n); 715 SBLASTRECORDCHK(sb); 716 } 717 718 /* 719 * Append mbuf chain m to the last record in the 720 * socket buffer sb. The additional space associated 721 * the mbuf chain is recorded in sb. Empty mbufs are 722 * discarded and mbufs are compacted where possible. 723 */ 724 void 725 sbappend(sb, m) 726 struct sockbuf *sb; 727 struct mbuf *m; 728 { 729 730 SOCKBUF_LOCK(sb); 731 sbappend_locked(sb, m); 732 SOCKBUF_UNLOCK(sb); 733 } 734 735 /* 736 * This version of sbappend() should only be used when the caller 737 * absolutely knows that there will never be more than one record 738 * in the socket buffer, that is, a stream protocol (such as TCP). 739 */ 740 void 741 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m) 742 { 743 SOCKBUF_LOCK_ASSERT(sb); 744 745 KASSERT(m->m_nextpkt == NULL,("sbappendstream 0")); 746 KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1")); 747 748 SBLASTMBUFCHK(sb); 749 750 sbcompress(sb, m, sb->sb_mbtail); 751 752 sb->sb_lastrecord = sb->sb_mb; 753 SBLASTRECORDCHK(sb); 754 } 755 756 /* 757 * This version of sbappend() should only be used when the caller 758 * absolutely knows that there will never be more than one record 759 * in the socket buffer, that is, a stream protocol (such as TCP). 760 */ 761 void 762 sbappendstream(struct sockbuf *sb, struct mbuf *m) 763 { 764 765 SOCKBUF_LOCK(sb); 766 sbappendstream_locked(sb, m); 767 SOCKBUF_UNLOCK(sb); 768 } 769 770 #ifdef SOCKBUF_DEBUG 771 void 772 sbcheck(sb) 773 struct sockbuf *sb; 774 { 775 struct mbuf *m; 776 struct mbuf *n = 0; 777 u_long len = 0, mbcnt = 0; 778 779 SOCKBUF_LOCK_ASSERT(sb); 780 781 for (m = sb->sb_mb; m; m = n) { 782 n = m->m_nextpkt; 783 for (; m; m = m->m_next) { 784 len += m->m_len; 785 mbcnt += MSIZE; 786 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ 787 mbcnt += m->m_ext.ext_size; 788 } 789 } 790 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 791 printf("cc %ld != %u || mbcnt %ld != %u\n", len, sb->sb_cc, 792 mbcnt, sb->sb_mbcnt); 793 panic("sbcheck"); 794 } 795 } 796 #endif 797 798 /* 799 * As above, except the mbuf chain 800 * begins a new record. 801 */ 802 void 803 sbappendrecord_locked(sb, m0) 804 register struct sockbuf *sb; 805 register struct mbuf *m0; 806 { 807 register struct mbuf *m; 808 809 SOCKBUF_LOCK_ASSERT(sb); 810 811 if (m0 == 0) 812 return; 813 m = sb->sb_mb; 814 if (m) 815 while (m->m_nextpkt) 816 m = m->m_nextpkt; 817 /* 818 * Put the first mbuf on the queue. 819 * Note this permits zero length records. 820 */ 821 sballoc(sb, m0); 822 SBLASTRECORDCHK(sb); 823 SBLINKRECORD(sb, m0); 824 if (m) 825 m->m_nextpkt = m0; 826 else 827 sb->sb_mb = m0; 828 m = m0->m_next; 829 m0->m_next = 0; 830 if (m && (m0->m_flags & M_EOR)) { 831 m0->m_flags &= ~M_EOR; 832 m->m_flags |= M_EOR; 833 } 834 sbcompress(sb, m, m0); 835 } 836 837 /* 838 * As above, except the mbuf chain 839 * begins a new record. 840 */ 841 void 842 sbappendrecord(sb, m0) 843 register struct sockbuf *sb; 844 register struct mbuf *m0; 845 { 846 847 SOCKBUF_LOCK(sb); 848 sbappendrecord_locked(sb, m0); 849 SOCKBUF_UNLOCK(sb); 850 } 851 852 /* 853 * As above except that OOB data 854 * is inserted at the beginning of the sockbuf, 855 * but after any other OOB data. 856 */ 857 void 858 sbinsertoob_locked(sb, m0) 859 register struct sockbuf *sb; 860 register struct mbuf *m0; 861 { 862 register struct mbuf *m; 863 register struct mbuf **mp; 864 865 SOCKBUF_LOCK_ASSERT(sb); 866 867 if (m0 == 0) 868 return; 869 for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) { 870 m = *mp; 871 again: 872 switch (m->m_type) { 873 874 case MT_OOBDATA: 875 continue; /* WANT next train */ 876 877 case MT_CONTROL: 878 m = m->m_next; 879 if (m) 880 goto again; /* inspect THIS train further */ 881 } 882 break; 883 } 884 /* 885 * Put the first mbuf on the queue. 