xref: /freebsd/sys/kern/uipc_sockbuf.c (revision 8fa113e5fc65fe6abc757f0089f477a87ee4d185)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD$
35  */
36 
37 #include "opt_param.h"
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/domain.h>
41 #include <sys/file.h>	/* for maxfiles */
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/mutex.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/proc.h>
48 #include <sys/protosw.h>
49 #include <sys/resourcevar.h>
50 #include <sys/stat.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/signalvar.h>
54 #include <sys/sysctl.h>
55 #include <sys/aio.h> /* for aio_swake proto */
56 #include <sys/event.h>
57 
58 int	maxsockets;
59 
60 /*
61  * Primitive routines for operating on sockets and socket buffers
62  */
63 
64 u_long	sb_max = SB_MAX;		/* XXX should be static */
65 
66 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
67 
68 /*
69  * Procedures to manipulate state flags of socket
70  * and do appropriate wakeups.  Normal sequence from the
71  * active (originating) side is that soisconnecting() is
72  * called during processing of connect() call,
73  * resulting in an eventual call to soisconnected() if/when the
74  * connection is established.  When the connection is torn down
75  * soisdisconnecting() is called during processing of disconnect() call,
76  * and soisdisconnected() is called when the connection to the peer
77  * is totally severed.  The semantics of these routines are such that
78  * connectionless protocols can call soisconnected() and soisdisconnected()
79  * only, bypassing the in-progress calls when setting up a ``connection''
80  * takes no time.
81  *
82  * From the passive side, a socket is created with
83  * two queues of sockets: so_incomp for connections in progress
84  * and so_comp for connections already made and awaiting user acceptance.
85  * As a protocol is preparing incoming connections, it creates a socket
86  * structure queued on so_incomp by calling sonewconn().  When the connection
87  * is established, soisconnected() is called, and transfers the
88  * socket structure to so_comp, making it available to accept().
89  *
90  * If a socket is closed with sockets on either
91  * so_incomp or so_comp, these sockets are dropped.
92  *
93  * If higher level protocols are implemented in
94  * the kernel, the wakeups done here will sometimes
95  * cause software-interrupt process scheduling.
96  */
97 
98 void
99 soisconnecting(so)
100 	register struct socket *so;
101 {
102 
103 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
104 	so->so_state |= SS_ISCONNECTING;
105 }
106 
107 void
108 soisconnected(so)
109 	struct socket *so;
110 {
111 	struct socket *head = so->so_head;
112 
113 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
114 	so->so_state |= SS_ISCONNECTED;
115 	if (head && (so->so_state & SS_INCOMP)) {
116 		if ((so->so_options & SO_ACCEPTFILTER) != 0) {
117 			so->so_upcall = head->so_accf->so_accept_filter->accf_callback;
118 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
119 			so->so_rcv.sb_flags |= SB_UPCALL;
120 			so->so_options &= ~SO_ACCEPTFILTER;
121 			so->so_upcall(so, so->so_upcallarg, 0);
122 			return;
123 		}
124 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
125 		head->so_incqlen--;
126 		so->so_state &= ~SS_INCOMP;
127 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
128 		so->so_state |= SS_COMP;
129 		sorwakeup(head);
130 		wakeup_one(&head->so_timeo);
131 	} else {
132 		wakeup(&so->so_timeo);
133 		sorwakeup(so);
134 		sowwakeup(so);
135 	}
136 }
137 
138 void
139 soisdisconnecting(so)
140 	register struct socket *so;
141 {
142 
143 	so->so_state &= ~SS_ISCONNECTING;
144 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
145 	wakeup((caddr_t)&so->so_timeo);
146 	sowwakeup(so);
147 	sorwakeup(so);
148 }
149 
150 void
151 soisdisconnected(so)
152 	register struct socket *so;
153 {
154 
155 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
156 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
157 	wakeup((caddr_t)&so->so_timeo);
158 	sowwakeup(so);
159 	sorwakeup(so);
160 }
161 
162 /*
163  * Return a random connection that hasn't been serviced yet and
164  * is eligible for discard.  There is a one in qlen chance that
165  * we will return a null, saying that there are no dropable
166  * requests.  In this case, the protocol specific code should drop
167  * the new request.  This insures fairness.
