xref: /freebsd/sys/kern/uipc_sockbuf.c (revision bbb29a3c0f2c4565eff6fda70426807b6ed97f8b)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_param.h"
36 
37 #include <sys/param.h>
38 #include <sys/aio.h> /* for aio_swake proto */
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mbuf.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/protosw.h>
45 #include <sys/resourcevar.h>
46 #include <sys/signalvar.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/sx.h>
50 #include <sys/sysctl.h>
51 
52 /*
53  * Function pointer set by the AIO routines so that the socket buffer code
54  * can call back into the AIO module if it is loaded.
55  */
56 void	(*aio_swake)(struct socket *, struct sockbuf *);
57 
58 /*
59  * Primitive routines for operating on socket buffers
60  */
61 
62 u_long	sb_max = SB_MAX;
63 u_long sb_max_adj =
64        (quad_t)SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
65 
66 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
67 
68 static struct mbuf	*sbcut_internal(struct sockbuf *sb, int len);
69 static void	sbflush_internal(struct sockbuf *sb);
70 
71 /*
72  * Mark ready "count" mbufs starting with "m".
73  */
74 int
75 sbready(struct sockbuf *sb, struct mbuf *m, int count)
76 {
77 	u_int blocker;
78 
79 	SOCKBUF_LOCK_ASSERT(sb);
80 	KASSERT(sb->sb_fnrdy != NULL, ("%s: sb %p NULL fnrdy", __func__, sb));
81 
82 	blocker = (sb->sb_fnrdy == m) ? M_BLOCKED : 0;
83 
84 	for (int i = 0; i < count; i++, m = m->m_next) {
85 		KASSERT(m->m_flags & M_NOTREADY,
86 		    ("%s: m %p !M_NOTREADY", __func__, m));
87 		m->m_flags &= ~(M_NOTREADY | blocker);
88 		if (blocker)
89 			sb->sb_acc += m->m_len;
90 	}
91 
92 	if (!blocker)
93 		return (EINPROGRESS);
94 
95 	/* This one was blocking all the queue. */
96 	for (; m && (m->m_flags & M_NOTREADY) == 0; m = m->m_next) {
97 		KASSERT(m->m_flags & M_BLOCKED,
98 		    ("%s: m %p !M_BLOCKED", __func__, m));
99 		m->m_flags &= ~M_BLOCKED;
100 		sb->sb_acc += m->m_len;
101 	}
102 
103 	sb->sb_fnrdy = m;
104 
105 	return (0);
106 }
107 
108 /*
109  * Adjust sockbuf state reflecting allocation of m.
110  */
111 void
112 sballoc(struct sockbuf *sb, struct mbuf *m)
113 {
114 
115 	SOCKBUF_LOCK_ASSERT(sb);
116 
117 	sb->sb_ccc += m->m_len;
118 
119 	if (sb->sb_fnrdy == NULL) {
120 		if (m->m_flags & M_NOTREADY)
121 			sb->sb_fnrdy = m;
122 		else
123 			sb->sb_acc += m->m_len;
124 	} else
125 		m->m_flags |= M_BLOCKED;
126 
127 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
128 		sb->sb_ctl += m->m_len;
129 
130 	sb->sb_mbcnt += MSIZE;
131 	sb->sb_mcnt += 1;
132 
133 	if (m->m_flags & M_EXT) {
134 		sb->sb_mbcnt += m->m_ext.ext_size;
135 		sb->sb_ccnt += 1;
136 	}
137 }
138 
139 /*
140  * Adjust sockbuf state reflecting freeing of m.
141  */
142 void
143 sbfree(struct sockbuf *sb, struct mbuf *m)
144 {
145 
146 #if 0	/* XXX: not yet: soclose() call path comes here w/o lock. */
147 	SOCKBUF_LOCK_ASSERT(sb);
148 #endif
149 
150 	sb->sb_ccc -= m->m_len;
151 
152 	if (!(m->m_flags & M_NOTAVAIL))
153 		sb->sb_acc -= m->m_len;
154 
155 	if (m == sb->sb_fnrdy) {
156 		struct mbuf *n;
157 
158 		KASSERT(m->m_flags & M_NOTREADY,
159 		    ("%s: m %p !M_NOTREADY", __func__, m));
160 
161 		n = m->m_next;
162 		while (n != NULL && !(n->m_flags & M_NOTREADY)) {
163 			n->m_flags &= ~M_BLOCKED;
164 			sb->sb_acc += n->m_len;
165 			n = n->m_next;
166 		}
167 		sb->sb_fnrdy = n;
168 	}
169 
170 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
171 		sb->sb_ctl -= m->m_len;
172 
173 	sb->sb_mbcnt -= MSIZE;
174 	sb->sb_mcnt -= 1;
175 	if (m->m_flags & M_EXT) {
176 		sb->sb_mbcnt -= m->m_ext.ext_size;
177 		sb->sb_ccnt -= 1;
178 	}
179 
180 	if (sb->sb_sndptr == m) {
181 		sb->sb_sndptr = NULL;
182 		sb->sb_sndptroff = 0;
183 	}
184 	if (sb->sb_sndptroff != 0)
185 		sb->sb_sndptroff -= m->m_len;
186 }
187 
188 /*
189  * Socantsendmore indicates that no more data will be sent on the socket; it
190  * would normally be applied to a socket when the user informs the system
191  * that no more data is to be sent, by the protocol code (in case
192  * PRU_SHUTDOWN).  Socantrcvmore indicates that no more data will be
193  * received, and will normally be applied to the socket by a protocol when it
194  * detects that the peer will send no more data.  Data queued for reading in
195  * the socket may yet be read.