886 * Note this permits zero length records. 887 */ 888 sballoc(sb, m0); 889 m0->m_nextpkt = *mp; 890 *mp = m0; 891 m = m0->m_next; 892 m0->m_next = 0; 893 if (m && (m0->m_flags & M_EOR)) { 894 m0->m_flags &= ~M_EOR; 895 m->m_flags |= M_EOR; 896 } 897 sbcompress(sb, m, m0); 898 } 899 900 /* 901 * As above except that OOB data 902 * is inserted at the beginning of the sockbuf, 903 * but after any other OOB data. 904 */ 905 void 906 sbinsertoob(sb, m0) 907 register struct sockbuf *sb; 908 register struct mbuf *m0; 909 { 910 911 SOCKBUF_LOCK(sb); 912 sbinsertoob_locked(sb, m0); 913 SOCKBUF_UNLOCK(sb); 914 } 915 916 /* 917 * Append address and data, and optionally, control (ancillary) data 918 * to the receive queue of a socket. If present, 919 * m0 must include a packet header with total length. 920 * Returns 0 if no space in sockbuf or insufficient mbufs. 921 */ 922 int 923 sbappendaddr_locked(sb, asa, m0, control) 924 struct sockbuf *sb; 925 const struct sockaddr *asa; 926 struct mbuf *m0, *control; 927 { 928 struct mbuf *m, *n, *nlast; 929 int space = asa->sa_len; 930 931 SOCKBUF_LOCK_ASSERT(sb); 932 933 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 934 panic("sbappendaddr_locked"); 935 if (m0) 936 space += m0->m_pkthdr.len; 937 space += m_length(control, &n); 938 939 if (space > sbspace(sb)) 940 return (0); 941 #if MSIZE <= 256 942 if (asa->sa_len > MLEN) 943 return (0); 944 #endif 945 MGET(m, M_DONTWAIT, MT_SONAME); 946 if (m == 0) 947 return (0); 948 m->m_len = asa->sa_len; 949 bcopy(asa, mtod(m, caddr_t), asa->sa_len); 950 if (n) 951 n->m_next = m0; /* concatenate data to control */ 952 else 953 control = m0; 954 m->m_next = control; 955 for (n = m; n->m_next != NULL; n = n->m_next) 956 sballoc(sb, n); 957 sballoc(sb, n); 958 nlast = n; 959 SBLINKRECORD(sb, m); 960 961 sb->sb_mbtail = nlast; 962 SBLASTMBUFCHK(sb); 963 964 SBLASTRECORDCHK(sb); 965 return (1); 966 } 967 968 /* 969 * Append address and data, and optionally, control (ancillary) data 970 * to the receive queue of a socket. If present, 971 * m0 must include a packet header with total length. 972 * Returns 0 if no space in sockbuf or insufficient mbufs. 973 */ 974 int 975 sbappendaddr(sb, asa, m0, control) 976 struct sockbuf *sb; 977 const struct sockaddr *asa; 978 struct mbuf *m0, *control; 979 { 980 int retval; 981 982 SOCKBUF_LOCK(sb); 983 retval = sbappendaddr_locked(sb, asa, m0, control); 984 SOCKBUF_UNLOCK(sb); 985 return (retval); 986 } 987 988 int 989 sbappendcontrol_locked(sb, m0, control) 990 struct sockbuf *sb; 991 struct mbuf *control, *m0; 992 { 993 struct mbuf *m, *n, *mlast; 994 int space; 995 996 SOCKBUF_LOCK_ASSERT(sb); 997 998 if (control == 0) 999 panic("sbappendcontrol_locked"); 1000 space = m_length(control, &n) + m_length(m0, NULL); 1001 1002 if (space > sbspace(sb)) 1003 return (0); 1004 n->m_next = m0; /* concatenate data to control */ 1005 1006 SBLASTRECORDCHK(sb); 1007 1008 for (m = control; m->m_next; m = m->m_next) 1009 sballoc(sb, m); 1010 sballoc(sb, m); 1011 mlast = m; 1012 SBLINKRECORD(sb, control); 1013 1014 sb->sb_mbtail = mlast; 1015 SBLASTMBUFCHK(sb); 1016 1017 SBLASTRECORDCHK(sb); 1018 return (1); 1019 } 1020 1021 int 1022 sbappendcontrol(sb, m0, control) 1023 struct sockbuf *sb; 1024 struct mbuf *control, *m0; 1025 { 1026 int retval; 1027 1028 SOCKBUF_LOCK(sb); 1029 retval = sbappendcontrol_locked(sb, m0, control); 1030 SOCKBUF_UNLOCK(sb); 1031 return (retval); 1032 } 1033 1034 /* 1035 * Compress mbuf chain m into the socket 1036 * buffer sb following mbuf n. If n 1037 * is null, the buffer is presumed empty. 