1 /* 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 34 * $FreeBSD$ 35 */ 36 37 #include "opt_param.h" 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/domain.h> 41 #include <sys/file.h> /* for maxfiles */ 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/proc.h> 48 #include <sys/protosw.h> 49 #include <sys/resourcevar.h> 50 #include <sys/stat.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/signalvar.h> 54 #include <sys/sysctl.h> 55 #include <sys/aio.h> /* for aio_swake proto */ 56 #include <sys/event.h> 57 58 int maxsockets; 59 60 /* 61 * Primitive routines for operating on sockets and socket buffers 62 */ 63 64 u_long sb_max = SB_MAX; /* XXX should be static */ 65 66 static u_long sb_efficiency = 8; /* parameter for sbreserve() */ 67 68 /* 69 * Procedures to manipulate state flags of socket 70 * and do appropriate wakeups. Normal sequence from the 71 * active (originating) side is that soisconnecting() is 72 * called during processing of connect() call, 73 * resulting in an eventual call to soisconnected() if/when the 74 * connection is established. When the connection is torn down 75 * soisdisconnecting() is called during processing of disconnect() call, 76 * and soisdisconnected() is called when the connection to the peer 77 * is totally severed. The semantics of these routines are such that 78 * connectionless protocols can call soisconnected() and soisdisconnected() 79 * only, bypassing the in-progress calls when setting up a ``connection'' 80 * takes no time. 81 * 82 * From the passive side, a socket is created with 83 * two queues of sockets: so_incomp for connections in progress 84 * and so_comp for connections already made and awaiting user acceptance. 85 * As a protocol is preparing incoming connections, it creates a socket 86 * structure queued on so_incomp by calling sonewconn(). When the connection 87 * is established, soisconnected() is called, and transfers the 88 * socket structure to so_comp, making it available to accept(). 89 * 90 * If a socket is closed with sockets on either 91 * so_incomp or so_comp, these sockets are dropped. 92 * 93 * If higher level protocols are implemented in 94 * the kernel, the wakeups done here will sometimes 95 * cause software-interrupt process scheduling. 96 */ 97 98 void 99 soisconnecting(so) 100 register struct socket *so; 101 { 102 103 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 104 so->so_state |= SS_ISCONNECTING; 105 } 106 107 void 108 soisconnected(so) 109 struct socket *so; 110 { 111 struct socket *head = so->so_head; 112 113 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 114 so->so_state |= SS_ISCONNECTED; 115 if (head && (so->so_state & SS_INCOMP)) { 116 if ((so->so_options & SO_ACCEPTFILTER) != 0) { 117 so->so_upcall = head->so_accf->so_accept_filter->accf_callback; 118 so->so_upcallarg = head->so_accf->so_accept_filter_arg; 119 so->so_rcv.sb_flags |= SB_UPCALL; 120 so->so_options &= ~SO_ACCEPTFILTER; 121 so->so_upcall(so, so->so_upcallarg, 0); 122 return; 123 } 124 TAILQ_REMOVE(&head->so_incomp, so, so_list); 125 head->so_incqlen--; 126 so->so_state &= ~SS_INCOMP; 127 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 128 so->so_state |= SS_COMP; 129 sorwakeup(head); 130 wakeup_one(&head->so_timeo); 131 } else { 132 wakeup(&so->so_timeo); 133 sorwakeup(so); 134 sowwakeup(so); 135 } 136 } 137 138 void 139 soisdisconnecting(so) 140 register struct socket *so; 141 { 142 143 so->so_state &= ~SS_ISCONNECTING; 144 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); 145 wakeup((caddr_t)&so->so_timeo); 146 sowwakeup(so); 147 sorwakeup(so); 148 } 149 150 void 151 soisdisconnected(so) 152 register struct socket *so; 153 { 154 155 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 156 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED); 157 wakeup((caddr_t)&so->so_timeo); 158 sowwakeup(so); 159 sorwakeup(so); 160 } 161 162 /* 163 * Return a random connection that hasn't been serviced yet and 164 * is eligible for discard. There is a one in qlen chance that 165 * we will return a null, saying that there are no dropable 166 * requests. In this case, the protocol specific code should drop 167 * the new request. This insures fairness. 