196  */
197 void
198 socantsendmore_locked(struct socket *so)
199 {
200 
201 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
202 
203 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
204 	sowwakeup_locked(so);
205 	mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
206 }
207 
208 void
209 socantsendmore(struct socket *so)
210 {
211 
212 	SOCKBUF_LOCK(&so->so_snd);
213 	socantsendmore_locked(so);
214 	mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
215 }
216 
217 void
218 socantrcvmore_locked(struct socket *so)
219 {
220 
221 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
222 
223 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
224 	sorwakeup_locked(so);
225 	mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
226 }
227 
228 void
229 socantrcvmore(struct socket *so)
230 {
231 
232 	SOCKBUF_LOCK(&so->so_rcv);
233 	socantrcvmore_locked(so);
234 	mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
235 }
236 
237 /*
238  * Wait for data to arrive at/drain from a socket buffer.
239  */
240 int
241 sbwait(struct sockbuf *sb)
242 {
243 
244 	SOCKBUF_LOCK_ASSERT(sb);
245 
246 	sb->sb_flags |= SB_WAIT;
247 	return (msleep_sbt(&sb->sb_acc, &sb->sb_mtx,
248 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
249 	    sb->sb_timeo, 0, 0));
250 }
251 
252 int
253 sblock(struct sockbuf *sb, int flags)
254 {
255 
256 	KASSERT((flags & SBL_VALID) == flags,
257 	    ("sblock: flags invalid (0x%x)", flags));
258 
259 	if (flags & SBL_WAIT) {
260 		if ((sb->sb_flags & SB_NOINTR) ||
261 		    (flags & SBL_NOINTR)) {
262 			sx_xlock(&sb->sb_sx);
263 			return (0);
264 		}
265 		return (sx_xlock_sig(&sb->sb_sx));
266 	} else {
267 		if (sx_try_xlock(&sb->sb_sx) == 0)
268 			return (EWOULDBLOCK);
269 		return (0);
270 	}
271 }
272 
273 void
274 sbunlock(struct sockbuf *sb)
275 {
276 
277 	sx_xunlock(&sb->sb_sx);
278 }
279 
280 /*
281  * Wakeup processes waiting on a socket buffer.  Do asynchronous notification
282  * via SIGIO if the socket has the SS_ASYNC flag set.
283  *
284  * Called with the socket buffer lock held; will release the lock by the end
285  * of the function.  This allows the caller to acquire the socket buffer lock
286  * while testing for the need for various sorts of wakeup and hold it through
287  * to the point where it's no longer required.  We currently hold the lock
288  * through calls out to other subsystems (with the exception of kqueue), and
289  * then release it to avoid lock order issues.  It's not clear that's
290  * correct.
291  */
292 void
293 sowakeup(struct socket *so, struct sockbuf *sb)
294 {
295 	int ret;
296 
297 	SOCKBUF_LOCK_ASSERT(sb);
298 
299 	selwakeuppri(&sb->sb_sel, PSOCK);
300 	if (!SEL_WAITING(&sb->sb_sel))
301 		sb->sb_flags &= ~SB_SEL;
302 	if (sb->sb_flags & SB_WAIT) {
303 		sb->sb_flags &= ~SB_WAIT;
304 		wakeup(&sb->sb_acc);
305 	}
306 	KNOTE_LOCKED(&sb->sb_sel.si_note, 0);
307 	if (sb->sb_upcall != NULL) {
308 		ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT);
309 		if (ret == SU_ISCONNECTED) {
310 			KASSERT(sb == &so->so_rcv,
311 			    ("SO_SND upcall returned SU_ISCONNECTED"));
312 			soupcall_clear(so, SO_RCV);
313 		}
314 	} else
315 		ret = SU_OK;
316 	if (sb->sb_flags & SB_AIO)
317 		aio_swake(so, sb);
318 	SOCKBUF_UNLOCK(sb);
319 	if (ret == SU_ISCONNECTED)
320 		soisconnected(so);
321 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
322 		pgsigio(&so->so_sigio, SIGIO, 0);
323 	mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED);
324 }
325 
326 /*
327  * Socket buffer (struct sockbuf) utility routines.
328  *
329  * Each socket contains two socket buffers: one for sending data and one for
330  * receiving data.  Each buffer contains a queue of mbufs, information about
331  * the number of mbufs and amount of data in the queue, and other fields
332  * allowing select() statements and notification on data availability to be
333  * implemented.
334  *
335  * Data stored in a socket buffer is maintained as a list of records.  Each
336  * record is a list of mbufs chained together with the m_next field.  Records
337  * are chained together with the m_nextpkt field. The upper level routine
338  * soreceive() expects the following conventions to be observed when placing
339  * information in the receive buffer:
340  *
341  * 1. If the protocol requires each message be preceded by the sender's name,
342  *    then a record containing that name must be present before any
343  *    associated data (mbuf's must be of type MT_SONAME).
344  * 2. If the protocol supports the exchange of ``access rights'' (really just
345  *    additional data associated with the message), and there are ``rights''
346  *    to be received, then a record containing this data should be present
347  *    (mbuf's must be of type MT_RIGHTS).