168  *
169  * This may be used in conjunction with protocol specific queue
170  * congestion routines.
171  */
172 struct socket *
173 sodropablereq(head)
174 	register struct socket *head;
175 {
176 	register struct socket *so;
177 	unsigned int i, j, qlen;
178 	static int rnd;
179 	static struct timeval old_runtime;
180 	static unsigned int cur_cnt, old_cnt;
181 	struct timeval tv;
182 
183 	getmicrouptime(&tv);
184 	if ((i = (tv.tv_sec - old_runtime.tv_sec)) != 0) {
185 		old_runtime = tv;
186 		old_cnt = cur_cnt / i;
187 		cur_cnt = 0;
188 	}
189 
190 	so = TAILQ_FIRST(&head->so_incomp);
191 	if (!so)
192 		return (so);
193 
194 	qlen = head->so_incqlen;
195 	if (++cur_cnt > qlen || old_cnt > qlen) {
196 		rnd = (314159 * rnd + 66329) & 0xffff;
197 		j = ((qlen + 1) * rnd) >> 16;
198 
199 		while (j-- && so)
200 		    so = TAILQ_NEXT(so, so_list);
201 	}
202 
203 	return (so);
204 }
205 
206 /*
207  * When an attempt at a new connection is noted on a socket
208  * which accepts connections, sonewconn is called.  If the
209  * connection is possible (subject to space constraints, etc.)
210  * then we allocate a new structure, propoerly linked into the
211  * data structure of the original socket, and return this.
212  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
213  *
214  * note: the ref count on the socket is 0 on return
215  */
216 struct socket *
217 sonewconn(head, connstatus)
218 	register struct socket *head;
219 	int connstatus;
220 {
221 
222 	return (sonewconn3(head, connstatus, NULL));
223 }
224 
225 struct socket *
226 sonewconn3(head, connstatus, td)
227 	register struct socket *head;
228 	int connstatus;
229 	struct thread *td;
230 {
231 	register struct socket *so;
232 
233 	if (head->so_qlen > 3 * head->so_qlimit / 2)
234 		return ((struct socket *)0);
235 	so = soalloc(0);
236 	if (so == NULL)
237 		return ((struct socket *)0);
238 	so->so_head = head;
239 	so->so_type = head->so_type;
240 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
241 	so->so_linger = head->so_linger;
242 	so->so_state = head->so_state | SS_NOFDREF;
243 	so->so_proto = head->so_proto;
244 	so->so_timeo = head->so_timeo;
245 	if (td != NULL)
246 		so->so_cred = crhold(td->td_proc->p_ucred);
247 	else
248 		so->so_cred = crhold(head->so_cred);
249 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
250 	    (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
251 		sotryfree(so);
252 		return ((struct socket *)0);
253 	}
254 
255 	if (connstatus) {
256 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
257 		so->so_state |= SS_COMP;
258 	} else {
259 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
260 		so->so_state |= SS_INCOMP;
261 		head->so_incqlen++;
262 	}
263 	head->so_qlen++;
264 	if (connstatus) {
265 		sorwakeup(head);
266 		wakeup((caddr_t)&head->so_timeo);
267 		so->so_state |= connstatus;
268 	}
269 	return (so);
270 }
271 
272 /*
273  * Socantsendmore indicates that no more data will be sent on the
274  * socket; it would normally be applied to a socket when the user
275  * informs the system that no more data is to be sent, by the protocol
276  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
277  * will be received, and will normally be applied to the socket by a
278  * protocol when it detects that the peer will send no more data.
