1 /* 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 34 * $FreeBSD$ 35 */ 36 37 #include "opt_param.h" 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/domain.h> 41 #include <sys/file.h> /* for maxfiles */ 42 #include <sys/kernel.h> 43 #include <sys/proc.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/protosw.h> 47 #include <sys/stat.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/signalvar.h> 51 #include <sys/sysctl.h> 52 53 int maxsockets; 54 55 /* 56 * Primitive routines for operating on sockets and socket buffers 57 */ 58 59 u_long sb_max = SB_MAX; /* XXX should be static */ 60 61 static u_long sb_efficiency = 8; /* parameter for sbreserve() */ 62 63 /* 64 * Procedures to manipulate state flags of socket 65 * and do appropriate wakeups. Normal sequence from the 66 * active (originating) side is that soisconnecting() is 67 * called during processing of connect() call, 68 * resulting in an eventual call to soisconnected() if/when the 69 * connection is established. When the connection is torn down 70 * soisdisconnecting() is called during processing of disconnect() call, 71 * and soisdisconnected() is called when the connection to the peer 72 * is totally severed. The semantics of these routines are such that 73 * connectionless protocols can call soisconnected() and soisdisconnected() 74 * only, bypassing the in-progress calls when setting up a ``connection'' 75 * takes no time. 76 * 77 * From the passive side, a socket is created with 78 * two queues of sockets: so_incomp for connections in progress 79 * and so_comp for connections already made and awaiting user acceptance. 80 * As a protocol is preparing incoming connections, it creates a socket 81 * structure queued on so_incomp by calling sonewconn(). When the connection 82 * is established, soisconnected() is called, and transfers the 83 * socket structure to so_comp, making it available to accept(). 84 * 85 * If a socket is closed with sockets on either 86 * so_incomp or so_comp, these sockets are dropped. 87 * 88 * If higher level protocols are implemented in 89 * the kernel, the wakeups done here will sometimes 90 * cause software-interrupt process scheduling. 91 */ 92 93 void 94 soisconnecting(so) 95 register struct socket *so; 96 { 97 98 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 99 so->so_state |= SS_ISCONNECTING; 100 } 101 102 void 103 soisconnected(so) 104 register struct socket *so; 105 { 106 register struct socket *head = so->so_head; 107 108 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 109 so->so_state |= SS_ISCONNECTED; 110 if (head && (so->so_state & SS_INCOMP)) { 111 TAILQ_REMOVE(&head->so_incomp, so, so_list); 112 head->so_incqlen--; 113 so->so_state &= ~SS_INCOMP; 114 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 115 so->so_state |= SS_COMP; 116 sorwakeup(head); 117 wakeup_one(&head->so_timeo); 118 } else { 119 wakeup(&so->so_timeo); 120 sorwakeup(so); 121 sowwakeup(so); 122 } 123 } 124 125 void 126 soisdisconnecting(so) 127 register struct socket *so; 128 { 129 130 so->so_state &= ~SS_ISCONNECTING; 131 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); 132 wakeup((caddr_t)&so->so_timeo); 133 sowwakeup(so); 134 sorwakeup(so); 135 } 136 137 void 138 soisdisconnected(so) 139 register struct socket *so; 140 { 141 142 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 143 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED); 144 wakeup((caddr_t)&so->so_timeo); 145 sowwakeup(so); 146 sorwakeup(so); 147 } 148 149 /* 150 * Return a random connection that hasn't been serviced yet and 151 * is eligible for discard. There is a one in qlen chance that 152 * we will return a null, saying that there are no dropable 153 * requests. In this case, the protocol specific code should drop 154 * the new request. This insures fairness. 