1038 */ 1039 void 1040 sbcompress(sb, m, n) 1041 register struct sockbuf *sb; 1042 register struct mbuf *m, *n; 1043 { 1044 register int eor = 0; 1045 register struct mbuf *o; 1046 1047 SOCKBUF_LOCK_ASSERT(sb); 1048 1049 while (m) { 1050 eor |= m->m_flags & M_EOR; 1051 if (m->m_len == 0 && 1052 (eor == 0 || 1053 (((o = m->m_next) || (o = n)) && 1054 o->m_type == m->m_type))) { 1055 if (sb->sb_lastrecord == m) 1056 sb->sb_lastrecord = m->m_next; 1057 m = m_free(m); 1058 continue; 1059 } 1060 if (n && (n->m_flags & M_EOR) == 0 && 1061 M_WRITABLE(n) && 1062 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ 1063 m->m_len <= M_TRAILINGSPACE(n) && 1064 n->m_type == m->m_type) { 1065 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, 1066 (unsigned)m->m_len); 1067 n->m_len += m->m_len; 1068 sb->sb_cc += m->m_len; 1069 if (m->m_type != MT_DATA && m->m_type != MT_HEADER && 1070 m->m_type != MT_OOBDATA) 1071 /* XXX: Probably don't need.*/ 1072 sb->sb_ctl += m->m_len; 1073 m = m_free(m); 1074 continue; 1075 } 1076 if (n) 1077 n->m_next = m; 1078 else 1079 sb->sb_mb = m; 1080 sb->sb_mbtail = m; 1081 sballoc(sb, m); 1082 n = m; 1083 m->m_flags &= ~M_EOR; 1084 m = m->m_next; 1085 n->m_next = 0; 1086 } 1087 if (eor) { 1088 if (n) 1089 n->m_flags |= eor; 1090 else 1091 printf("semi-panic: sbcompress\n"); 1092 } 1093 SBLASTMBUFCHK(sb); 1094 } 1095 1096 /* 1097 * Free all mbufs in a sockbuf. 1098 * Check that all resources are reclaimed. 1099 */ 1100 void 1101 sbflush_locked(sb) 1102 register struct sockbuf *sb; 1103 { 1104 1105 SOCKBUF_LOCK_ASSERT(sb); 1106 1107 if (sb->sb_flags & SB_LOCK) 1108 panic("sbflush_locked: locked"); 1109 while (sb->sb_mbcnt) { 1110 /* 1111 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty: 1112 * we would loop forever. Panic instead. 1113 */ 1114 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len)) 1115 break; 1116 sbdrop_locked(sb, (int)sb->sb_cc); 1117 } 1118 if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt) 1119 panic("sbflush_locked: cc %u || mb %p || mbcnt %u", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt); 1120 } 1121 1122 void 1123 sbflush(sb) 1124 register struct sockbuf *sb; 1125 { 1126 1127 SOCKBUF_LOCK(sb); 1128 sbflush_locked(sb); 1129 SOCKBUF_UNLOCK(sb); 1130 } 1131 1132 /* 1133 * Drop data from (the front of) a sockbuf. 1134 */ 1135 void 1136 sbdrop_locked(sb, len) 1137 register struct sockbuf *sb; 1138 register int len; 1139 { 1140 register struct mbuf *m; 1141 struct mbuf *next; 1142 1143 SOCKBUF_LOCK_ASSERT(sb); 1144 1145 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 1146 while (len > 0) { 1147 if (m == 0) { 1148 if (next == 0) 1149 panic("sbdrop"); 1150 m = next; 1151 next = m->m_nextpkt; 1152 continue; 1153 } 1154 if (m->m_len > len) { 1155 m->m_len -= len; 1156 m->m_data += len; 1157 sb->sb_cc -= len; 1158 if (m->m_type != MT_DATA && m->m_type != MT_HEADER && 1159 m->m_type != MT_OOBDATA) 1160 sb->sb_ctl -= len; 1161 break; 1162 } 1163 len -= m->m_len; 1164 sbfree(sb, m); 1165 m = m_free(m); 1166 } 1167 while (m && m->m_len == 0) { 1168 sbfree(sb, m); 1169 m = m_free(m); 1170 } 1171 if (m) { 1172 sb->sb_mb = m; 1173 m->m_nextpkt = next; 1174 } else 1175 sb->sb_mb = next; 1176 /* 1177 * First part is an inline SB_EMPTY_FIXUP(). Second part 1178 * makes sure sb_lastrecord is up-to-date if we dropped 1179 * part of the last record. 