279  * Data queued for reading in the socket may yet be read.
280  */
281 
282 void
283 socantsendmore(so)
284 	struct socket *so;
285 {
286 
287 	so->so_state |= SS_CANTSENDMORE;
288 	sowwakeup(so);
289 }
290 
291 void
292 socantrcvmore(so)
293 	struct socket *so;
294 {
295 
296 	so->so_state |= SS_CANTRCVMORE;
297 	sorwakeup(so);
298 }
299 
300 /*
301  * Wait for data to arrive at/drain from a socket buffer.
302  */
303 int
304 sbwait(sb)
305 	struct sockbuf *sb;
306 {
307 
308 	sb->sb_flags |= SB_WAIT;
309 	return (tsleep((caddr_t)&sb->sb_cc,
310 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
311 	    sb->sb_timeo));
312 }
313 
314 /*
315  * Lock a sockbuf already known to be locked;
316  * return any error returned from sleep (EINTR).
317  */
318 int
319 sb_lock(sb)
320 	register struct sockbuf *sb;
321 {
322 	int error;
323 
324 	while (sb->sb_flags & SB_LOCK) {
325 		sb->sb_flags |= SB_WANT;
326 		error = tsleep((caddr_t)&sb->sb_flags,
327 		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
328 		    "sblock", 0);
329 		if (error)
330 			return (error);
331 	}
332 	sb->sb_flags |= SB_LOCK;
333 	return (0);
334 }
335 
336 /*
337  * Wakeup processes waiting on a socket buffer.
338  * Do asynchronous notification via SIGIO
339  * if the socket has the SS_ASYNC flag set.
340  */
341 void
342 sowakeup(so, sb)
343 	register struct socket *so;
344 	register struct sockbuf *sb;
345 {
346 	selwakeup(&sb->sb_sel);
347 	sb->sb_flags &= ~SB_SEL;
348 	if (sb->sb_flags & SB_WAIT) {
349 		sb->sb_flags &= ~SB_WAIT;
350 		wakeup((caddr_t)&sb->sb_cc);
351 	}
352 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
353 		pgsigio(so->so_sigio, SIGIO, 0);
354 	if (sb->sb_flags & SB_UPCALL)
355 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
356 	if (sb->sb_flags & SB_AIO)
357 		aio_swake(so, sb);
358 	KNOTE(&sb->sb_sel.si_note, 0);
359 }
360 
361 /*
362  * Socket buffer (struct sockbuf) utility routines.
363  *
364  * Each socket contains two socket buffers: one for sending data and
365  * one for receiving data.  Each buffer contains a queue of mbufs,
366  * information about the number of mbufs and amount of data in the
367  * queue, and other fields allowing select() statements and notification
368  * on data availability to be implemented.
369  *
370  * Data stored in a socket buffer is maintained as a list of records.
371  * Each record is a list of mbufs chained together with the m_next
372  * field.  Records are chained together with the m_nextpkt field. The upper
373  * level routine soreceive() expects the following conventions to be
374  * observed when placing information in the receive buffer:
375  *
376  * 1. If the protocol requires each message be preceded by the sender's
377  *    name, then a record containing that name must be present before
378  *    any associated data (mbuf's must be of type MT_SONAME).
379  * 2. If the protocol supports the exchange of ``access rights'' (really
380  *    just additional data associated with the message), and there are
381  *    ``rights'' to be received, then a record containing this data
382  *    should be present (mbuf's must be of type MT_RIGHTS).
383  * 3. If a name or rights record exists, then it must be followed by
384  *    a data record, perhaps of zero length.
385  *
386  * Before using a new socket structure it is first necessary to reserve
387  * buffer space to the socket, by calling sbreserve().  This should commit
388  * some of the available buffer space in the system buffer pool for the
389  * socket (currently, it does nothing but enforce limits).  The space
390  * should be released by calling sbrelease() when the socket is destroyed.