168 * 169 * This may be used in conjunction with protocol specific queue 170 * congestion routines. 171 */ 172 struct socket * 173 sodropablereq(head) 174 register struct socket *head; 175 { 176 register struct socket *so; 177 unsigned int i, j, qlen; 178 static int rnd; 179 static struct timeval old_runtime; 180 static unsigned int cur_cnt, old_cnt; 181 struct timeval tv; 182 183 getmicrouptime(&tv); 184 if ((i = (tv.tv_sec - old_runtime.tv_sec)) != 0) { 185 old_runtime = tv; 186 old_cnt = cur_cnt / i; 187 cur_cnt = 0; 188 } 189 190 so = TAILQ_FIRST(&head->so_incomp); 191 if (!so) 192 return (so); 193 194 qlen = head->so_incqlen; 195 if (++cur_cnt > qlen || old_cnt > qlen) { 196 rnd = (314159 * rnd + 66329) & 0xffff; 197 j = ((qlen + 1) * rnd) >> 16; 198 199 while (j-- && so) 200 so = TAILQ_NEXT(so, so_list); 201 } 202 203 return (so); 204 } 205 206 /* 207 * When an attempt at a new connection is noted on a socket 208 * which accepts connections, sonewconn is called. If the 209 * connection is possible (subject to space constraints, etc.) 210 * then we allocate a new structure, propoerly linked into the 211 * data structure of the original socket, and return this. 212 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. 213 * 214 * note: the ref count on the socket is 0 on return 215 */ 216 struct socket * 217 sonewconn(head, connstatus) 218 register struct socket *head; 219 int connstatus; 220 { 221 register struct socket *so; 222 223 if (head->so_qlen > 3 * head->so_qlimit / 2) 224 return ((struct socket *)0); 225 so = soalloc(0); 226 if (so == NULL) 227 return ((struct socket *)0); 228 so->so_head = head; 229 so->so_type = head->so_type; 230 so->so_options = head->so_options &~ SO_ACCEPTCONN; 231 so->so_linger = head->so_linger; 232 so->so_state = head->so_state | SS_NOFDREF; 233 so->so_proto = head->so_proto; 234 so->so_timeo = head->so_timeo; 235 so->so_cred = crhold(head->so_cred); 236 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) || 237 (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 238 sotryfree(so); 239 return ((struct socket *)0); 240 } 241 242 if (connstatus) { 243 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 244 so->so_state |= SS_COMP; 245 } else { 246 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 247 so->so_state |= SS_INCOMP; 248 head->so_incqlen++; 249 } 250 head->so_qlen++; 251 if (connstatus) { 252 sorwakeup(head); 253 wakeup((caddr_t)&head->so_timeo); 254 so->so_state |= connstatus; 255 } 256 return (so); 257 } 258 259 /* 260 * Socantsendmore indicates that no more data will be sent on the 261 * socket; it would normally be applied to a socket when the user 262 * informs the system that no more data is to be sent, by the protocol 263 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 264 * will be received, and will normally be applied to the socket by a 265 * protocol when it detects that the peer will send no more data. 266 * Data queued for reading in the socket may yet be read. 267 */ 268 269 void 270 socantsendmore(so) 271 struct socket *so; 272 { 273 274 so->so_state |= SS_CANTSENDMORE; 275 sowwakeup(so); 276 } 277 278 void 279 socantrcvmore(so) 280 struct socket *so; 281 { 282 283 so->so_state |= SS_CANTRCVMORE; 284 sorwakeup(so); 285 } 286 287 /* 288 * Wait for data to arrive at/drain from a socket buffer. 289 */ 290 int 291 sbwait(sb) 292 struct sockbuf *sb; 293 { 294 295 sb->sb_flags |= SB_WAIT; 296 return (tsleep((caddr_t)&sb->sb_cc, 297 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", 298 sb->sb_timeo)); 299 } 300 301 /* 302 * Lock a sockbuf already known to be locked; 303 * return any error returned from sleep (EINTR). 