348  * 3. If a name or rights record exists, then it must be followed by a data
349  *    record, perhaps of zero length.
350  *
351  * Before using a new socket structure it is first necessary to reserve
352  * buffer space to the socket, by calling sbreserve().  This should commit
353  * some of the available buffer space in the system buffer pool for the
354  * socket (currently, it does nothing but enforce limits).  The space should
355  * be released by calling sbrelease() when the socket is destroyed.
356  */
357 int
358 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
359 {
360 	struct thread *td = curthread;
361 
362 	SOCKBUF_LOCK(&so->so_snd);
363 	SOCKBUF_LOCK(&so->so_rcv);
364 	if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0)
365 		goto bad;
366 	if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0)
367 		goto bad2;
368 	if (so->so_rcv.sb_lowat == 0)
369 		so->so_rcv.sb_lowat = 1;
370 	if (so->so_snd.sb_lowat == 0)
371 		so->so_snd.sb_lowat = MCLBYTES;
372 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
373 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
374 	SOCKBUF_UNLOCK(&so->so_rcv);
375 	SOCKBUF_UNLOCK(&so->so_snd);
376 	return (0);
377 bad2:
378 	sbrelease_locked(&so->so_snd, so);
379 bad:
380 	SOCKBUF_UNLOCK(&so->so_rcv);
381 	SOCKBUF_UNLOCK(&so->so_snd);
382 	return (ENOBUFS);
383 }
384 
385 static int
386 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
387 {
388 	int error = 0;
389 	u_long tmp_sb_max = sb_max;
390 
391 	error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req);
392 	if (error || !req->newptr)
393 		return (error);
394 	if (tmp_sb_max < MSIZE + MCLBYTES)
395 		return (EINVAL);
396 	sb_max = tmp_sb_max;
397 	sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
398 	return (0);
399 }
400 
401 /*
402  * Allot mbufs to a sockbuf.  Attempt to scale mbmax so that mbcnt doesn't
403  * become limiting if buffering efficiency is near the normal case.
404  */
405 int
406 sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so,
407     struct thread *td)
408 {
409 	rlim_t sbsize_limit;
410 
411 	SOCKBUF_LOCK_ASSERT(sb);
412 
413 	/*
414 	 * When a thread is passed, we take into account the thread's socket
415 	 * buffer size limit.  The caller will generally pass curthread, but
416 	 * in the TCP input path, NULL will be passed to indicate that no
417 	 * appropriate thread resource limits are available.  In that case,
418 	 * we don't apply a process limit.
419 	 */
420 	if (cc > sb_max_adj)
421 		return (0);
422 	if (td != NULL) {
423 		PROC_LOCK(td->td_proc);
424 		sbsize_limit = lim_cur(td->td_proc, RLIMIT_SBSIZE);
425 		PROC_UNLOCK(td->td_proc);
426 	} else
427 		sbsize_limit = RLIM_INFINITY;
428 	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
429 	    sbsize_limit))
430 		return (0);
431 	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
432 	if (sb->sb_lowat > sb->sb_hiwat)
433 		sb->sb_lowat = sb->sb_hiwat;
434 	return (1);
435 }
436 
437 int
438 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so,
439     struct thread *td)
440 {
441 	int error;
442 
443 	SOCKBUF_LOCK(sb);
444 	error = sbreserve_locked(sb, cc, so, td);
445 	SOCKBUF_UNLOCK(sb);
446 	return (error);
447 }
448 
449 /*
450  * Free mbufs held by a socket, and reserved mbuf space.
451  */
452 void
453 sbrelease_internal(struct sockbuf *sb, struct socket *so)
454 {
455 
456 	sbflush_internal(sb);
457 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
458 	    RLIM_INFINITY);
459 	sb->sb_mbmax = 0;
460 }
461 
462 void
463 sbrelease_locked(struct sockbuf *sb, struct socket *so)
464 {
465 
466 	SOCKBUF_LOCK_ASSERT(sb);
467 
468 	sbrelease_internal(sb, so);
469 }
470 
471 void
472 sbrelease(struct sockbuf *sb, struct socket *so)
473 {
474 
475 	SOCKBUF_LOCK(sb);
476 	sbrelease_locked(sb, so);
477 	SOCKBUF_UNLOCK(sb);
478 }
479 
480 void
481 sbdestroy(struct sockbuf *sb, struct socket *so)
482 {
483 
484 	sbrelease_internal(sb, so);
485 }
486 
487 /*
488  * Routines to add and remove data from an mbuf queue.
489  *
490  * The routines sbappend() or sbappendrecord() are normally called to append
491  * new mbufs to a socket buffer, after checking that adequate space is
492  * available, comparing the function sbspace() with the amount of data to be
493  * added.  sbappendrecord() differs from sbappend() in that data supplied is
494  * treated as the beginning of a new record.  To place a sender's address,
495  * optional access rights, and data in a socket receive buffer,
496  * sbappendaddr() should be used.  To place access rights and data in a
497  * socket receive buffer, sbappendrights() should be used.  In either case,
498  * the new data begins a new record.  Note that unlike sbappend() and
499  * sbappendrecord(), these routines check for the caller that there will be
500  * enough space to store the data.  Each fails if there is not enough space,
501  * or if it cannot find mbufs to store additional information in.
502  *
503  * Reliable protocols may use the socket send buffer to hold data awaiting
504  * acknowledgement.  Data is normally copied from a socket send buffer in a
505  * protocol with m_copy for output to a peer, and then removing the data from
506  * the socket buffer with sbdrop() or sbdroprecord() when the data is
507  * acknowledged by the peer.