391  */
392 
393 int
394 soreserve(so, sndcc, rcvcc)
395 	register struct socket *so;
396 	u_long sndcc, rcvcc;
397 {
398 	struct thread *td = curthread;
399 
400 	if (sbreserve(&so->so_snd, sndcc, so, td) == 0)
401 		goto bad;
402 	if (sbreserve(&so->so_rcv, rcvcc, so, td) == 0)
403 		goto bad2;
404 	if (so->so_rcv.sb_lowat == 0)
405 		so->so_rcv.sb_lowat = 1;
406 	if (so->so_snd.sb_lowat == 0)
407 		so->so_snd.sb_lowat = MCLBYTES;
408 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
409 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
410 	return (0);
411 bad2:
412 	sbrelease(&so->so_snd, so);
413 bad:
414 	return (ENOBUFS);
415 }
416 
417 /*
418  * Allot mbufs to a sockbuf.
419  * Attempt to scale mbmax so that mbcnt doesn't become limiting
420  * if buffering efficiency is near the normal case.
421  */
422 int
423 sbreserve(sb, cc, so, td)
424 	struct sockbuf *sb;
425 	u_long cc;
426 	struct socket *so;
427 	struct thread *td;
428 {
429 
430 	/*
431 	 * td will only be NULL when we're in an interrupt
432 	 * (e.g. in tcp_input())
433 	 */
434 	if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES))
435 		return (0);
436 	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
437 	    td ? td->td_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur : RLIM_INFINITY)) {
438 		return (0);
439 	}
440 	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
441 	if (sb->sb_lowat > sb->sb_hiwat)
442 		sb->sb_lowat = sb->sb_hiwat;
443 	return (1);
444 }
445 
446 /*
447  * Free mbufs held by a socket, and reserved mbuf space.
448  */
449 void
450 sbrelease(sb, so)
451 	struct sockbuf *sb;
452 	struct socket *so;
453 {
454 
455 	sbflush(sb);
456 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
457 	    RLIM_INFINITY);
458 	sb->sb_mbmax = 0;
459 }
460 
461 /*
462  * Routines to add and remove
463  * data from an mbuf queue.
464  *
465  * The routines sbappend() or sbappendrecord() are normally called to
466  * append new mbufs to a socket buffer, after checking that adequate
467  * space is available, comparing the function sbspace() with the amount
468  * of data to be added.  sbappendrecord() differs from sbappend() in
469  * that data supplied is treated as the beginning of a new record.
470  * To place a sender's address, optional access rights, and data in a
471  * socket receive buffer, sbappendaddr() should be used.  To place
472  * access rights and data in a socket receive buffer, sbappendrights()
473  * should be used.  In either case, the new data begins a new record.
474  * Note that unlike sbappend() and sbappendrecord(), these routines check
475  * for the caller that there will be enough space to store the data.
476  * Each fails if there is not enough space, or if it cannot find mbufs
477  * to store additional information in.
478  *
479  * Reliable protocols may use the socket send buffer to hold data
480  * awaiting acknowledgement.  Data is normally copied from a socket
481  * send buffer in a protocol with m_copy for output to a peer,
482  * and then removing the data from the socket buffer with sbdrop()
483  * or sbdroprecord() when the data is acknowledged by the peer.
484  */
485 
486 /*
487  * Append mbuf chain m to the last record in the
488  * socket buffer sb.  The additional space associated
489  * the mbuf chain is recorded in sb.  Empty mbufs are
490  * discarded and mbufs are compacted where possible.
