1 /* 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 34 * $Id: uipc_socket2.c,v 1.16 1996/10/11 19:26:35 pst Exp $ 35 */ 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/proc.h> 41 #include <sys/file.h> 42 #include <sys/buf.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/protosw.h> 46 #include <sys/stat.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/signalvar.h> 50 #include <sys/sysctl.h> 51 52 /* 53 * Primitive routines for operating on sockets and socket buffers 54 */ 55 56 u_long sb_max = SB_MAX; /* XXX should be static */ 57 SYSCTL_INT(_kern, KERN_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW, &sb_max, 0, "") 58 59 static u_long sb_efficiency = 8; /* parameter for sbreserve() */ 60 SYSCTL_INT(_kern, OID_AUTO, sockbuf_waste_factor, CTLFLAG_RW, &sb_efficiency, 61 0, ""); 62 63 /* 64 * Procedures to manipulate state flags of socket 65 * and do appropriate wakeups. Normal sequence from the 66 * active (originating) side is that soisconnecting() is 67 * called during processing of connect() call, 68 * resulting in an eventual call to soisconnected() if/when the 69 * connection is established. When the connection is torn down 70 * soisdisconnecting() is called during processing of disconnect() call, 71 * and soisdisconnected() is called when the connection to the peer 72 * is totally severed. The semantics of these routines are such that 73 * connectionless protocols can call soisconnected() and soisdisconnected() 74 * only, bypassing the in-progress calls when setting up a ``connection'' 75 * takes no time. 76 * 77 * From the passive side, a socket is created with 78 * two queues of sockets: so_q0 for connections in progress 79 * and so_q for connections already made and awaiting user acceptance. 80 * As a protocol is preparing incoming connections, it creates a socket 81 * structure queued on so_q0 by calling sonewconn(). When the connection 82 * is established, soisconnected() is called, and transfers the 83 * socket structure to so_q, making it available to accept(). 84 * 85 * If a socket is closed with sockets on either 86 * so_q0 or so_q, these sockets are dropped. 87 * 88 * If higher level protocols are implemented in 89 * the kernel, the wakeups done here will sometimes 90 * cause software-interrupt process scheduling. 91 */ 92 93 void 94 soisconnecting(so) 95 register struct socket *so; 96 { 97 98 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 99 so->so_state |= SS_ISCONNECTING; 100 } 101 102 void 103 soisconnected(so) 104 register struct socket *so; 105 { 106 register struct socket *head = so->so_head; 107 108 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 109 so->so_state |= SS_ISCONNECTED; 110 if (head && (so->so_state & SS_INCOMP)) { 111 TAILQ_REMOVE(&head->so_incomp, so, so_list); 112 head->so_incqlen--; 113 so->so_state &= ~SS_INCOMP; 114 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 115 so->so_state |= SS_COMP; 116 sorwakeup(head); 117 wakeup((caddr_t)&head->so_timeo); 118 } else { 119 wakeup((caddr_t)&so->so_timeo); 120 sorwakeup(so); 121 sowwakeup(so); 122 } 123 } 124 125 void 126 soisdisconnecting(so) 127 register struct socket *so; 128 { 129 130 so->so_state &= ~SS_ISCONNECTING; 131 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); 132 wakeup((caddr_t)&so->so_timeo); 133 sowwakeup(so); 134 sorwakeup(so); 135 } 136 137 void 138 soisdisconnected(so) 139 register struct socket *so; 140 { 141 142 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 143 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE); 144 wakeup((caddr_t)&so->so_timeo); 145 sowwakeup(so); 146 sorwakeup(so); 147 } 148 149 /* 150 * Return a random connection that hasn't been serviced yet and 151 * is eligible for discard. There is a one in qlen chance that 152 * we will return a null, saying that there are no dropable 153 * requests. In this case, the protocol specific code should drop 154 * the new request. This insures fairness. 