155 * 156 * This may be used in conjunction with protocol specific queue 157 * congestion routines. 158 */ 159 struct socket * 160 sodropablereq(head) 161 register struct socket *head; 162 { 163 register struct socket *so; 164 unsigned int i, j, qlen; 165 static int rnd; 166 static struct timeval old_runtime; 167 static unsigned int cur_cnt, old_cnt; 168 struct timeval tv; 169 170 getmicrouptime(&tv); 171 if ((i = (tv.tv_sec - old_runtime.tv_sec)) != 0) { 172 old_runtime = tv; 173 old_cnt = cur_cnt / i; 174 cur_cnt = 0; 175 } 176 177 so = TAILQ_FIRST(&head->so_incomp); 178 if (!so) 179 return (so); 180 181 qlen = head->so_incqlen; 182 if (++cur_cnt > qlen || old_cnt > qlen) { 183 rnd = (314159 * rnd + 66329) & 0xffff; 184 j = ((qlen + 1) * rnd) >> 16; 185 186 while (j-- && so) 187 so = TAILQ_NEXT(so, so_list); 188 } 189 190 return (so); 191 } 192 193 /* 194 * When an attempt at a new connection is noted on a socket 195 * which accepts connections, sonewconn is called. If the 196 * connection is possible (subject to space constraints, etc.) 197 * then we allocate a new structure, propoerly linked into the 198 * data structure of the original socket, and return this. 199 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. 200 */ 201 struct socket * 202 sonewconn(head, connstatus) 203 register struct socket *head; 204 int connstatus; 205 { 206 register struct socket *so; 207 208 if (head->so_qlen > 3 * head->so_qlimit / 2) 209 return ((struct socket *)0); 210 so = soalloc(0); 211 if (so == NULL) 212 return ((struct socket *)0); 213 so->so_head = head; 214 so->so_type = head->so_type; 215 so->so_options = head->so_options &~ SO_ACCEPTCONN; 216 so->so_linger = head->so_linger; 217 so->so_state = head->so_state | SS_NOFDREF; 218 so->so_proto = head->so_proto; 219 so->so_timeo = head->so_timeo; 220 so->so_cred = head->so_cred; 221 if (so->so_cred) 222 so->so_cred->p_refcnt++; 223 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat); 224 225 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 226 sodealloc(so); 227 return ((struct socket *)0); 228 } 229 230 if (connstatus) { 231 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 232 so->so_state |= SS_COMP; 233 } else { 234 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 235 so->so_state |= SS_INCOMP; 236 head->so_incqlen++; 237 } 238 head->so_qlen++; 239 if (connstatus) { 240 sorwakeup(head); 241 wakeup((caddr_t)&head->so_timeo); 242 so->so_state |= connstatus; 243 } 244 return (so); 245 } 246 247 /* 248 * Socantsendmore indicates that no more data will be sent on the 249 * socket; it would normally be applied to a socket when the user 250 * informs the system that no more data is to be sent, by the protocol 251 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 252 * will be received, and will normally be applied to the socket by a 253 * protocol when it detects that the peer will send no more data. 254 * Data queued for reading in the socket may yet be read. 255 */ 256 257 void 258 socantsendmore(so) 259 struct socket *so; 260 { 261 262 so->so_state |= SS_CANTSENDMORE; 263 sowwakeup(so); 264 } 265 266 void 267 socantrcvmore(so) 268 struct socket *so; 269 { 270 271 so->so_state |= SS_CANTRCVMORE; 272 sorwakeup(so); 273 } 274 275 /* 276 * Wait for data to arrive at/drain from a socket buffer. 277 */ 278 int 279 sbwait(sb) 280 struct sockbuf *sb; 281 { 282 283 sb->sb_flags |= SB_WAIT; 284 return (tsleep((caddr_t)&sb->sb_cc, 285 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", 286 sb->sb_timeo)); 287 } 288 289 /* 290 * Lock a sockbuf already known to be locked; 291 * return any error returned from sleep (EINTR). 