304 */ 305 int 306 sb_lock(sb) 307 register struct sockbuf *sb; 308 { 309 int error; 310 311 while (sb->sb_flags & SB_LOCK) { 312 sb->sb_flags |= SB_WANT; 313 error = tsleep((caddr_t)&sb->sb_flags, 314 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH, 315 "sblock", 0); 316 if (error) 317 return (error); 318 } 319 sb->sb_flags |= SB_LOCK; 320 return (0); 321 } 322 323 /* 324 * Wakeup processes waiting on a socket buffer. 325 * Do asynchronous notification via SIGIO 326 * if the socket has the SS_ASYNC flag set. 327 */ 328 void 329 sowakeup(so, sb) 330 register struct socket *so; 331 register struct sockbuf *sb; 332 { 333 selwakeup(&sb->sb_sel); 334 sb->sb_flags &= ~SB_SEL; 335 if (sb->sb_flags & SB_WAIT) { 336 sb->sb_flags &= ~SB_WAIT; 337 wakeup((caddr_t)&sb->sb_cc); 338 } 339 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL) 340 pgsigio(so->so_sigio, SIGIO, 0); 341 if (sb->sb_flags & SB_UPCALL) 342 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT); 343 if (sb->sb_flags & SB_AIO) 344 aio_swake(so, sb); 345 KNOTE(&sb->sb_sel.si_note, 0); 346 } 347 348 /* 349 * Socket buffer (struct sockbuf) utility routines. 350 * 351 * Each socket contains two socket buffers: one for sending data and 352 * one for receiving data. Each buffer contains a queue of mbufs, 353 * information about the number of mbufs and amount of data in the 354 * queue, and other fields allowing select() statements and notification 355 * on data availability to be implemented. 356 * 357 * Data stored in a socket buffer is maintained as a list of records. 358 * Each record is a list of mbufs chained together with the m_next 359 * field. Records are chained together with the m_nextpkt field. The upper 360 * level routine soreceive() expects the following conventions to be 361 * observed when placing information in the receive buffer: 362 * 363 * 1. If the protocol requires each message be preceded by the sender's 364 * name, then a record containing that name must be present before 365 * any associated data (mbuf's must be of type MT_SONAME). 366 * 2. If the protocol supports the exchange of ``access rights'' (really 367 * just additional data associated with the message), and there are 368 * ``rights'' to be received, then a record containing this data 369 * should be present (mbuf's must be of type MT_RIGHTS). 370 * 3. If a name or rights record exists, then it must be followed by 371 * a data record, perhaps of zero length. 372 * 373 * Before using a new socket structure it is first necessary to reserve 374 * buffer space to the socket, by calling sbreserve(). This should commit 375 * some of the available buffer space in the system buffer pool for the 376 * socket (currently, it does nothing but enforce limits). The space 377 * should be released by calling sbrelease() when the socket is destroyed. 378 */ 379 380 int 381 soreserve(so, sndcc, rcvcc) 382 register struct socket *so; 383 u_long sndcc, rcvcc; 384 { 385 struct thread *td = curthread; 386 387 if (sbreserve(&so->so_snd, sndcc, so, td) == 0) 388 goto bad; 389 if (sbreserve(&so->so_rcv, rcvcc, so, td) == 0) 390 goto bad2; 391 if (so->so_rcv.sb_lowat == 0) 392 so->so_rcv.sb_lowat = 1; 393 if (so->so_snd.sb_lowat == 0) 394 so->so_snd.sb_lowat = MCLBYTES; 395 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 396 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 397 return (0); 398 bad2: 399 sbrelease(&so->so_snd, so); 400 bad: 401 return (ENOBUFS); 402 } 403 404 /* 405 * Allot mbufs to a sockbuf. 