155 * 156 * This may be used in conjunction with protocol specific queue 157 * congestion routines. 158 */ 159 struct socket * 160 sodropablereq(head) 161 register struct socket *head; 162 { 163 register struct socket *so; 164 unsigned int i, j, qlen; 165 166 static int rnd; 167 static long old_mono_secs; 168 static unsigned int cur_cnt, old_cnt; 169 170 if ((i = (mono_time.tv_sec - old_mono_secs)) != 0) { 171 old_mono_secs = mono_time.tv_sec; 172 old_cnt = cur_cnt / i; 173 cur_cnt = 0; 174 } 175 176 so = TAILQ_FIRST(&head->so_incomp); 177 if (!so) 178 return (so); 179 180 qlen = head->so_incqlen; 181 if (++cur_cnt > qlen || old_cnt > qlen) { 182 rnd = (314159 * rnd + 66329) & 0xffff; 183 j = ((qlen + 1) * rnd) >> 16; 184 185 while (j-- && so) 186 so = TAILQ_NEXT(so, so_list); 187 } 188 189 return (so); 190 } 191 192 /* 193 * When an attempt at a new connection is noted on a socket 194 * which accepts connections, sonewconn is called. If the 195 * connection is possible (subject to space constraints, etc.) 196 * then we allocate a new structure, propoerly linked into the 197 * data structure of the original socket, and return this. 198 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. 199 * 200 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h 201 * to catch calls that are missing the (new) second parameter. 202 */ 203 struct socket * 204 sonewconn1(head, connstatus) 205 register struct socket *head; 206 int connstatus; 207 { 208 register struct socket *so; 209 210 if (head->so_qlen > 3 * head->so_qlimit / 2) 211 return ((struct socket *)0); 212 MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT); 213 if (so == NULL) 214 return ((struct socket *)0); 215 bzero((caddr_t)so, sizeof(*so)); 216 so->so_head = head; 217 so->so_type = head->so_type; 218 so->so_options = head->so_options &~ SO_ACCEPTCONN; 219 so->so_linger = head->so_linger; 220 so->so_state = head->so_state | SS_NOFDREF; 221 so->so_proto = head->so_proto; 222 so->so_timeo = head->so_timeo; 223 so->so_pgid = head->so_pgid; 224 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat); 225 if (connstatus) { 226 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 227 so->so_state |= SS_COMP; 228 } else { 229 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 230 so->so_state |= SS_INCOMP; 231 head->so_incqlen++; 232 } 233 head->so_qlen++; 234 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0)) { 235 if (so->so_state & SS_COMP) { 236 TAILQ_REMOVE(&head->so_comp, so, so_list); 237 } else { 238 TAILQ_REMOVE(&head->so_incomp, so, so_list); 239 head->so_incqlen--; 240 } 241 head->so_qlen--; 242 (void) free((caddr_t)so, M_SOCKET); 243 return ((struct socket *)0); 244 } 245 if (connstatus) { 246 sorwakeup(head); 247 wakeup((caddr_t)&head->so_timeo); 248 so->so_state |= connstatus; 249 } 250 return (so); 251 } 252 253 /* 254 * Socantsendmore indicates that no more data will be sent on the 255 * socket; it would normally be applied to a socket when the user 256 * informs the system that no more data is to be sent, by the protocol 257 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 258 * will be received, and will normally be applied to the socket by a 259 * protocol when it detects that the peer will send no more data. 260 * Data queued for reading in the socket may yet be read. 261 */ 262 263 void 264 socantsendmore(so) 265 struct socket *so; 266 { 267 268 so->so_state |= SS_CANTSENDMORE; 269 sowwakeup(so); 270 } 271 272 void 273 socantrcvmore(so) 274 struct socket *so; 275 { 276 277 so->so_state |= SS_CANTRCVMORE; 278 sorwakeup(so); 279 } 280 281 /* 282 * Wait for data to arrive at/drain from a socket buffer. 