1180 */ 1181 m = sb->sb_mb; 1182 if (m == NULL) { 1183 sb->sb_mbtail = NULL; 1184 sb->sb_lastrecord = NULL; 1185 } else if (m->m_nextpkt == NULL) { 1186 sb->sb_lastrecord = m; 1187 } 1188 } 1189 1190 /* 1191 * Drop data from (the front of) a sockbuf. 1192 */ 1193 void 1194 sbdrop(sb, len) 1195 register struct sockbuf *sb; 1196 register int len; 1197 { 1198 1199 SOCKBUF_LOCK(sb); 1200 sbdrop_locked(sb, len); 1201 SOCKBUF_UNLOCK(sb); 1202 } 1203 1204 /* 1205 * Drop a record off the front of a sockbuf 1206 * and move the next record to the front. 1207 */ 1208 void 1209 sbdroprecord_locked(sb) 1210 register struct sockbuf *sb; 1211 { 1212 register struct mbuf *m; 1213 1214 SOCKBUF_LOCK_ASSERT(sb); 1215 1216 m = sb->sb_mb; 1217 if (m) { 1218 sb->sb_mb = m->m_nextpkt; 1219 do { 1220 sbfree(sb, m); 1221 m = m_free(m); 1222 } while (m); 1223 } 1224 SB_EMPTY_FIXUP(sb); 1225 } 1226 1227 /* 1228 * Drop a record off the front of a sockbuf 1229 * and move the next record to the front. 1230 */ 1231 void 1232 sbdroprecord(sb) 1233 register struct sockbuf *sb; 1234 { 1235 1236 SOCKBUF_LOCK(sb); 1237 sbdroprecord_locked(sb); 1238 SOCKBUF_UNLOCK(sb); 1239 } 1240 1241 /* 1242 * Create a "control" mbuf containing the specified data 1243 * with the specified type for presentation on a socket buffer. 1244 */ 1245 struct mbuf * 1246 sbcreatecontrol(p, size, type, level) 1247 caddr_t p; 1248 register int size; 1249 int type, level; 1250 { 1251 register struct cmsghdr *cp; 1252 struct mbuf *m; 1253 1254 if (CMSG_SPACE((u_int)size) > MCLBYTES) 1255 return ((struct mbuf *) NULL); 1256 if (CMSG_SPACE((u_int)size > MLEN)) 1257 m = m_getcl(M_DONTWAIT, MT_CONTROL, 0); 1258 else 1259 m = m_get(M_DONTWAIT, MT_CONTROL); 1260 if (m == NULL) 1261 return ((struct mbuf *) NULL); 1262 cp = mtod(m, struct cmsghdr *); 1263 m->m_len = 0; 1264 KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m), 1265 ("sbcreatecontrol: short mbuf")); 1266 if (p != NULL) 1267 (void)memcpy(CMSG_DATA(cp), p, size); 1268 m->m_len = CMSG_SPACE(size); 1269 cp->cmsg_len = CMSG_LEN(size); 1270 cp->cmsg_level = level; 1271 cp->cmsg_type = type; 1272 return (m); 1273 } 1274 1275 /* 1276 * Some routines that return EOPNOTSUPP for entry points that are not 1277 * supported by a protocol. Fill in as needed. 1278 */ 1279 int 1280 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 1281 { 1282 return EOPNOTSUPP; 1283 } 1284 1285 int 1286 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 1287 { 1288 return EOPNOTSUPP; 1289 } 1290 1291 int 1292 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 1293 { 1294 return EOPNOTSUPP; 1295 } 1296 1297 int 1298 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 1299 struct ifnet *ifp, struct thread *td) 1300 { 1301 return EOPNOTSUPP; 1302 } 1303 1304 int 1305 pru_listen_notsupp(struct socket *so, struct thread *td) 1306 { 1307 return EOPNOTSUPP; 1308 } 1309 1310 int 1311 pru_rcvd_notsupp(struct socket *so, int flags) 1312 { 1313 return EOPNOTSUPP; 1314 } 1315 1316 int 1317 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 1318 { 1319 return EOPNOTSUPP; 1320 } 1321 1322 /* 1323 * This isn't really a ``null'' operation, but it's the default one 1324 * and doesn't do anything destructive. 