508  */
509 #ifdef SOCKBUF_DEBUG
510 void
511 sblastrecordchk(struct sockbuf *sb, const char *file, int line)
512 {
513 	struct mbuf *m = sb->sb_mb;
514 
515 	SOCKBUF_LOCK_ASSERT(sb);
516 
517 	while (m && m->m_nextpkt)
518 		m = m->m_nextpkt;
519 
520 	if (m != sb->sb_lastrecord) {
521 		printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
522 			__func__, sb->sb_mb, sb->sb_lastrecord, m);
523 		printf("packet chain:\n");
524 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
525 			printf("\t%p\n", m);
526 		panic("%s from %s:%u", __func__, file, line);
527 	}
528 }
529 
530 void
531 sblastmbufchk(struct sockbuf *sb, const char *file, int line)
532 {
533 	struct mbuf *m = sb->sb_mb;
534 	struct mbuf *n;
535 
536 	SOCKBUF_LOCK_ASSERT(sb);
537 
538 	while (m && m->m_nextpkt)
539 		m = m->m_nextpkt;
540 
541 	while (m && m->m_next)
542 		m = m->m_next;
543 
544 	if (m != sb->sb_mbtail) {
545 		printf("%s: sb_mb %p sb_mbtail %p last %p\n",
546 			__func__, sb->sb_mb, sb->sb_mbtail, m);
547 		printf("packet tree:\n");
548 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
549 			printf("\t");
550 			for (n = m; n != NULL; n = n->m_next)
551 				printf("%p ", n);
552 			printf("\n");
553 		}
554 		panic("%s from %s:%u", __func__, file, line);
555 	}
556 }
557 #endif /* SOCKBUF_DEBUG */
558 
559 #define SBLINKRECORD(sb, m0) do {					\
560 	SOCKBUF_LOCK_ASSERT(sb);					\
561 	if ((sb)->sb_lastrecord != NULL)				\
562 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
563 	else								\
564 		(sb)->sb_mb = (m0);					\
565 	(sb)->sb_lastrecord = (m0);					\
566 } while (/*CONSTCOND*/0)
567 
568 /*
569  * Append mbuf chain m to the last record in the socket buffer sb.  The
570  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
571  * are discarded and mbufs are compacted where possible.
572  */
573 void
574 sbappend_locked(struct sockbuf *sb, struct mbuf *m)
575 {
576 	struct mbuf *n;
577 
578 	SOCKBUF_LOCK_ASSERT(sb);
579 
580 	if (m == 0)
581 		return;
582 
583 	SBLASTRECORDCHK(sb);
584 	n = sb->sb_mb;
585 	if (n) {
586 		while (n->m_nextpkt)
587 			n = n->m_nextpkt;
588 		do {
589 			if (n->m_flags & M_EOR) {
590 				sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
591 				return;
592 			}
593 		} while (n->m_next && (n = n->m_next));
594 	} else {
595 		/*
596 		 * XXX Would like to simply use sb_mbtail here, but
597 		 * XXX I need to verify that I won't miss an EOR that
598 		 * XXX way.
599 		 */
600 		if ((n = sb->sb_lastrecord) != NULL) {
601 			do {
602 				if (n->m_flags & M_EOR) {
603 					sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
604 					return;
605 				}
606 			} while (n->m_next && (n = n->m_next));
607 		} else {
608 			/*
609 			 * If this is the first record in the socket buffer,
610 			 * it's also the last record.
611 			 */
612 			sb->sb_lastrecord = m;
613 		}
614 	}
615 	sbcompress(sb, m, n);
616 	SBLASTRECORDCHK(sb);
617 }
618 
619 /*
620  * Append mbuf chain m to the last record in the socket buffer sb.  The
621  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
622  * are discarded and mbufs are compacted where possible.
623  */
624 void
625 sbappend(struct sockbuf *sb, struct mbuf *m)
626 {
627 
628 	SOCKBUF_LOCK(sb);
629 	sbappend_locked(sb, m);
630 	SOCKBUF_UNLOCK(sb);
631 }
632 
633 /*
634  * This version of sbappend() should only be used when the caller absolutely
635  * knows that there will never be more than one record in the socket buffer,
636  * that is, a stream protocol (such as TCP).
637  */
638 void
639 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags)
640 {
641 	SOCKBUF_LOCK_ASSERT(sb);
642 
643 	KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
644 	KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
645 
646 	SBLASTMBUFCHK(sb);
647 
648 	/* Remove all packet headers and mbuf tags to get a pure data chain. */
649 	m_demote(m, 1, flags & PRUS_NOTREADY ? M_NOTREADY : 0);
650 
651 	sbcompress(sb, m, sb->sb_mbtail);
652 
653 	sb->sb_lastrecord = sb->sb_mb;
654 	SBLASTRECORDCHK(sb);
655 }
656 
657 /*
658  * This version of sbappend() should only be used when the caller absolutely
659  * knows that there will never be more than one record in the socket buffer,
660  * that is, a stream protocol (such as TCP).