283 */ 284 int 285 sbwait(sb) 286 struct sockbuf *sb; 287 { 288 289 sb->sb_flags |= SB_WAIT; 290 return (tsleep((caddr_t)&sb->sb_cc, 291 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", 292 sb->sb_timeo)); 293 } 294 295 /* 296 * Lock a sockbuf already known to be locked; 297 * return any error returned from sleep (EINTR). 298 */ 299 int 300 sb_lock(sb) 301 register struct sockbuf *sb; 302 { 303 int error; 304 305 while (sb->sb_flags & SB_LOCK) { 306 sb->sb_flags |= SB_WANT; 307 error = tsleep((caddr_t)&sb->sb_flags, 308 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH, 309 "sblock", 0); 310 if (error) 311 return (error); 312 } 313 sb->sb_flags |= SB_LOCK; 314 return (0); 315 } 316 317 /* 318 * Wakeup processes waiting on a socket buffer. 319 * Do asynchronous notification via SIGIO 320 * if the socket has the SS_ASYNC flag set. 321 */ 322 void 323 sowakeup(so, sb) 324 register struct socket *so; 325 register struct sockbuf *sb; 326 { 327 struct proc *p; 328 329 selwakeup(&sb->sb_sel); 330 sb->sb_flags &= ~SB_SEL; 331 if (sb->sb_flags & SB_WAIT) { 332 sb->sb_flags &= ~SB_WAIT; 333 wakeup((caddr_t)&sb->sb_cc); 334 } 335 if (so->so_state & SS_ASYNC) { 336 if (so->so_pgid < 0) 337 gsignal(-so->so_pgid, SIGIO); 338 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0) 339 psignal(p, SIGIO); 340 } 341 } 342 343 /* 344 * Socket buffer (struct sockbuf) utility routines. 345 * 346 * Each socket contains two socket buffers: one for sending data and 347 * one for receiving data. Each buffer contains a queue of mbufs, 348 * information about the number of mbufs and amount of data in the 349 * queue, and other fields allowing select() statements and notification 350 * on data availability to be implemented. 351 * 352 * Data stored in a socket buffer is maintained as a list of records. 353 * Each record is a list of mbufs chained together with the m_next 354 * field. Records are chained together with the m_nextpkt field. The upper 355 * level routine soreceive() expects the following conventions to be 356 * observed when placing information in the receive buffer: 357 * 358 * 1. If the protocol requires each message be preceded by the sender's 359 * name, then a record containing that name must be present before 360 * any associated data (mbuf's must be of type MT_SONAME). 361 * 2. If the protocol supports the exchange of ``access rights'' (really 362 * just additional data associated with the message), and there are 363 * ``rights'' to be received, then a record containing this data 364 * should be present (mbuf's must be of type MT_RIGHTS). 365 * 3. If a name or rights record exists, then it must be followed by 366 * a data record, perhaps of zero length. 367 * 368 * Before using a new socket structure it is first necessary to reserve 369 * buffer space to the socket, by calling sbreserve(). This should commit 370 * some of the available buffer space in the system buffer pool for the 371 * socket (currently, it does nothing but enforce limits). The space 372 * should be released by calling sbrelease() when the socket is destroyed. 