406 * Attempt to scale mbmax so that mbcnt doesn't become limiting 407 * if buffering efficiency is near the normal case. 408 */ 409 int 410 sbreserve(sb, cc, so, td) 411 struct sockbuf *sb; 412 u_long cc; 413 struct socket *so; 414 struct thread *td; 415 { 416 417 /* 418 * td will only be NULL when we're in an interrupt 419 * (e.g. in tcp_input()) 420 */ 421 if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES)) 422 return (0); 423 if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc, 424 td ? td->td_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur : RLIM_INFINITY)) { 425 return (0); 426 } 427 sb->sb_mbmax = min(cc * sb_efficiency, sb_max); 428 if (sb->sb_lowat > sb->sb_hiwat) 429 sb->sb_lowat = sb->sb_hiwat; 430 return (1); 431 } 432 433 /* 434 * Free mbufs held by a socket, and reserved mbuf space. 435 */ 436 void 437 sbrelease(sb, so) 438 struct sockbuf *sb; 439 struct socket *so; 440 { 441 442 sbflush(sb); 443 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0, 444 RLIM_INFINITY); 445 sb->sb_mbmax = 0; 446 } 447 448 /* 449 * Routines to add and remove 450 * data from an mbuf queue. 451 * 452 * The routines sbappend() or sbappendrecord() are normally called to 453 * append new mbufs to a socket buffer, after checking that adequate 454 * space is available, comparing the function sbspace() with the amount 455 * of data to be added. sbappendrecord() differs from sbappend() in 456 * that data supplied is treated as the beginning of a new record. 457 * To place a sender's address, optional access rights, and data in a 458 * socket receive buffer, sbappendaddr() should be used. To place 459 * access rights and data in a socket receive buffer, sbappendrights() 460 * should be used. In either case, the new data begins a new record. 461 * Note that unlike sbappend() and sbappendrecord(), these routines check 462 * for the caller that there will be enough space to store the data. 463 * Each fails if there is not enough space, or if it cannot find mbufs 464 * to store additional information in. 465 * 466 * Reliable protocols may use the socket send buffer to hold data 467 * awaiting acknowledgement. Data is normally copied from a socket 468 * send buffer in a protocol with m_copy for output to a peer, 469 * and then removing the data from the socket buffer with sbdrop() 470 * or sbdroprecord() when the data is acknowledged by the peer. 471 */ 472 473 /* 474 * Append mbuf chain m to the last record in the 475 * socket buffer sb. The additional space associated 476 * the mbuf chain is recorded in sb. Empty mbufs are 477 * discarded and mbufs are compacted where possible. 478 */ 479 void 480 sbappend(sb, m) 481 struct sockbuf *sb; 482 struct mbuf *m; 483 { 484 register struct mbuf *n; 485 486 if (m == 0) 487 return; 488 n = sb->sb_mb; 489 if (n) { 490 while (n->m_nextpkt) 491 n = n->m_nextpkt; 492 do { 493 if (n->m_flags & M_EOR) { 494 sbappendrecord(sb, m); /* XXXXXX!!!! */ 495 return; 496 } 497 } while (n->m_next && (n = n->m_next)); 498 } 499 sbcompress(sb, m, n); 500 } 501 502 #ifdef SOCKBUF_DEBUG 503 void 504 sbcheck(sb) 505 register struct sockbuf *sb; 506 { 507 register struct mbuf *m; 508 register struct mbuf *n = 0; 509 register u_long len = 0, mbcnt = 0; 510 511 for (m = sb->sb_mb; m; m = n) { 512 n = m->m_nextpkt; 513 for (; m; m = m->m_next) { 514 len += m->m_len; 515 mbcnt += MSIZE; 516 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ 517 mbcnt += m->m_ext.ext_size; 518 } 519 } 520 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 521 printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc, 522 mbcnt, sb->sb_mbcnt); 523 panic("sbcheck"); 524 } 525 } 526 #endif 527 528 /* 529 * As above, except the mbuf chain 530 * begins a new record. 531 */ 532 void 533 sbappendrecord(sb, m0) 534 register struct sockbuf *sb; 535 register struct mbuf *m0; 536 { 537 register struct mbuf *m; 538 539 if (m0 == 0) 540 return; 541 m = sb->sb_mb; 542 if (m) 543 while (m->m_nextpkt) 544 m = m->m_nextpkt; 545 /* 546 * Put the first mbuf on the queue. 547 * Note this permits zero length records. 