661  */
662 void
663 sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags)
664 {
665 
666 	SOCKBUF_LOCK(sb);
667 	sbappendstream_locked(sb, m, flags);
668 	SOCKBUF_UNLOCK(sb);
669 }
670 
671 #ifdef SOCKBUF_DEBUG
672 void
673 sbcheck(struct sockbuf *sb, const char *file, int line)
674 {
675 	struct mbuf *m, *n, *fnrdy;
676 	u_long acc, ccc, mbcnt;
677 
678 	SOCKBUF_LOCK_ASSERT(sb);
679 
680 	acc = ccc = mbcnt = 0;
681 	fnrdy = NULL;
682 
683 	for (m = sb->sb_mb; m; m = n) {
684 	    n = m->m_nextpkt;
685 	    for (; m; m = m->m_next) {
686 		if (m->m_len == 0) {
687 			printf("sb %p empty mbuf %p\n", sb, m);
688 			goto fail;
689 		}
690 		if ((m->m_flags & M_NOTREADY) && fnrdy == NULL) {
691 			if (m != sb->sb_fnrdy) {
692 				printf("sb %p: fnrdy %p != m %p\n",
693 				    sb, sb->sb_fnrdy, m);
694 				goto fail;
695 			}
696 			fnrdy = m;
697 		}
698 		if (fnrdy) {
699 			if (!(m->m_flags & M_NOTAVAIL)) {
700 				printf("sb %p: fnrdy %p, m %p is avail\n",
701 				    sb, sb->sb_fnrdy, m);
702 				goto fail;
703 			}
704 		} else
705 			acc += m->m_len;
706 		ccc += m->m_len;
707 		mbcnt += MSIZE;
708 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
709 			mbcnt += m->m_ext.ext_size;
710 	    }
711 	}
712 	if (acc != sb->sb_acc || ccc != sb->sb_ccc || mbcnt != sb->sb_mbcnt) {
713 		printf("acc %ld/%u ccc %ld/%u mbcnt %ld/%u\n",
714 		    acc, sb->sb_acc, ccc, sb->sb_ccc, mbcnt, sb->sb_mbcnt);
715 		goto fail;
716 	}
717 	return;
718 fail:
719 	panic("%s from %s:%u", __func__, file, line);
720 }
721 #endif
722 
723 /*
724  * As above, except the mbuf chain begins a new record.
725  */
726 void
727 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
728 {
729 	struct mbuf *m;
730 
731 	SOCKBUF_LOCK_ASSERT(sb);
732 
733 	if (m0 == 0)
734 		return;
735 	/*
736 	 * Put the first mbuf on the queue.  Note this permits zero length
737 	 * records.
738 	 */
739 	sballoc(sb, m0);
740 	SBLASTRECORDCHK(sb);
741 	SBLINKRECORD(sb, m0);
742 	sb->sb_mbtail = m0;
743 	m = m0->m_next;
744 	m0->m_next = 0;
745 	if (m && (m0->m_flags & M_EOR)) {
746 		m0->m_flags &= ~M_EOR;
747 		m->m_flags |= M_EOR;
748 	}
749 	/* always call sbcompress() so it can do SBLASTMBUFCHK() */
750 	sbcompress(sb, m, m0);
751 }
752 
753 /*
754  * As above, except the mbuf chain begins a new record.
755  */
756 void
757 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
758 {
759 
760 	SOCKBUF_LOCK(sb);
761 	sbappendrecord_locked(sb, m0);
762 	SOCKBUF_UNLOCK(sb);
763 }
764 
765 /* Helper routine that appends data, control, and address to a sockbuf. */
766 static int
767 sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa,
768     struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last)
769 {
770 	struct mbuf *m, *n, *nlast;
771 #if MSIZE <= 256
772 	if (asa->sa_len > MLEN)
773 		return (0);
774 #endif
775 	m = m_get(M_NOWAIT, MT_SONAME);
776 	if (m == NULL)
777 		return (0);
778 	m->m_len = asa->sa_len;
779 	bcopy(asa, mtod(m, caddr_t), asa->sa_len);
780 	if (ctrl_last)
781 		ctrl_last->m_next = m0;	/* concatenate data to control */
782 	else
783 		control = m0;
784 	m->m_next = control;
785 	for (n = m; n->m_next != NULL; n = n->m_next)
786 		sballoc(sb, n);
787 	sballoc(sb, n);
788 	nlast = n;
789 	SBLINKRECORD(sb, m);
790 
791 	sb->sb_mbtail = nlast;
792 	SBLASTMBUFCHK(sb);
793 
794 	SBLASTRECORDCHK(sb);
795 	return (1);
796 }
797 
798 /*
799  * Append address and data, and optionally, control (ancillary) data to the
800  * receive queue of a socket.  If present, m0 must include a packet header
801  * with total length.  Returns 0 if no space in sockbuf or insufficient
802  * mbufs.
803  */
804 int
805 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
806     struct mbuf *m0, struct mbuf *control)
807 {
808 	struct mbuf *ctrl_last;
809 	int space = asa->sa_len;
810 
811 	SOCKBUF_LOCK_ASSERT(sb);
812 
813 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
814 		panic("sbappendaddr_locked");
815 	if (m0)
816 		space += m0->m_pkthdr.len;
817 	space += m_length(control, &ctrl_last);
818 
819 	if (space > sbspace(sb))
820 		return (0);
821 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
822 }
823 
824 /*
825  * Append address and data, and optionally, control (ancillary) data to the
826  * receive queue of a socket.  If present, m0 must include a packet header
827  * with total length.  Returns 0 if insufficient mbufs.  Does not validate space
828  * on the receiving sockbuf.