292 */ 293 int 294 sb_lock(sb) 295 register struct sockbuf *sb; 296 { 297 int error; 298 299 while (sb->sb_flags & SB_LOCK) { 300 sb->sb_flags |= SB_WANT; 301 error = tsleep((caddr_t)&sb->sb_flags, 302 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH, 303 "sblock", 0); 304 if (error) 305 return (error); 306 } 307 sb->sb_flags |= SB_LOCK; 308 return (0); 309 } 310 311 /* 312 * Wakeup processes waiting on a socket buffer. 313 * Do asynchronous notification via SIGIO 314 * if the socket has the SS_ASYNC flag set. 315 */ 316 void 317 sowakeup(so, sb) 318 register struct socket *so; 319 register struct sockbuf *sb; 320 { 321 selwakeup(&sb->sb_sel); 322 sb->sb_flags &= ~SB_SEL; 323 if (sb->sb_flags & SB_WAIT) { 324 sb->sb_flags &= ~SB_WAIT; 325 wakeup((caddr_t)&sb->sb_cc); 326 } 327 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL) 328 pgsigio(so->so_sigio, SIGIO, 0); 329 if (sb->sb_flags & SB_UPCALL) 330 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT); 331 } 332 333 /* 334 * Socket buffer (struct sockbuf) utility routines. 335 * 336 * Each socket contains two socket buffers: one for sending data and 337 * one for receiving data. Each buffer contains a queue of mbufs, 338 * information about the number of mbufs and amount of data in the 339 * queue, and other fields allowing select() statements and notification 340 * on data availability to be implemented. 341 * 342 * Data stored in a socket buffer is maintained as a list of records. 343 * Each record is a list of mbufs chained together with the m_next 344 * field. Records are chained together with the m_nextpkt field. The upper 345 * level routine soreceive() expects the following conventions to be 346 * observed when placing information in the receive buffer: 347 * 348 * 1. If the protocol requires each message be preceded by the sender's 349 * name, then a record containing that name must be present before 350 * any associated data (mbuf's must be of type MT_SONAME). 351 * 2. If the protocol supports the exchange of ``access rights'' (really 352 * just additional data associated with the message), and there are 353 * ``rights'' to be received, then a record containing this data 354 * should be present (mbuf's must be of type MT_RIGHTS). 355 * 3. If a name or rights record exists, then it must be followed by 356 * a data record, perhaps of zero length. 357 * 358 * Before using a new socket structure it is first necessary to reserve 359 * buffer space to the socket, by calling sbreserve(). This should commit 360 * some of the available buffer space in the system buffer pool for the 361 * socket (currently, it does nothing but enforce limits). The space 362 * should be released by calling sbrelease() when the socket is destroyed. 363 */ 364 365 int 366 soreserve(so, sndcc, rcvcc) 367 register struct socket *so; 368 u_long sndcc, rcvcc; 369 { 370 371 if (sbreserve(&so->so_snd, sndcc) == 0) 372 goto bad; 373 if (sbreserve(&so->so_rcv, rcvcc) == 0) 374 goto bad2; 375 if (so->so_rcv.sb_lowat == 0) 376 so->so_rcv.sb_lowat = 1; 377 if (so->so_snd.sb_lowat == 0) 378 so->so_snd.sb_lowat = MCLBYTES; 379 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 380 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 381 return (0); 382 bad2: 383 sbrelease(&so->so_snd); 384 bad: 385 return (ENOBUFS); 386 } 387 388 /* 389 * Allot mbufs to a sockbuf. 