548 */ 549 sballoc(sb, m0); 550 if (m) 551 m->m_nextpkt = m0; 552 else 553 sb->sb_mb = m0; 554 m = m0->m_next; 555 m0->m_next = 0; 556 if (m && (m0->m_flags & M_EOR)) { 557 m0->m_flags &= ~M_EOR; 558 m->m_flags |= M_EOR; 559 } 560 sbcompress(sb, m, m0); 561 } 562 563 /* 564 * As above except that OOB data 565 * is inserted at the beginning of the sockbuf, 566 * but after any other OOB data. 567 */ 568 void 569 sbinsertoob(sb, m0) 570 register struct sockbuf *sb; 571 register struct mbuf *m0; 572 { 573 register struct mbuf *m; 574 register struct mbuf **mp; 575 576 if (m0 == 0) 577 return; 578 for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) { 579 m = *mp; 580 again: 581 switch (m->m_type) { 582 583 case MT_OOBDATA: 584 continue; /* WANT next train */ 585 586 case MT_CONTROL: 587 m = m->m_next; 588 if (m) 589 goto again; /* inspect THIS train further */ 590 } 591 break; 592 } 593 /* 594 * Put the first mbuf on the queue. 595 * Note this permits zero length records. 596 */ 597 sballoc(sb, m0); 598 m0->m_nextpkt = *mp; 599 *mp = m0; 600 m = m0->m_next; 601 m0->m_next = 0; 602 if (m && (m0->m_flags & M_EOR)) { 603 m0->m_flags &= ~M_EOR; 604 m->m_flags |= M_EOR; 605 } 606 sbcompress(sb, m, m0); 607 } 608 609 /* 610 * Append address and data, and optionally, control (ancillary) data 611 * to the receive queue of a socket. If present, 612 * m0 must include a packet header with total length. 613 * Returns 0 if no space in sockbuf or insufficient mbufs. 614 */ 615 int 616 sbappendaddr(sb, asa, m0, control) 617 register struct sockbuf *sb; 618 struct sockaddr *asa; 619 struct mbuf *m0, *control; 620 { 621 register struct mbuf *m, *n; 622 int space = asa->sa_len; 623 624 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 625 panic("sbappendaddr"); 626 if (m0) 627 space += m0->m_pkthdr.len; 628 for (n = control; n; n = n->m_next) { 629 space += n->m_len; 630 if (n->m_next == 0) /* keep pointer to last control buf */ 631 break; 632 } 633 if (space > sbspace(sb)) 634 return (0); 635 if (asa->sa_len > MLEN) 636 return (0); 637 MGET(m, M_DONTWAIT, MT_SONAME); 638 if (m == 0) 639 return (0); 640 m->m_len = asa->sa_len; 641 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len); 642 if (n) 643 n->m_next = m0; /* concatenate data to control */ 644 else 645 control = m0; 646 m->m_next = control; 647 for (n = m; n; n = n->m_next) 648 sballoc(sb, n); 649 n = sb->sb_mb; 650 if (n) { 651 while (n->m_nextpkt) 652 n = n->m_nextpkt; 653 n->m_nextpkt = m; 654 } else 655 sb->sb_mb = m; 656 return (1); 657 } 658 659 int 660 sbappendcontrol(sb, m0, control) 661 struct sockbuf *sb; 662 struct mbuf *control, *m0; 663 { 664 register struct mbuf *m, *n; 665 int space = 0; 666 667 if (control == 0) 668 panic("sbappendcontrol"); 669 for (m = control; ; m = m->m_next) { 670 space += m->m_len; 671 if (m->m_next == 0) 672 break; 673 } 674 n = m; /* save pointer to last control buffer */ 675 for (m = m0; m; m = m->m_next) 676 space += m->m_len; 677 if (space > sbspace(sb)) 678 return (0); 679 n->m_next = m0; /* concatenate data to control */ 680 for (m = control; m; m = m->m_next) 681 sballoc(sb, m); 682 n = sb->sb_mb; 683 if (n) { 684 while (n->m_nextpkt) 685 n = n->m_nextpkt; 686 n->m_nextpkt = control; 687 } else 688 sb->sb_mb = control; 689 return (1); 690 } 691 692 /* 693 * Compress mbuf chain m into the socket 694 * buffer sb following mbuf n. If n 695 * is null, the buffer is presumed empty. 