1325 */ 1326 int 1327 pru_sense_null(struct socket *so, struct stat *sb) 1328 { 1329 sb->st_blksize = so->so_snd.sb_hiwat; 1330 return 0; 1331 } 1332 1333 /* 1334 * For protocol types that don't keep cached copies of labels in their 1335 * pcbs, provide a null sosetlabel that does a NOOP. 1336 */ 1337 void 1338 pru_sosetlabel_null(struct socket *so) 1339 { 1340 1341 } 1342 1343 /* 1344 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 1345 */ 1346 struct sockaddr * 1347 sodupsockaddr(const struct sockaddr *sa, int mflags) 1348 { 1349 struct sockaddr *sa2; 1350 1351 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 1352 if (sa2) 1353 bcopy(sa, sa2, sa->sa_len); 1354 return sa2; 1355 } 1356 1357 /* 1358 * Create an external-format (``xsocket'') structure using the information 1359 * in the kernel-format socket structure pointed to by so. This is done 1360 * to reduce the spew of irrelevant information over this interface, 1361 * to isolate user code from changes in the kernel structure, and 1362 * potentially to provide information-hiding if we decide that 1363 * some of this information should be hidden from users. 1364 */ 1365 void 1366 sotoxsocket(struct socket *so, struct xsocket *xso) 1367 { 1368 xso->xso_len = sizeof *xso; 1369 xso->xso_so = so; 1370 xso->so_type = so->so_type; 1371 xso->so_options = so->so_options; 1372 xso->so_linger = so->so_linger; 1373 xso->so_state = so->so_state; 1374 xso->so_pcb = so->so_pcb; 1375 xso->xso_protocol = so->so_proto->pr_protocol; 1376 xso->xso_family = so->so_proto->pr_domain->dom_family; 1377 xso->so_qlen = so->so_qlen; 1378 xso->so_incqlen = so->so_incqlen; 1379 xso->so_qlimit = so->so_qlimit; 1380 xso->so_timeo = so->so_timeo; 1381 xso->so_error = so->so_error; 1382 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 1383 xso->so_oobmark = so->so_oobmark; 1384 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 1385 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 1386 xso->so_uid = so->so_cred->cr_uid; 1387 } 1388 1389 /* 1390 * This does the same for sockbufs. Note that the xsockbuf structure, 1391 * since it is always embedded in a socket, does not include a self 1392 * pointer nor a length. We make this entry point public in case 1393 * some other mechanism needs it. 1394 */ 1395 void 1396 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb) 1397 { 1398 xsb->sb_cc = sb->sb_cc; 1399 xsb->sb_hiwat = sb->sb_hiwat; 1400 xsb->sb_mbcnt = sb->sb_mbcnt; 1401 xsb->sb_mbmax = sb->sb_mbmax; 1402 xsb->sb_lowat = sb->sb_lowat; 1403 xsb->sb_flags = sb->sb_flags; 1404 xsb->sb_timeo = sb->sb_timeo; 1405 } 1406 1407 /* 1408 * Here is the definition of some of the basic objects in the kern.ipc 1409 * branch of the MIB. 1410 */ 1411 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 1412 1413 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */ 1414 static int dummy; 1415 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, ""); 1416 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_ULONG|CTLFLAG_RW, 1417 &sb_max, 0, sysctl_handle_sb_max, "LU", "Maximum socket buffer size"); 1418 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RDTUN, 1419 &maxsockets, 0, "Maximum number of sockets avaliable"); 1420 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW, 1421 &sb_efficiency, 0, ""); 1422 1423 /* 1424 * Initialise maxsockets 1425 */ 1426 static void init_maxsockets(void *ignored) 1427 { 1428 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 1429 maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters)); 1430 } 1431 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 1432