491  */
492 void
493 sbappend(sb, m)
494 	struct sockbuf *sb;
495 	struct mbuf *m;
496 {
497 	register struct mbuf *n;
498 
499 	if (m == 0)
500 		return;
501 	n = sb->sb_mb;
502 	if (n) {
503 		while (n->m_nextpkt)
504 			n = n->m_nextpkt;
505 		do {
506 			if (n->m_flags & M_EOR) {
507 				sbappendrecord(sb, m); /* XXXXXX!!!! */
508 				return;
509 			}
510 		} while (n->m_next && (n = n->m_next));
511 	}
512 	sbcompress(sb, m, n);
513 }
514 
515 #ifdef SOCKBUF_DEBUG
516 void
517 sbcheck(sb)
518 	register struct sockbuf *sb;
519 {
520 	register struct mbuf *m;
521 	register struct mbuf *n = 0;
522 	register u_long len = 0, mbcnt = 0;
523 
524 	for (m = sb->sb_mb; m; m = n) {
525 	    n = m->m_nextpkt;
526 	    for (; m; m = m->m_next) {
527 		len += m->m_len;
528 		mbcnt += MSIZE;
529 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
530 			mbcnt += m->m_ext.ext_size;
531 	    }
532 	}
533 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
534 		printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
535 		    mbcnt, sb->sb_mbcnt);
536 		panic("sbcheck");
537 	}
538 }
539 #endif
540 
541 /*
542  * As above, except the mbuf chain
543  * begins a new record.
544  */
545 void
546 sbappendrecord(sb, m0)
547 	register struct sockbuf *sb;
548 	register struct mbuf *m0;
549 {
550 	register struct mbuf *m;
551 
552 	if (m0 == 0)
553 		return;
554 	m = sb->sb_mb;
555 	if (m)
556 		while (m->m_nextpkt)
557 			m = m->m_nextpkt;
558 	/*
559 	 * Put the first mbuf on the queue.
560 	 * Note this permits zero length records.
561 	 */
562 	sballoc(sb, m0);
563 	if (m)
564 		m->m_nextpkt = m0;
565 	else
566 		sb->sb_mb = m0;
567 	m = m0->m_next;
568 	m0->m_next = 0;
569 	if (m && (m0->m_flags & M_EOR)) {
570 		m0->m_flags &= ~M_EOR;
571 		m->m_flags |= M_EOR;
572 	}
573 	sbcompress(sb, m, m0);
574 }
575 
576 /*
577  * As above except that OOB data
578  * is inserted at the beginning of the sockbuf,
579  * but after any other OOB data.
580  */
581 void
582 sbinsertoob(sb, m0)
583 	register struct sockbuf *sb;
584 	register struct mbuf *m0;
585 {
586 	register struct mbuf *m;
587 	register struct mbuf **mp;
588 
589 	if (m0 == 0)
590 		return;
591 	for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
592 	    m = *mp;
593 	    again:
594 		switch (m->m_type) {
595 
596 		case MT_OOBDATA:
597 			continue;		/* WANT next train */
598 
599 		case MT_CONTROL:
600 			m = m->m_next;
601 			if (m)
602 				goto again;	/* inspect THIS train further */
603 		}
604 		break;
605 	}
606 	/*
607 	 * Put the first mbuf on the queue.
608 	 * Note this permits zero length records.
609 	 */
610 	sballoc(sb, m0);
611 	m0->m_nextpkt = *mp;
612 	*mp = m0;
613 	m = m0->m_next;
614 	m0->m_next = 0;
615 	if (m && (m0->m_flags & M_EOR)) {
616 		m0->m_flags &= ~M_EOR;
617 		m->m_flags |= M_EOR;
618 	}
619 	sbcompress(sb, m, m0);
620 }
621 
622 /*
623  * Append address and data, and optionally, control (ancillary) data
624  * to the receive queue of a socket.  If present,
625  * m0 must include a packet header with total length.
626  * Returns 0 if no space in sockbuf or insufficient mbufs.