829  */
830 int
831 sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa,
832     struct mbuf *m0, struct mbuf *control)
833 {
834 	struct mbuf *ctrl_last;
835 
836 	SOCKBUF_LOCK_ASSERT(sb);
837 
838 	ctrl_last = (control == NULL) ? NULL : m_last(control);
839 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
840 }
841 
842 /*
843  * Append address and data, and optionally, control (ancillary) data to the
844  * receive queue of a socket.  If present, m0 must include a packet header
845  * with total length.  Returns 0 if no space in sockbuf or insufficient
846  * mbufs.
847  */
848 int
849 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
850     struct mbuf *m0, struct mbuf *control)
851 {
852 	int retval;
853 
854 	SOCKBUF_LOCK(sb);
855 	retval = sbappendaddr_locked(sb, asa, m0, control);
856 	SOCKBUF_UNLOCK(sb);
857 	return (retval);
858 }
859 
860 int
861 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
862     struct mbuf *control)
863 {
864 	struct mbuf *m, *n, *mlast;
865 	int space;
866 
867 	SOCKBUF_LOCK_ASSERT(sb);
868 
869 	if (control == 0)
870 		panic("sbappendcontrol_locked");
871 	space = m_length(control, &n) + m_length(m0, NULL);
872 
873 	if (space > sbspace(sb))
874 		return (0);
875 	n->m_next = m0;			/* concatenate data to control */
876 
877 	SBLASTRECORDCHK(sb);
878 
879 	for (m = control; m->m_next; m = m->m_next)
880 		sballoc(sb, m);
881 	sballoc(sb, m);
882 	mlast = m;
883 	SBLINKRECORD(sb, control);
884 
885 	sb->sb_mbtail = mlast;
886 	SBLASTMBUFCHK(sb);
887 
888 	SBLASTRECORDCHK(sb);
889 	return (1);
890 }
891 
892 int
893 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
894 {
895 	int retval;
896 
897 	SOCKBUF_LOCK(sb);
898 	retval = sbappendcontrol_locked(sb, m0, control);
899 	SOCKBUF_UNLOCK(sb);
900 	return (retval);
901 }
902 
903 /*
904  * Append the data in mbuf chain (m) into the socket buffer sb following mbuf
905  * (n).  If (n) is NULL, the buffer is presumed empty.
906  *
907  * When the data is compressed, mbufs in the chain may be handled in one of
908  * three ways:
909  *
910  * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
911  *     record boundary, and no change in data type).
912  *
913  * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
914  *     an mbuf already in the socket buffer.  This can occur if an
915  *     appropriate mbuf exists, there is room, both mbufs are not marked as
916  *     not ready, and no merging of data types will occur.
917  *
918  * (3) The mbuf may be appended to the end of the existing mbuf chain.
919  *
920  * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
921  * end-of-record.
922  */
923 void
924 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
925 {
926 	int eor = 0;
927 	struct mbuf *o;
928 
929 	SOCKBUF_LOCK_ASSERT(sb);
930 
931 	while (m) {
932 		eor |= m->m_flags & M_EOR;
933 		if (m->m_len == 0 &&
934 		    (eor == 0 ||
935 		     (((o = m->m_next) || (o = n)) &&
936 		      o->m_type == m->m_type))) {
937 			if (sb->sb_lastrecord == m)
938 				sb->sb_lastrecord = m->m_next;
939 			m = m_free(m);
940 			continue;
941 		}
942 		if (n && (n->m_flags & M_EOR) == 0 &&
943 		    M_WRITABLE(n) &&
944 		    ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
945 		    !(m->m_flags & M_NOTREADY) &&
946 		    !(n->m_flags & M_NOTREADY) &&
947 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
948 		    m->m_len <= M_TRAILINGSPACE(n) &&
949 		    n->m_type == m->m_type) {
950 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
951 			    (unsigned)m->m_len);
952 			n->m_len += m->m_len;
953 			sb->sb_ccc += m->m_len;
954 			if (sb->sb_fnrdy == NULL)
955 				sb->sb_acc += m->m_len;
956 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
957 				/* XXX: Probably don't need.*/
958 				sb->sb_ctl += m->m_len;
959 			m = m_free(m);
960 			continue;
961 		}
962 		if (n)
963 			n->m_next = m;
964 		else
965 			sb->sb_mb = m;
966 		sb->sb_mbtail = m;
967 		sballoc(sb, m);
968 		n = m;
969 		m->m_flags &= ~M_EOR;
970 		m = m->m_next;
971 		n->m_next = 0;
972 	}
973 	if (eor) {
974 		KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
975 		n->m_flags |= eor;
976 	}
977 	SBLASTMBUFCHK(sb);
978 }
979 
980 /*
981  * Free all mbufs in a sockbuf.  Check that all resources are reclaimed.
982  */
983 static void
984 sbflush_internal(struct sockbuf *sb)
985 {
986 
987 	while (sb->sb_mbcnt) {
988 		/*
989 		 * Don't call sbcut(sb, 0) if the leading mbuf is non-empty:
990 		 * we would loop forever. Panic instead.