390 * Attempt to scale mbmax so that mbcnt doesn't become limiting 391 * if buffering efficiency is near the normal case. 392 */ 393 int 394 sbreserve(sb, cc) 395 struct sockbuf *sb; 396 u_long cc; 397 { 398 if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES)) 399 return (0); 400 sb->sb_hiwat = cc; 401 sb->sb_mbmax = min(cc * sb_efficiency, sb_max); 402 if (sb->sb_lowat > sb->sb_hiwat) 403 sb->sb_lowat = sb->sb_hiwat; 404 return (1); 405 } 406 407 /* 408 * Free mbufs held by a socket, and reserved mbuf space. 409 */ 410 void 411 sbrelease(sb) 412 struct sockbuf *sb; 413 { 414 415 sbflush(sb); 416 sb->sb_hiwat = sb->sb_mbmax = 0; 417 } 418 419 /* 420 * Routines to add and remove 421 * data from an mbuf queue. 422 * 423 * The routines sbappend() or sbappendrecord() are normally called to 424 * append new mbufs to a socket buffer, after checking that adequate 425 * space is available, comparing the function sbspace() with the amount 426 * of data to be added. sbappendrecord() differs from sbappend() in 427 * that data supplied is treated as the beginning of a new record. 428 * To place a sender's address, optional access rights, and data in a 429 * socket receive buffer, sbappendaddr() should be used. To place 430 * access rights and data in a socket receive buffer, sbappendrights() 431 * should be used. In either case, the new data begins a new record. 432 * Note that unlike sbappend() and sbappendrecord(), these routines check 433 * for the caller that there will be enough space to store the data. 434 * Each fails if there is not enough space, or if it cannot find mbufs 435 * to store additional information in. 436 * 437 * Reliable protocols may use the socket send buffer to hold data 438 * awaiting acknowledgement. Data is normally copied from a socket 439 * send buffer in a protocol with m_copy for output to a peer, 440 * and then removing the data from the socket buffer with sbdrop() 441 * or sbdroprecord() when the data is acknowledged by the peer. 442 */ 443 444 /* 445 * Append mbuf chain m to the last record in the 446 * socket buffer sb. The additional space associated 447 * the mbuf chain is recorded in sb. Empty mbufs are 448 * discarded and mbufs are compacted where possible. 449 */ 450 void 451 sbappend(sb, m) 452 struct sockbuf *sb; 453 struct mbuf *m; 454 { 455 register struct mbuf *n; 456 457 if (m == 0) 458 return; 459 n = sb->sb_mb; 460 if (n) { 461 while (n->m_nextpkt) 462 n = n->m_nextpkt; 463 do { 464 if (n->m_flags & M_EOR) { 465 sbappendrecord(sb, m); /* XXXXXX!!!! */ 466 return; 467 } 468 } while (n->m_next && (n = n->m_next)); 469 } 470 sbcompress(sb, m, n); 471 } 472 473 #ifdef SOCKBUF_DEBUG 474 void 475 sbcheck(sb) 476 register struct sockbuf *sb; 477 { 478 register struct mbuf *m; 479 register struct mbuf *n = 0; 480 register u_long len = 0, mbcnt = 0; 481 482 for (m = sb->sb_mb; m; m = n) { 483 n = m->m_nextpkt; 484 for (; m; m = m->m_next) { 485 len += m->m_len; 486 mbcnt += MSIZE; 487 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ 488 mbcnt += m->m_ext.ext_size; 489 } 490 } 491 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 492 printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc, 493 mbcnt, sb->sb_mbcnt); 494 panic("sbcheck"); 495 } 496 } 497 #endif 498 499 /* 500 * As above, except the mbuf chain 501 * begins a new record. 502 */ 503 void 504 sbappendrecord(sb, m0) 505 register struct sockbuf *sb; 506 register struct mbuf *m0; 507 { 508 register struct mbuf *m; 509 510 if (m0 == 0) 511 return; 512 m = sb->sb_mb; 513 if (m) 514 while (m->m_nextpkt) 515 m = m->m_nextpkt; 516 /* 517 * Put the first mbuf on the queue. 518 * Note this permits zero length records. 