627  */
628 int
629 sbappendaddr(sb, asa, m0, control)
630 	register struct sockbuf *sb;
631 	struct sockaddr *asa;
632 	struct mbuf *m0, *control;
633 {
634 	register struct mbuf *m, *n;
635 	int space = asa->sa_len;
636 
637 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
638 		panic("sbappendaddr");
639 	if (m0)
640 		space += m0->m_pkthdr.len;
641 	for (n = control; n; n = n->m_next) {
642 		space += n->m_len;
643 		if (n->m_next == 0)	/* keep pointer to last control buf */
644 			break;
645 	}
646 	if (space > sbspace(sb))
647 		return (0);
648 	if (asa->sa_len > MLEN)
649 		return (0);
650 	MGET(m, M_DONTWAIT, MT_SONAME);
651 	if (m == 0)
652 		return (0);
653 	m->m_len = asa->sa_len;
654 	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
655 	if (n)
656 		n->m_next = m0;		/* concatenate data to control */
657 	else
658 		control = m0;
659 	m->m_next = control;
660 	for (n = m; n; n = n->m_next)
661 		sballoc(sb, n);
662 	n = sb->sb_mb;
663 	if (n) {
664 		while (n->m_nextpkt)
665 			n = n->m_nextpkt;
666 		n->m_nextpkt = m;
667 	} else
668 		sb->sb_mb = m;
669 	return (1);
670 }
671 
672 int
673 sbappendcontrol(sb, m0, control)
674 	struct sockbuf *sb;
675 	struct mbuf *control, *m0;
676 {
677 	register struct mbuf *m, *n;
678 	int space = 0;
679 
680 	if (control == 0)
681 		panic("sbappendcontrol");
682 	for (m = control; ; m = m->m_next) {
683 		space += m->m_len;
684 		if (m->m_next == 0)
685 			break;
686 	}
687 	n = m;			/* save pointer to last control buffer */
688 	for (m = m0; m; m = m->m_next)
689 		space += m->m_len;
690 	if (space > sbspace(sb))
691 		return (0);
692 	n->m_next = m0;			/* concatenate data to control */
693 	for (m = control; m; m = m->m_next)
694 		sballoc(sb, m);
695 	n = sb->sb_mb;
696 	if (n) {
697 		while (n->m_nextpkt)
698 			n = n->m_nextpkt;
699 		n->m_nextpkt = control;
700 	} else
701 		sb->sb_mb = control;
702 	return (1);
703 }
704 
705 /*
706  * Compress mbuf chain m into the socket
707  * buffer sb following mbuf n.  If n
708  * is null, the buffer is presumed empty.
709  */
710 void
711 sbcompress(sb, m, n)
712 	register struct sockbuf *sb;
713 	register struct mbuf *m, *n;
714 {
715 	register int eor = 0;
716 	register struct mbuf *o;
717 
718 	while (m) {
719 		eor |= m->m_flags & M_EOR;
720 		if (m->m_len == 0 &&
721 		    (eor == 0 ||
722 		     (((o = m->m_next) || (o = n)) &&
723 		      o->m_type == m->m_type))) {
724 			m = m_free(m);
725 			continue;
726 		}
727 		if (n && (n->m_flags & M_EOR) == 0 &&
728 		    M_WRITABLE(n) &&
729 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
730 		    m->m_len <= M_TRAILINGSPACE(n) &&
731 		    n->m_type == m->m_type) {
732 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
733 			    (unsigned)m->m_len);
734 			n->m_len += m->m_len;
735 			sb->sb_cc += m->m_len;
736 			m = m_free(m);
737 			continue;
738 		}
739 		if (n)
740 			n->m_next = m;
741 		else
742 			sb->sb_mb = m;
743 		sballoc(sb, m);
744 		n = m;
745 		m->m_flags &= ~M_EOR;
746 		m = m->m_next;
747 		n->m_next = 0;
748 	}
749 	if (eor) {
750 		if (n)
751 			n->m_flags |= eor;
752 		else
753 			printf("semi-panic: sbcompress\n");
754 	}
755 }
756 
757 /*
758  * Free all mbufs in a sockbuf.
759  * Check that all resources are reclaimed.