373 */ 374 375 int 376 soreserve(so, sndcc, rcvcc) 377 register struct socket *so; 378 u_long sndcc, rcvcc; 379 { 380 381 if (sbreserve(&so->so_snd, sndcc) == 0) 382 goto bad; 383 if (sbreserve(&so->so_rcv, rcvcc) == 0) 384 goto bad2; 385 if (so->so_rcv.sb_lowat == 0) 386 so->so_rcv.sb_lowat = 1; 387 if (so->so_snd.sb_lowat == 0) 388 so->so_snd.sb_lowat = MCLBYTES; 389 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 390 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 391 return (0); 392 bad2: 393 sbrelease(&so->so_snd); 394 bad: 395 return (ENOBUFS); 396 } 397 398 /* 399 * Allot mbufs to a sockbuf. 400 * Attempt to scale mbmax so that mbcnt doesn't become limiting 401 * if buffering efficiency is near the normal case. 402 */ 403 int 404 sbreserve(sb, cc) 405 struct sockbuf *sb; 406 u_long cc; 407 { 408 409 if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES)) 410 return (0); 411 sb->sb_hiwat = cc; 412 sb->sb_mbmax = min(cc * sb_efficiency, sb_max); 413 if (sb->sb_lowat > sb->sb_hiwat) 414 sb->sb_lowat = sb->sb_hiwat; 415 return (1); 416 } 417 418 /* 419 * Free mbufs held by a socket, and reserved mbuf space. 420 */ 421 void 422 sbrelease(sb) 423 struct sockbuf *sb; 424 { 425 426 sbflush(sb); 427 sb->sb_hiwat = sb->sb_mbmax = 0; 428 } 429 430 /* 431 * Routines to add and remove 432 * data from an mbuf queue. 433 * 434 * The routines sbappend() or sbappendrecord() are normally called to 435 * append new mbufs to a socket buffer, after checking that adequate 436 * space is available, comparing the function sbspace() with the amount 437 * of data to be added. sbappendrecord() differs from sbappend() in 438 * that data supplied is treated as the beginning of a new record. 439 * To place a sender's address, optional access rights, and data in a 440 * socket receive buffer, sbappendaddr() should be used. To place 441 * access rights and data in a socket receive buffer, sbappendrights() 442 * should be used. In either case, the new data begins a new record. 443 * Note that unlike sbappend() and sbappendrecord(), these routines check 444 * for the caller that there will be enough space to store the data. 445 * Each fails if there is not enough space, or if it cannot find mbufs 446 * to store additional information in. 447 * 448 * Reliable protocols may use the socket send buffer to hold data 449 * awaiting acknowledgement. Data is normally copied from a socket 450 * send buffer in a protocol with m_copy for output to a peer, 451 * and then removing the data from the socket buffer with sbdrop() 452 * or sbdroprecord() when the data is acknowledged by the peer. 453 */ 454 455 /* 456 * Append mbuf chain m to the last record in the 457 * socket buffer sb. The additional space associated 458 * the mbuf chain is recorded in sb. Empty mbufs are 459 * discarded and mbufs are compacted where possible. 460 */ 461 void 462 sbappend(sb, m) 463 struct sockbuf *sb; 464 struct mbuf *m; 465 { 466 register struct mbuf *n; 467 468 if (m == 0) 469 return; 470 n = sb->sb_mb; 471 if (n) { 472 while (n->m_nextpkt) 473 n = n->m_nextpkt; 474 do { 475 if (n->m_flags & M_EOR) { 476 sbappendrecord(sb, m); /* XXXXXX!!!! */ 477 return; 478 } 479 } while (n->m_next && (n = n->m_next)); 480 } 481 sbcompress(sb, m, n); 482 } 483 484 #ifdef SOCKBUF_DEBUG 485 void 486 sbcheck(sb) 487 register struct sockbuf *sb; 488 { 489 register struct mbuf *m; 490 register int len = 0, mbcnt = 0; 491 492 for (m = sb->sb_mb; m; m = m->m_next) { 493 len += m->m_len; 494 mbcnt += MSIZE; 495 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ 496 mbcnt += m->m_ext.ext_size; 497 if (m->m_nextpkt) 498 panic("sbcheck nextpkt"); 499 } 500 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 501 printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc, 502 mbcnt, sb->sb_mbcnt); 503 panic("sbcheck"); 504 } 505 } 506 #endif 507 508 /* 509 * As above, except the mbuf chain 510 * begins a new record. 