519 */ 520 sballoc(sb, m0); 521 if (m) 522 m->m_nextpkt = m0; 523 else 524 sb->sb_mb = m0; 525 m = m0->m_next; 526 m0->m_next = 0; 527 if (m && (m0->m_flags & M_EOR)) { 528 m0->m_flags &= ~M_EOR; 529 m->m_flags |= M_EOR; 530 } 531 sbcompress(sb, m, m0); 532 } 533 534 /* 535 * As above except that OOB data 536 * is inserted at the beginning of the sockbuf, 537 * but after any other OOB data. 538 */ 539 void 540 sbinsertoob(sb, m0) 541 register struct sockbuf *sb; 542 register struct mbuf *m0; 543 { 544 register struct mbuf *m; 545 register struct mbuf **mp; 546 547 if (m0 == 0) 548 return; 549 for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) { 550 m = *mp; 551 again: 552 switch (m->m_type) { 553 554 case MT_OOBDATA: 555 continue; /* WANT next train */ 556 557 case MT_CONTROL: 558 m = m->m_next; 559 if (m) 560 goto again; /* inspect THIS train further */ 561 } 562 break; 563 } 564 /* 565 * Put the first mbuf on the queue. 566 * Note this permits zero length records. 567 */ 568 sballoc(sb, m0); 569 m0->m_nextpkt = *mp; 570 *mp = m0; 571 m = m0->m_next; 572 m0->m_next = 0; 573 if (m && (m0->m_flags & M_EOR)) { 574 m0->m_flags &= ~M_EOR; 575 m->m_flags |= M_EOR; 576 } 577 sbcompress(sb, m, m0); 578 } 579 580 /* 581 * Append address and data, and optionally, control (ancillary) data 582 * to the receive queue of a socket. If present, 583 * m0 must include a packet header with total length. 584 * Returns 0 if no space in sockbuf or insufficient mbufs. 585 */ 586 int 587 sbappendaddr(sb, asa, m0, control) 588 register struct sockbuf *sb; 589 struct sockaddr *asa; 590 struct mbuf *m0, *control; 591 { 592 register struct mbuf *m, *n; 593 int space = asa->sa_len; 594 595 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 596 panic("sbappendaddr"); 597 if (m0) 598 space += m0->m_pkthdr.len; 599 for (n = control; n; n = n->m_next) { 600 space += n->m_len; 601 if (n->m_next == 0) /* keep pointer to last control buf */ 602 break; 603 } 604 if (space > sbspace(sb)) 605 return (0); 606 if (asa->sa_len > MLEN) 607 return (0); 608 MGET(m, M_DONTWAIT, MT_SONAME); 609 if (m == 0) 610 return (0); 611 m->m_len = asa->sa_len; 612 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len); 613 if (n) 614 n->m_next = m0; /* concatenate data to control */ 615 else 616 control = m0; 617 m->m_next = control; 618 for (n = m; n; n = n->m_next) 619 sballoc(sb, n); 620 n = sb->sb_mb; 621 if (n) { 622 while (n->m_nextpkt) 623 n = n->m_nextpkt; 624 n->m_nextpkt = m; 625 } else 626 sb->sb_mb = m; 627 return (1); 628 } 629 630 int 631 sbappendcontrol(sb, m0, control) 632 struct sockbuf *sb; 633 struct mbuf *control, *m0; 634 { 635 register struct mbuf *m, *n; 636 int space = 0; 637 638 if (control == 0) 639 panic("sbappendcontrol"); 640 for (m = control; ; m = m->m_next) { 641 space += m->m_len; 642 if (m->m_next == 0) 643 break; 644 } 645 n = m; /* save pointer to last control buffer */ 646 for (m = m0; m; m = m->m_next) 647 space += m->m_len; 648 if (space > sbspace(sb)) 649 return (0); 650 n->m_next = m0; /* concatenate data to control */ 651 for (m = control; m; m = m->m_next) 652 sballoc(sb, m); 653 n = sb->sb_mb; 654 if (n) { 655 while (n->m_nextpkt) 656 n = n->m_nextpkt; 657 n->m_nextpkt = control; 658 } else 659 sb->sb_mb = control; 660 return (1); 661 } 662 663 /* 664 * Compress mbuf chain m into the socket 665 * buffer sb following mbuf n. If n 666 * is null, the buffer is presumed empty. 