760  */
761 void
762 sbflush(sb)
763 	register struct sockbuf *sb;
764 {
765 
766 	if (sb->sb_flags & SB_LOCK)
767 		panic("sbflush: locked");
768 	while (sb->sb_mbcnt) {
769 		/*
770 		 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
771 		 * we would loop forever. Panic instead.
772 		 */
773 		if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
774 			break;
775 		sbdrop(sb, (int)sb->sb_cc);
776 	}
777 	if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt)
778 		panic("sbflush: cc %ld || mb %p || mbcnt %ld", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt);
779 }
780 
781 /*
782  * Drop data from (the front of) a sockbuf.
783  */
784 void
785 sbdrop(sb, len)
786 	register struct sockbuf *sb;
787 	register int len;
788 {
789 	register struct mbuf *m, *mn;
790 	struct mbuf *next;
791 
792 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
793 	while (len > 0) {
794 		if (m == 0) {
795 			if (next == 0)
796 				panic("sbdrop");
797 			m = next;
798 			next = m->m_nextpkt;
799 			continue;
800 		}
801 		if (m->m_len > len) {
802 			m->m_len -= len;
803 			m->m_data += len;
804 			sb->sb_cc -= len;
805 			break;
806 		}
807 		len -= m->m_len;
808 		sbfree(sb, m);
809 		MFREE(m, mn);
810 		m = mn;
811 	}
812 	while (m && m->m_len == 0) {
813 		sbfree(sb, m);
814 		MFREE(m, mn);
815 		m = mn;
816 	}
817 	if (m) {
818 		sb->sb_mb = m;
819 		m->m_nextpkt = next;
820 	} else
821 		sb->sb_mb = next;
822 }
823 
824 /*
825  * Drop a record off the front of a sockbuf
826  * and move the next record to the front.
827  */
828 void
829 sbdroprecord(sb)
830 	register struct sockbuf *sb;
831 {
832 	register struct mbuf *m, *mn;
833 
834 	m = sb->sb_mb;
835 	if (m) {
836 		sb->sb_mb = m->m_nextpkt;
837 		do {
838 			sbfree(sb, m);
839 			MFREE(m, mn);
840 			m = mn;
841 		} while (m);
842 	}
843 }
844 
845 /*
846  * Create a "control" mbuf containing the specified data
847  * with the specified type for presentation on a socket buffer.
848  */
849 struct mbuf *
850 sbcreatecontrol(p, size, type, level)
851 	caddr_t p;
852 	register int size;
853 	int type, level;
854 {
855 	register struct cmsghdr *cp;
856 	struct mbuf *m;
857 
858 	if (CMSG_SPACE((u_int)size) > MCLBYTES)
859 		return ((struct mbuf *) NULL);
860 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
861 		return ((struct mbuf *) NULL);
862 	if (CMSG_SPACE((u_int)size) > MLEN) {
863 		MCLGET(m, M_DONTWAIT);
864 		if ((m->m_flags & M_EXT) == 0) {
865 			m_free(m);
866 			return ((struct mbuf *) NULL);
867 		}
868 	}
869 	cp = mtod(m, struct cmsghdr *);
870 	m->m_len = 0;
871 	KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
872 	    ("sbcreatecontrol: short mbuf"));
873 	if (p != NULL)
874 		(void)memcpy(CMSG_DATA(cp), p, size);
875 	m->m_len = CMSG_SPACE(size);
876 	cp->cmsg_len = CMSG_LEN(size);
877 	cp->cmsg_level = level;
878 	cp->cmsg_type = type;
879 	return (m);
880 }
881 
882 /*
883  * Some routines that return EOPNOTSUPP for entry points that are not
884  * supported by a protocol.  Fill in as needed.