511 */ 512 void 513 sbappendrecord(sb, m0) 514 register struct sockbuf *sb; 515 register struct mbuf *m0; 516 { 517 register struct mbuf *m; 518 519 if (m0 == 0) 520 return; 521 m = sb->sb_mb; 522 if (m) 523 while (m->m_nextpkt) 524 m = m->m_nextpkt; 525 /* 526 * Put the first mbuf on the queue. 527 * Note this permits zero length records. 528 */ 529 sballoc(sb, m0); 530 if (m) 531 m->m_nextpkt = m0; 532 else 533 sb->sb_mb = m0; 534 m = m0->m_next; 535 m0->m_next = 0; 536 if (m && (m0->m_flags & M_EOR)) { 537 m0->m_flags &= ~M_EOR; 538 m->m_flags |= M_EOR; 539 } 540 sbcompress(sb, m, m0); 541 } 542 543 /* 544 * As above except that OOB data 545 * is inserted at the beginning of the sockbuf, 546 * but after any other OOB data. 547 */ 548 void 549 sbinsertoob(sb, m0) 550 register struct sockbuf *sb; 551 register struct mbuf *m0; 552 { 553 register struct mbuf *m; 554 register struct mbuf **mp; 555 556 if (m0 == 0) 557 return; 558 for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) { 559 m = *mp; 560 again: 561 switch (m->m_type) { 562 563 case MT_OOBDATA: 564 continue; /* WANT next train */ 565 566 case MT_CONTROL: 567 m = m->m_next; 568 if (m) 569 goto again; /* inspect THIS train further */ 570 } 571 break; 572 } 573 /* 574 * Put the first mbuf on the queue. 575 * Note this permits zero length records. 576 */ 577 sballoc(sb, m0); 578 m0->m_nextpkt = *mp; 579 *mp = m0; 580 m = m0->m_next; 581 m0->m_next = 0; 582 if (m && (m0->m_flags & M_EOR)) { 583 m0->m_flags &= ~M_EOR; 584 m->m_flags |= M_EOR; 585 } 586 sbcompress(sb, m, m0); 587 } 588 589 /* 590 * Append address and data, and optionally, control (ancillary) data 591 * to the receive queue of a socket. If present, 592 * m0 must include a packet header with total length. 593 * Returns 0 if no space in sockbuf or insufficient mbufs. 594 */ 595 int 596 sbappendaddr(sb, asa, m0, control) 597 register struct sockbuf *sb; 598 struct sockaddr *asa; 599 struct mbuf *m0, *control; 600 { 601 register struct mbuf *m, *n; 602 int space = asa->sa_len; 603 604 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 605 panic("sbappendaddr"); 606 if (m0) 607 space += m0->m_pkthdr.len; 608 for (n = control; n; n = n->m_next) { 609 space += n->m_len; 610 if (n->m_next == 0) /* keep pointer to last control buf */ 611 break; 612 } 613 if (space > sbspace(sb)) 614 return (0); 615 if (asa->sa_len > MLEN) 616 return (0); 617 MGET(m, M_DONTWAIT, MT_SONAME); 618 if (m == 0) 619 return (0); 620 m->m_len = asa->sa_len; 621 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len); 622 if (n) 623 n->m_next = m0; /* concatenate data to control */ 624 else 625 control = m0; 626 m->m_next = control; 627 for (n = m; n; n = n->m_next) 628 sballoc(sb, n); 629 n = sb->sb_mb; 630 if (n) { 631 while (n->m_nextpkt) 632 n = n->m_nextpkt; 633 n->m_nextpkt = m; 634 } else 635 sb->sb_mb = m; 636 return (1); 637 } 638 639 int 640 sbappendcontrol(sb, m0, control) 641 struct sockbuf *sb; 642 struct mbuf *control, *m0; 643 { 644 register struct mbuf *m, *n; 645 int space = 0; 646 647 if (control == 0) 648 panic("sbappendcontrol"); 649 for (m = control; ; m = m->m_next) { 650 space += m->m_len; 651 if (m->m_next == 0) 652 break; 653 } 654 n = m; /* save pointer to last control buffer */ 655 for (m = m0; m; m = m->m_next) 656 space += m->m_len; 657 if (space > sbspace(sb)) 658 return (0); 659 n->m_next = m0; /* concatenate data to control */ 660 for (m = control; m; m = m->m_next) 661 sballoc(sb, m); 662 n = sb->sb_mb; 663 if (n) { 664 while (n->m_nextpkt) 665 n = n->m_nextpkt; 666 n->m_nextpkt = control; 667 } else 668 sb->sb_mb = control; 669 return (1); 670 } 671 672 /* 673 * Compress mbuf chain m into the socket 674 * buffer sb following mbuf n. If n 675 * is null, the buffer is presumed empty. 