991 		 */
992 		if (sb->sb_ccc == 0 && (sb->sb_mb == NULL || sb->sb_mb->m_len))
993 			break;
994 		m_freem(sbcut_internal(sb, (int)sb->sb_ccc));
995 	}
996 	KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
997 	    ("%s: ccc %u mb %p mbcnt %u", __func__,
998 	    sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
999 }
1000 
1001 void
1002 sbflush_locked(struct sockbuf *sb)
1003 {
1004 
1005 	SOCKBUF_LOCK_ASSERT(sb);
1006 	sbflush_internal(sb);
1007 }
1008 
1009 void
1010 sbflush(struct sockbuf *sb)
1011 {
1012 
1013 	SOCKBUF_LOCK(sb);
1014 	sbflush_locked(sb);
1015 	SOCKBUF_UNLOCK(sb);
1016 }
1017 
1018 /*
1019  * Cut data from (the front of) a sockbuf.
1020  */
1021 static struct mbuf *
1022 sbcut_internal(struct sockbuf *sb, int len)
1023 {
1024 	struct mbuf *m, *next, *mfree;
1025 
1026 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1027 	mfree = NULL;
1028 
1029 	while (len > 0) {
1030 		if (m == NULL) {
1031 			KASSERT(next, ("%s: no next, len %d", __func__, len));
1032 			m = next;
1033 			next = m->m_nextpkt;
1034 		}
1035 		if (m->m_len > len) {
1036 			KASSERT(!(m->m_flags & M_NOTAVAIL),
1037 			    ("%s: m %p M_NOTAVAIL", __func__, m));
1038 			m->m_len -= len;
1039 			m->m_data += len;
1040 			sb->sb_ccc -= len;
1041 			sb->sb_acc -= len;
1042 			if (sb->sb_sndptroff != 0)
1043 				sb->sb_sndptroff -= len;
1044 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1045 				sb->sb_ctl -= len;
1046 			break;
1047 		}
1048 		len -= m->m_len;
1049 		sbfree(sb, m);
1050 		/*
1051 		 * Do not put M_NOTREADY buffers to the free list, they
1052 		 * are referenced from outside.
1053 		 */
1054 		if (m->m_flags & M_NOTREADY)
1055 			m = m->m_next;
1056 		else {
1057 			struct mbuf *n;
1058 
1059 			n = m->m_next;
1060 			m->m_next = mfree;
1061 			mfree = m;
1062 			m = n;
1063 		}
1064 	}
1065 	if (m) {
1066 		sb->sb_mb = m;
1067 		m->m_nextpkt = next;
1068 	} else
1069 		sb->sb_mb = next;
1070 	/*
1071 	 * First part is an inline SB_EMPTY_FIXUP().  Second part makes sure
1072 	 * sb_lastrecord is up-to-date if we dropped part of the last record.
1073 	 */
1074 	m = sb->sb_mb;
1075 	if (m == NULL) {
1076 		sb->sb_mbtail = NULL;
1077 		sb->sb_lastrecord = NULL;
1078 	} else if (m->m_nextpkt == NULL) {
1079 		sb->sb_lastrecord = m;
1080 	}
1081 
1082 	return (mfree);
1083 }
1084 
1085 /*
1086  * Drop data from (the front of) a sockbuf.
1087  */
1088 void
1089 sbdrop_locked(struct sockbuf *sb, int len)
1090 {
1091 
1092 	SOCKBUF_LOCK_ASSERT(sb);
1093 	m_freem(sbcut_internal(sb, len));
1094 }
1095 
1096 /*
1097  * Drop data from (the front of) a sockbuf,
1098  * and return it to caller.
1099  */
1100 struct mbuf *
1101 sbcut_locked(struct sockbuf *sb, int len)
1102 {
1103 
1104 	SOCKBUF_LOCK_ASSERT(sb);
1105 	return (sbcut_internal(sb, len));
1106 }
1107 
1108 void
1109 sbdrop(struct sockbuf *sb, int len)
1110 {
1111 	struct mbuf *mfree;
1112 
1113 	SOCKBUF_LOCK(sb);
1114 	mfree = sbcut_internal(sb, len);
1115 	SOCKBUF_UNLOCK(sb);
1116 
1117 	m_freem(mfree);
1118 }
1119 
1120 /*
1121  * Maintain a pointer and offset pair into the socket buffer mbuf chain to
1122  * avoid traversal of the entire socket buffer for larger offsets.
1123  */
1124 struct mbuf *
1125 sbsndptr(struct sockbuf *sb, u_int off, u_int len, u_int *moff)
1126 {
1127 	struct mbuf *m, *ret;
1128 
1129 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1130 	KASSERT(off + len <= sb->sb_acc, ("%s: beyond sb", __func__));
1131 	KASSERT(sb->sb_sndptroff <= sb->sb_acc, ("%s: sndptroff broken", __func__));
1132 
1133 	/*
1134 	 * Is off below stored offset? Happens on retransmits.
1135 	 * Just return, we can't help here.