696 */ 697 void 698 sbcompress(sb, m, n) 699 register struct sockbuf *sb; 700 register struct mbuf *m, *n; 701 { 702 register int eor = 0; 703 register struct mbuf *o; 704 705 while (m) { 706 eor |= m->m_flags & M_EOR; 707 if (m->m_len == 0 && 708 (eor == 0 || 709 (((o = m->m_next) || (o = n)) && 710 o->m_type == m->m_type))) { 711 m = m_free(m); 712 continue; 713 } 714 if (n && (n->m_flags & M_EOR) == 0 && 715 M_WRITABLE(n) && 716 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ 717 m->m_len <= M_TRAILINGSPACE(n) && 718 n->m_type == m->m_type) { 719 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, 720 (unsigned)m->m_len); 721 n->m_len += m->m_len; 722 sb->sb_cc += m->m_len; 723 m = m_free(m); 724 continue; 725 } 726 if (n) 727 n->m_next = m; 728 else 729 sb->sb_mb = m; 730 sballoc(sb, m); 731 n = m; 732 m->m_flags &= ~M_EOR; 733 m = m->m_next; 734 n->m_next = 0; 735 } 736 if (eor) { 737 if (n) 738 n->m_flags |= eor; 739 else 740 printf("semi-panic: sbcompress\n"); 741 } 742 } 743 744 /* 745 * Free all mbufs in a sockbuf. 746 * Check that all resources are reclaimed. 747 */ 748 void 749 sbflush(sb) 750 register struct sockbuf *sb; 751 { 752 753 if (sb->sb_flags & SB_LOCK) 754 panic("sbflush: locked"); 755 while (sb->sb_mbcnt) { 756 /* 757 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty: 758 * we would loop forever. Panic instead. 759 */ 760 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len)) 761 break; 762 sbdrop(sb, (int)sb->sb_cc); 763 } 764 if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt) 765 panic("sbflush: cc %ld || mb %p || mbcnt %ld", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt); 766 } 767 768 /* 769 * Drop data from (the front of) a sockbuf. 770 */ 771 void 772 sbdrop(sb, len) 773 register struct sockbuf *sb; 774 register int len; 775 { 776 register struct mbuf *m, *mn; 777 struct mbuf *next; 778 779 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 780 while (len > 0) { 781 if (m == 0) { 782 if (next == 0) 783 panic("sbdrop"); 784 m = next; 785 next = m->m_nextpkt; 786 continue; 787 } 788 if (m->m_len > len) { 789 m->m_len -= len; 790 m->m_data += len; 791 sb->sb_cc -= len; 792 break; 793 } 794 len -= m->m_len; 795 sbfree(sb, m); 796 MFREE(m, mn); 797 m = mn; 798 } 799 while (m && m->m_len == 0) { 800 sbfree(sb, m); 801 MFREE(m, mn); 802 m = mn; 803 } 804 if (m) { 805 sb->sb_mb = m; 806 m->m_nextpkt = next; 807 } else 808 sb->sb_mb = next; 809 } 810 811 /* 812 * Drop a record off the front of a sockbuf 813 * and move the next record to the front. 814 */ 815 void 816 sbdroprecord(sb) 817 register struct sockbuf *sb; 818 { 819 register struct mbuf *m, *mn; 820 821 m = sb->sb_mb; 822 if (m) { 823 sb->sb_mb = m->m_nextpkt; 824 do { 825 sbfree(sb, m); 826 MFREE(m, mn); 827 m = mn; 828 } while (m); 829 } 830 } 831 832 /* 833 * Create a "control" mbuf containing the specified data 834 * with the specified type for presentation on a socket buffer. 835 */ 836 struct mbuf * 837 sbcreatecontrol(p, size, type, level) 838 caddr_t p; 839 register int size; 840 int type, level; 841 { 842 register struct cmsghdr *cp; 843 struct mbuf *m; 844 845 if (CMSG_SPACE((u_int)size) > MCLBYTES) 846 return ((struct mbuf *) NULL); 847 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) 848 return ((struct mbuf *) NULL); 849 if (CMSG_SPACE((u_int)size) > MLEN) { 850 MCLGET(m, M_DONTWAIT); 851 if ((m->m_flags & M_EXT) == 0) { 852 m_free(m); 853 return ((struct mbuf *) NULL); 854 } 855 } 856 cp = mtod(m, struct cmsghdr *); 857 m->m_len = 0; 858 KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m), 859 ("sbcreatecontrol: short mbuf")); 860 if (p != NULL) 861 (void)memcpy(CMSG_DATA(cp), p, size); 862 m->m_len = CMSG_SPACE(size); 863 cp->cmsg_len = CMSG_LEN(size); 864 cp->cmsg_level = level; 865 cp->cmsg_type = type; 866 return (m); 867 } 868 869 /* 870 * Some routines that return EOPNOTSUPP for entry points that are not 871 * supported by a protocol. Fill in as needed. 