667 */ 668 void 669 sbcompress(sb, m, n) 670 register struct sockbuf *sb; 671 register struct mbuf *m, *n; 672 { 673 register int eor = 0; 674 register struct mbuf *o; 675 676 while (m) { 677 eor |= m->m_flags & M_EOR; 678 if (m->m_len == 0 && 679 (eor == 0 || 680 (((o = m->m_next) || (o = n)) && 681 o->m_type == m->m_type))) { 682 m = m_free(m); 683 continue; 684 } 685 if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 && 686 (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] && 687 n->m_type == m->m_type) { 688 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, 689 (unsigned)m->m_len); 690 n->m_len += m->m_len; 691 sb->sb_cc += m->m_len; 692 m = m_free(m); 693 continue; 694 } 695 if (n) 696 n->m_next = m; 697 else 698 sb->sb_mb = m; 699 sballoc(sb, m); 700 n = m; 701 m->m_flags &= ~M_EOR; 702 m = m->m_next; 703 n->m_next = 0; 704 } 705 if (eor) { 706 if (n) 707 n->m_flags |= eor; 708 else 709 printf("semi-panic: sbcompress\n"); 710 } 711 } 712 713 /* 714 * Free all mbufs in a sockbuf. 715 * Check that all resources are reclaimed. 716 */ 717 void 718 sbflush(sb) 719 register struct sockbuf *sb; 720 { 721 722 if (sb->sb_flags & SB_LOCK) 723 panic("sbflush: locked"); 724 while (sb->sb_mbcnt && sb->sb_cc) 725 sbdrop(sb, (int)sb->sb_cc); 726 if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt) 727 panic("sbflush: cc %ld || mb %p || mbcnt %ld", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt); 728 } 729 730 /* 731 * Drop data from (the front of) a sockbuf. 732 */ 733 void 734 sbdrop(sb, len) 735 register struct sockbuf *sb; 736 register int len; 737 { 738 register struct mbuf *m, *mn; 739 struct mbuf *next; 740 741 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 742 while (len > 0) { 743 if (m == 0) { 744 if (next == 0) 745 panic("sbdrop"); 746 m = next; 747 next = m->m_nextpkt; 748 continue; 749 } 750 if (m->m_len > len) { 751 m->m_len -= len; 752 m->m_data += len; 753 sb->sb_cc -= len; 754 break; 755 } 756 len -= m->m_len; 757 sbfree(sb, m); 758 MFREE(m, mn); 759 m = mn; 760 } 761 while (m && m->m_len == 0) { 762 sbfree(sb, m); 763 MFREE(m, mn); 764 m = mn; 765 } 766 if (m) { 767 sb->sb_mb = m; 768 m->m_nextpkt = next; 769 } else 770 sb->sb_mb = next; 771 } 772 773 /* 774 * Drop a record off the front of a sockbuf 775 * and move the next record to the front. 776 */ 777 void 778 sbdroprecord(sb) 779 register struct sockbuf *sb; 780 { 781 register struct mbuf *m, *mn; 782 783 m = sb->sb_mb; 784 if (m) { 785 sb->sb_mb = m->m_nextpkt; 786 do { 787 sbfree(sb, m); 788 MFREE(m, mn); 789 m = mn; 790 } while (m); 791 } 792 } 793 794 /* 795 * Create a "control" mbuf containing the specified data 796 * with the specified type for presentation on a socket buffer. 797 */ 798 struct mbuf * 799 sbcreatecontrol(p, size, type, level) 800 caddr_t p; 801 register int size; 802 int type, level; 803 { 804 register struct cmsghdr *cp; 805 struct mbuf *m; 806 807 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) 808 return ((struct mbuf *) NULL); 809 cp = mtod(m, struct cmsghdr *); 810 /* XXX check size? */ 811 (void)memcpy(CMSG_DATA(cp), p, size); 812 size += sizeof(*cp); 813 m->m_len = size; 814 cp->cmsg_len = size; 815 cp->cmsg_level = level; 816 cp->cmsg_type = type; 817 return (m); 818 } 819 820 /* 821 * Some routines that return EOPNOTSUPP for entry points that are not 822 * supported by a protocol. Fill in as needed. 823 */ 824 int 825 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 826 { 827 return EOPNOTSUPP; 828 } 829 830 int 831 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p) 832 { 833 return EOPNOTSUPP; 834 } 835 836 int 837 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 838 { 839 return EOPNOTSUPP; 840 } 841 842 int 843 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 844 struct ifnet *ifp, struct proc *p) 845 { 846 return EOPNOTSUPP; 847 } 848 849 int 850 pru_listen_notsupp(struct socket *so, struct proc *p) 851 { 852 return EOPNOTSUPP; 853 } 854 855 int 856 pru_rcvd_notsupp(struct socket *so, int flags) 857 { 858 return EOPNOTSUPP; 859 } 860 861 int 862 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 863 { 864 return EOPNOTSUPP; 865 } 866 867 /* 868 * This isn't really a ``null'' operation, but it's the default one 869 * and doesn't do anything destructive. 