676 */ 677 void 678 sbcompress(sb, m, n) 679 register struct sockbuf *sb; 680 register struct mbuf *m, *n; 681 { 682 register int eor = 0; 683 register struct mbuf *o; 684 685 while (m) { 686 eor |= m->m_flags & M_EOR; 687 if (m->m_len == 0 && 688 (eor == 0 || 689 (((o = m->m_next) || (o = n)) && 690 o->m_type == m->m_type))) { 691 m = m_free(m); 692 continue; 693 } 694 if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 && 695 (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] && 696 n->m_type == m->m_type) { 697 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, 698 (unsigned)m->m_len); 699 n->m_len += m->m_len; 700 sb->sb_cc += m->m_len; 701 m = m_free(m); 702 continue; 703 } 704 if (n) 705 n->m_next = m; 706 else 707 sb->sb_mb = m; 708 sballoc(sb, m); 709 n = m; 710 m->m_flags &= ~M_EOR; 711 m = m->m_next; 712 n->m_next = 0; 713 } 714 if (eor) { 715 if (n) 716 n->m_flags |= eor; 717 else 718 printf("semi-panic: sbcompress\n"); 719 } 720 } 721 722 /* 723 * Free all mbufs in a sockbuf. 724 * Check that all resources are reclaimed. 725 */ 726 void 727 sbflush(sb) 728 register struct sockbuf *sb; 729 { 730 731 if (sb->sb_flags & SB_LOCK) 732 panic("sbflush"); 733 while (sb->sb_mbcnt) 734 sbdrop(sb, (int)sb->sb_cc); 735 if (sb->sb_cc || sb->sb_mb) 736 panic("sbflush 2"); 737 } 738 739 /* 740 * Drop data from (the front of) a sockbuf. 741 */ 742 void 743 sbdrop(sb, len) 744 register struct sockbuf *sb; 745 register int len; 746 { 747 register struct mbuf *m, *mn; 748 struct mbuf *next; 749 750 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 751 while (len > 0) { 752 if (m == 0) { 753 if (next == 0) 754 panic("sbdrop"); 755 m = next; 756 next = m->m_nextpkt; 757 continue; 758 } 759 if (m->m_len > len) { 760 m->m_len -= len; 761 m->m_data += len; 762 sb->sb_cc -= len; 763 break; 764 } 765 len -= m->m_len; 766 sbfree(sb, m); 767 MFREE(m, mn); 768 m = mn; 769 } 770 while (m && m->m_len == 0) { 771 sbfree(sb, m); 772 MFREE(m, mn); 773 m = mn; 774 } 775 if (m) { 776 sb->sb_mb = m; 777 m->m_nextpkt = next; 778 } else 779 sb->sb_mb = next; 780 } 781 782 /* 783 * Drop a record off the front of a sockbuf 784 * and move the next record to the front. 785 */ 786 void 787 sbdroprecord(sb) 788 register struct sockbuf *sb; 789 { 790 register struct mbuf *m, *mn; 791 792 m = sb->sb_mb; 793 if (m) { 794 sb->sb_mb = m->m_nextpkt; 795 do { 796 sbfree(sb, m); 797 MFREE(m, mn); 798 m = mn; 799 } while (m); 800 } 801 } 802 803 /* 804 * Create a "control" mbuf containing the specified data 805 * with the specified type for presentation on a socket buffer. 806 */ 807 struct mbuf * 808 sbcreatecontrol(p, size, type, level) 809 caddr_t p; 810 register int size; 811 int type, level; 812 { 813 register struct cmsghdr *cp; 814 struct mbuf *m; 815 816 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) 817 return ((struct mbuf *) NULL); 818 cp = mtod(m, struct cmsghdr *); 819 /* XXX check size? */ 820 (void)memcpy(CMSG_DATA(cp), p, size); 821 size += sizeof(*cp); 822 m->m_len = size; 823 cp->cmsg_len = size; 824 cp->cmsg_level = level; 825 cp->cmsg_type = type; 826 return (m); 827 } 828 829 #ifdef PRU_OLDSTYLE 830 /* 831 * The following routines mediate between the old-style `pr_usrreq' 832 * protocol implementations and the new-style `struct pr_usrreqs' 833 * calling convention. 