872 */ 873 int 874 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 875 { 876 return EOPNOTSUPP; 877 } 878 879 int 880 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 881 { 882 return EOPNOTSUPP; 883 } 884 885 int 886 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 887 { 888 return EOPNOTSUPP; 889 } 890 891 int 892 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 893 struct ifnet *ifp, struct thread *td) 894 { 895 return EOPNOTSUPP; 896 } 897 898 int 899 pru_listen_notsupp(struct socket *so, struct thread *td) 900 { 901 return EOPNOTSUPP; 902 } 903 904 int 905 pru_rcvd_notsupp(struct socket *so, int flags) 906 { 907 return EOPNOTSUPP; 908 } 909 910 int 911 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 912 { 913 return EOPNOTSUPP; 914 } 915 916 /* 917 * This isn't really a ``null'' operation, but it's the default one 918 * and doesn't do anything destructive. 919 */ 920 int 921 pru_sense_null(struct socket *so, struct stat *sb) 922 { 923 sb->st_blksize = so->so_snd.sb_hiwat; 924 return 0; 925 } 926 927 /* 928 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 929 */ 930 struct sockaddr * 931 dup_sockaddr(sa, canwait) 932 struct sockaddr *sa; 933 int canwait; 934 { 935 struct sockaddr *sa2; 936 937 MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME, 938 canwait ? M_WAITOK : M_NOWAIT); 939 if (sa2) 940 bcopy(sa, sa2, sa->sa_len); 941 return sa2; 942 } 943 944 /* 945 * Create an external-format (``xsocket'') structure using the information 946 * in the kernel-format socket structure pointed to by so. This is done 947 * to reduce the spew of irrelevant information over this interface, 948 * to isolate user code from changes in the kernel structure, and 949 * potentially to provide information-hiding if we decide that 950 * some of this information should be hidden from users. 951 */ 952 void 953 sotoxsocket(struct socket *so, struct xsocket *xso) 954 { 955 xso->xso_len = sizeof *xso; 956 xso->xso_so = so; 957 xso->so_type = so->so_type; 958 xso->so_options = so->so_options; 959 xso->so_linger = so->so_linger; 960 xso->so_state = so->so_state; 961 xso->so_pcb = so->so_pcb; 962 xso->xso_protocol = so->so_proto->pr_protocol; 963 xso->xso_family = so->so_proto->pr_domain->dom_family; 964 xso->so_qlen = so->so_qlen; 965 xso->so_incqlen = so->so_incqlen; 966 xso->so_qlimit = so->so_qlimit; 967 xso->so_timeo = so->so_timeo; 968 xso->so_error = so->so_error; 969 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 970 xso->so_oobmark = so->so_oobmark; 971 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 972 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 973 xso->so_uid = so->so_cred->cr_uid; 974 } 975 976 /* 977 * This does the same for sockbufs. Note that the xsockbuf structure, 978 * since it is always embedded in a socket, does not include a self 979 * pointer nor a length. We make this entry point public in case 980 * some other mechanism needs it. 981 */ 982 void 983 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb) 984 { 985 xsb->sb_cc = sb->sb_cc; 986 xsb->sb_hiwat = sb->sb_hiwat; 987 xsb->sb_mbcnt = sb->sb_mbcnt; 988 xsb->sb_mbmax = sb->sb_mbmax; 989 xsb->sb_lowat = sb->sb_lowat; 990 xsb->sb_flags = sb->sb_flags; 991 xsb->sb_timeo = sb->sb_timeo; 992 } 993 994 /* 995 * Here is the definition of some of the basic objects in the kern.ipc 996 * branch of the MIB. 997 */ 998 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 999 1000 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */ 1001 static int dummy; 1002 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, ""); 1003 1004 SYSCTL_INT(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW, 1005 &sb_max, 0, "Maximum socket buffer size"); 1006 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD, 1007 &maxsockets, 0, "Maximum number of sockets avaliable"); 1008 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW, 1009 &sb_efficiency, 0, ""); 1010 1011 /* 1012 * Initialise maxsockets 1013 */ 1014 static void init_maxsockets(void *ignored) 1015 { 1016 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 1017 maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters)); 1018 } 1019 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 1020