870 */ 871 int 872 pru_sense_null(struct socket *so, struct stat *sb) 873 { 874 sb->st_blksize = so->so_snd.sb_hiwat; 875 return 0; 876 } 877 878 /* 879 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 880 */ 881 struct sockaddr * 882 dup_sockaddr(sa, canwait) 883 struct sockaddr *sa; 884 int canwait; 885 { 886 struct sockaddr *sa2; 887 888 MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME, 889 canwait ? M_WAITOK : M_NOWAIT); 890 if (sa2) 891 bcopy(sa, sa2, sa->sa_len); 892 return sa2; 893 } 894 895 /* 896 * Create an external-format (``xsocket'') structure using the information 897 * in the kernel-format socket structure pointed to by so. This is done 898 * to reduce the spew of irrelevant information over this interface, 899 * to isolate user code from changes in the kernel structure, and 900 * potentially to provide information-hiding if we decide that 901 * some of this information should be hidden from users. 902 */ 903 void 904 sotoxsocket(struct socket *so, struct xsocket *xso) 905 { 906 xso->xso_len = sizeof *xso; 907 xso->xso_so = so; 908 xso->so_type = so->so_type; 909 xso->so_options = so->so_options; 910 xso->so_linger = so->so_linger; 911 xso->so_state = so->so_state; 912 xso->so_pcb = so->so_pcb; 913 xso->xso_protocol = so->so_proto->pr_protocol; 914 xso->xso_family = so->so_proto->pr_domain->dom_family; 915 xso->so_qlen = so->so_qlen; 916 xso->so_incqlen = so->so_incqlen; 917 xso->so_qlimit = so->so_qlimit; 918 xso->so_timeo = so->so_timeo; 919 xso->so_error = so->so_error; 920 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 921 xso->so_oobmark = so->so_oobmark; 922 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 923 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 924 xso->so_uid = so->so_cred ? so->so_cred->pc_ucred->cr_uid : -1; 925 } 926 927 /* 928 * This does the same for sockbufs. Note that the xsockbuf structure, 929 * since it is always embedded in a socket, does not include a self 930 * pointer nor a length. We make this entry point public in case 931 * some other mechanism needs it. 932 */ 933 void 934 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb) 935 { 936 xsb->sb_cc = sb->sb_cc; 937 xsb->sb_hiwat = sb->sb_hiwat; 938 xsb->sb_mbcnt = sb->sb_mbcnt; 939 xsb->sb_mbmax = sb->sb_mbmax; 940 xsb->sb_lowat = sb->sb_lowat; 941 xsb->sb_flags = sb->sb_flags; 942 xsb->sb_timeo = sb->sb_timeo; 943 } 944 945 /* 946 * Here is the definition of some of the basic objects in the kern.ipc 947 * branch of the MIB. 948 */ 949 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 950 951 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */ 952 static int dummy; 953 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, ""); 954 955 SYSCTL_INT(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW, 956 &sb_max, 0, "Maximum socket buffer size"); 957 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD, 958 &maxsockets, 0, "Maximum number of sockets avaliable"); 959 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW, 960 &sb_efficiency, 0, ""); 961 962 /* 963 * Initialise maxsockets 964 */ 965 static void init_maxsockets(void *ignored) 966 { 967 TUNABLE_INT_FETCH("kern.ipc.maxsockets", 0, maxsockets); 968 maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters)); 969 } 970 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 971