1136 	 */
1137 	if (sb->sb_sndptroff > off) {
1138 		*moff = off;
1139 		return (sb->sb_mb);
1140 	}
1141 
1142 	/* Return closest mbuf in chain for current offset. */
1143 	*moff = off - sb->sb_sndptroff;
1144 	m = ret = sb->sb_sndptr ? sb->sb_sndptr : sb->sb_mb;
1145 	if (*moff == m->m_len) {
1146 		*moff = 0;
1147 		sb->sb_sndptroff += m->m_len;
1148 		m = ret = m->m_next;
1149 		KASSERT(ret->m_len > 0,
1150 		    ("mbuf %p in sockbuf %p chain has no valid data", ret, sb));
1151 	}
1152 
1153 	/* Advance by len to be as close as possible for the next transmit. */
1154 	for (off = off - sb->sb_sndptroff + len - 1;
1155 	     off > 0 && m != NULL && off >= m->m_len;
1156 	     m = m->m_next) {
1157 		sb->sb_sndptroff += m->m_len;
1158 		off -= m->m_len;
1159 	}
1160 	if (off > 0 && m == NULL)
1161 		panic("%s: sockbuf %p and mbuf %p clashing", __func__, sb, ret);
1162 	sb->sb_sndptr = m;
1163 
1164 	return (ret);
1165 }
1166 
1167 /*
1168  * Return the first mbuf and the mbuf data offset for the provided
1169  * send offset without changing the "sb_sndptroff" field.
1170  */
1171 struct mbuf *
1172 sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff)
1173 {
1174 	struct mbuf *m;
1175 
1176 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1177 
1178 	/*
1179 	 * If the "off" is below the stored offset, which happens on
1180 	 * retransmits, just use "sb_mb":
1181 	 */
1182 	if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1183 		m = sb->sb_mb;
1184 	} else {
1185 		m = sb->sb_sndptr;
1186 		off -= sb->sb_sndptroff;
1187 	}
1188 	while (off > 0 && m != NULL) {
1189 		if (off < m->m_len)
1190 			break;
1191 		off -= m->m_len;
1192 		m = m->m_next;
1193 	}
1194 	*moff = off;
1195 	return (m);
1196 }
1197 
1198 /*
1199  * Drop a record off the front of a sockbuf and move the next record to the
1200  * front.
1201  */
1202 void
1203 sbdroprecord_locked(struct sockbuf *sb)
1204 {
1205 	struct mbuf *m;
1206 
1207 	SOCKBUF_LOCK_ASSERT(sb);
1208 
1209 	m = sb->sb_mb;
1210 	if (m) {
1211 		sb->sb_mb = m->m_nextpkt;
1212 		do {
1213 			sbfree(sb, m);
1214 			m = m_free(m);
1215 		} while (m);
1216 	}
1217 	SB_EMPTY_FIXUP(sb);
1218 }
1219 
1220 /*
1221  * Drop a record off the front of a sockbuf and move the next record to the
1222  * front.
1223  */
1224 void
1225 sbdroprecord(struct sockbuf *sb)
1226 {
1227 
1228 	SOCKBUF_LOCK(sb);
1229 	sbdroprecord_locked(sb);
1230 	SOCKBUF_UNLOCK(sb);
1231 }
1232 
1233 /*
1234  * Create a "control" mbuf containing the specified data with the specified
1235  * type for presentation on a socket buffer.
1236  */
1237 struct mbuf *
1238 sbcreatecontrol(caddr_t p, int size, int type, int level)
1239 {
1240 	struct cmsghdr *cp;
1241 	struct mbuf *m;
1242 
1243 	if (CMSG_SPACE((u_int)size) > MCLBYTES)
1244 		return ((struct mbuf *) NULL);
1245 	if (CMSG_SPACE((u_int)size) > MLEN)
1246 		m = m_getcl(M_NOWAIT, MT_CONTROL, 0);
1247 	else
1248 		m = m_get(M_NOWAIT, MT_CONTROL);
1249 	if (m == NULL)
1250 		return ((struct mbuf *) NULL);
1251 	cp = mtod(m, struct cmsghdr *);
1252 	m->m_len = 0;
1253 	KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
1254 	    ("sbcreatecontrol: short mbuf"));
1255 	/*
1256 	 * Don't leave the padding between the msg header and the
1257 	 * cmsg data and the padding after the cmsg data un-initialized.
1258 	 */
1259 	bzero(cp, CMSG_SPACE((u_int)size));
1260 	if (p != NULL)
1261 		(void)memcpy(CMSG_DATA(cp), p, size);
1262 	m->m_len = CMSG_SPACE(size);
1263 	cp->cmsg_len = CMSG_LEN(size);
1264 	cp->cmsg_level = level;
1265 	cp->cmsg_type = type;
1266 	return (m);
1267 }
1268 
1269 /*
1270  * This does the same for socket buffers that sotoxsocket does for sockets:
1271  * generate an user-format data structure describing the socket buffer.  Note
1272  * that the xsockbuf structure, since it is always embedded in a socket, does
1273  * not include a self pointer nor a length.  We make this entry point public
1274  * in case some other mechanism needs it.
1275  */
1276 void
1277 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1278 {
1279 
1280 	xsb->sb_cc = sb->sb_ccc;
1281 	xsb->sb_hiwat = sb->sb_hiwat;
1282 	xsb->sb_mbcnt = sb->sb_mbcnt;
1283 	xsb->sb_mcnt = sb->sb_mcnt;
1284 	xsb->sb_ccnt = sb->sb_ccnt;
1285 	xsb->sb_mbmax = sb->sb_mbmax;
1286 	xsb->sb_lowat = sb->sb_lowat;
1287 	xsb->sb_flags = sb->sb_flags;
1288 	xsb->sb_timeo = sb->sb_timeo;
1289 }
1290 
1291 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1292 static int dummy;
1293 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
1294 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_ULONG|CTLFLAG_RW,
1295     &sb_max, 0, sysctl_handle_sb_max, "LU", "Maximum socket buffer size");
1296 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1297     &sb_efficiency, 0, "Socket buffer size waste factor");
1298