834 */ 835 836 /* syntactic sugar */ 837 #define nomb (struct mbuf *)0 838 839 static int 840 old_abort(struct socket *so) 841 { 842 return so->so_proto->pr_ousrreq(so, PRU_ABORT, nomb, nomb, nomb); 843 } 844 845 static int 846 old_accept(struct socket *so, struct mbuf *nam) 847 { 848 return so->so_proto->pr_ousrreq(so, PRU_ACCEPT, nomb, nam, nomb); 849 } 850 851 static int 852 old_attach(struct socket *so, int proto) 853 { 854 return so->so_proto->pr_ousrreq(so, PRU_ATTACH, nomb, 855 (struct mbuf *)proto, /* XXX */ 856 nomb); 857 } 858 859 static int 860 old_bind(struct socket *so, struct mbuf *nam) 861 { 862 return so->so_proto->pr_ousrreq(so, PRU_BIND, nomb, nam, nomb); 863 } 864 865 static int 866 old_connect(struct socket *so, struct mbuf *nam) 867 { 868 return so->so_proto->pr_ousrreq(so, PRU_CONNECT, nomb, nam, nomb); 869 } 870 871 static int 872 old_connect2(struct socket *so1, struct socket *so2) 873 { 874 return so1->so_proto->pr_ousrreq(so1, PRU_CONNECT2, nomb, 875 (struct mbuf *)so2, nomb); 876 } 877 878 static int 879 old_control(struct socket *so, int cmd, caddr_t data, struct ifnet *ifp) 880 { 881 return so->so_proto->pr_ousrreq(so, PRU_CONTROL, (struct mbuf *)cmd, 882 (struct mbuf *)data, 883 (struct mbuf *)ifp); 884 } 885 886 static int 887 old_detach(struct socket *so) 888 { 889 return so->so_proto->pr_ousrreq(so, PRU_DETACH, nomb, nomb, nomb); 890 } 891 892 static int 893 old_disconnect(struct socket *so) 894 { 895 return so->so_proto->pr_ousrreq(so, PRU_DISCONNECT, nomb, nomb, nomb); 896 } 897 898 static int 899 old_listen(struct socket *so) 900 { 901 return so->so_proto->pr_ousrreq(so, PRU_LISTEN, nomb, nomb, nomb); 902 } 903 904 static int 905 old_peeraddr(struct socket *so, struct mbuf *nam) 906 { 907 return so->so_proto->pr_ousrreq(so, PRU_PEERADDR, nomb, nam, nomb); 908 } 909 910 static int 911 old_rcvd(struct socket *so, int flags) 912 { 913 return so->so_proto->pr_ousrreq(so, PRU_RCVD, nomb, 914 (struct mbuf *)flags, /* XXX */ 915 nomb); 916 } 917 918 static int 919 old_rcvoob(struct socket *so, struct mbuf *m, int flags) 920 { 921 return so->so_proto->pr_ousrreq(so, PRU_RCVOOB, m, 922 (struct mbuf *)flags, /* XXX */ 923 nomb); 924 } 925 926 static int 927 old_send(struct socket *so, int flags, struct mbuf *m, struct mbuf *addr, 928 struct mbuf *control) 929 { 930 int req; 931 932 if (flags & PRUS_OOB) { 933 req = PRU_SENDOOB; 934 } else if(flags & PRUS_EOF) { 935 req = PRU_SEND_EOF; 936 } else { 937 req = PRU_SEND; 938 } 939 return so->so_proto->pr_ousrreq(so, req, m, addr, control); 940 } 941 942 static int 943 old_sense(struct socket *so, struct stat *sb) 944 { 945 return so->so_proto->pr_ousrreq(so, PRU_SENSE, (struct mbuf *)sb, 946 nomb, nomb); 947 } 948 949 static int 950 old_shutdown(struct socket *so) 951 { 952 return so->so_proto->pr_ousrreq(so, PRU_SHUTDOWN, nomb, nomb, nomb); 953 } 954 955 static int 956 old_sockaddr(struct socket *so, struct mbuf *nam) 957 { 958 return so->so_proto->pr_ousrreq(so, PRU_SOCKADDR, nomb, nam, nomb); 959 } 960 961 struct pr_usrreqs pru_oldstyle = { 962 old_abort, old_accept, old_attach, old_bind, old_connect, 963 old_connect2, old_control, old_detach, old_disconnect, 964 old_listen, old_peeraddr, old_rcvd, old_rcvoob, old_send, 965 old_sense, old_shutdown, old_sockaddr 966 }; 967 968 #endif /* PRU_OLDSTYLE */ 969 970 /* 971 * Some routines that return EOPNOTSUPP for entry points that are not 972 * supported by a protocol. Fill in as needed. 973 */ 974 int 975 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 976 { 977 return EOPNOTSUPP; 978 } 979