885  */
886 int
887 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
888 {
889 	return EOPNOTSUPP;
890 }
891 
892 int
893 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
894 {
895 	return EOPNOTSUPP;
896 }
897 
898 int
899 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
900 {
901 	return EOPNOTSUPP;
902 }
903 
904 int
905 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
906 		    struct ifnet *ifp, struct thread *td)
907 {
908 	return EOPNOTSUPP;
909 }
910 
911 int
912 pru_listen_notsupp(struct socket *so, struct thread *td)
913 {
914 	return EOPNOTSUPP;
915 }
916 
917 int
918 pru_rcvd_notsupp(struct socket *so, int flags)
919 {
920 	return EOPNOTSUPP;
921 }
922 
923 int
924 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
925 {
926 	return EOPNOTSUPP;
927 }
928 
929 /*
930  * This isn't really a ``null'' operation, but it's the default one
931  * and doesn't do anything destructive.
932  */
933 int
934 pru_sense_null(struct socket *so, struct stat *sb)
935 {
936 	sb->st_blksize = so->so_snd.sb_hiwat;
937 	return 0;
938 }
939 
940 /*
941  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
942  */
943 struct sockaddr *
944 dup_sockaddr(sa, canwait)
945 	struct sockaddr *sa;
946 	int canwait;
947 {
948 	struct sockaddr *sa2;
949 
950 	MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
951 	       canwait ? M_WAITOK : M_NOWAIT);
952 	if (sa2)
953 		bcopy(sa, sa2, sa->sa_len);
954 	return sa2;
955 }
956 
957 /*
958  * Create an external-format (``xsocket'') structure using the information
959  * in the kernel-format socket structure pointed to by so.  This is done
960  * to reduce the spew of irrelevant information over this interface,
961  * to isolate user code from changes in the kernel structure, and
962  * potentially to provide information-hiding if we decide that
963  * some of this information should be hidden from users.
964  */
965 void
966 sotoxsocket(struct socket *so, struct xsocket *xso)
967 {
968 	xso->xso_len = sizeof *xso;
969 	xso->xso_so = so;
970 	xso->so_type = so->so_type;
971 	xso->so_options = so->so_options;
972 	xso->so_linger = so->so_linger;
973 	xso->so_state = so->so_state;
974 	xso->so_pcb = so->so_pcb;
975 	xso->xso_protocol = so->so_proto->pr_protocol;
976 	xso->xso_family = so->so_proto->pr_domain->dom_family;
977 	xso->so_qlen = so->so_qlen;
978 	xso->so_incqlen = so->so_incqlen;
979 	xso->so_qlimit = so->so_qlimit;
980 	xso->so_timeo = so->so_timeo;
981 	xso->so_error = so->so_error;
982 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
983 	xso->so_oobmark = so->so_oobmark;
984 	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
985 	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
986 	xso->so_uid = so->so_cred->cr_uid;
987 }
988 
989 /*
990  * This does the same for sockbufs.  Note that the xsockbuf structure,
991  * since it is always embedded in a socket, does not include a self
992  * pointer nor a length.  We make this entry point public in case
993  * some other mechanism needs it.
994  */
995 void
996 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
997 {
998 	xsb->sb_cc = sb->sb_cc;
999 	xsb->sb_hiwat = sb->sb_hiwat;
1000 	xsb->sb_mbcnt = sb->sb_mbcnt;
1001 	xsb->sb_mbmax = sb->sb_mbmax;
1002 	xsb->sb_lowat = sb->sb_lowat;
1003 	xsb->sb_flags = sb->sb_flags;
1004 	xsb->sb_timeo = sb->sb_timeo;
1005 }
1006 
1007 /*
1008  * Here is the definition of some of the basic objects in the kern.ipc
1009  * branch of the MIB.
1010  */
1011 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
1012 
1013 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1014 static int dummy;
1015 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
1016 
1017 SYSCTL_INT(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW,
1018     &sb_max, 0, "Maximum socket buffer size");
1019 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD,
1020     &maxsockets, 0, "Maximum number of sockets avaliable");
1021 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1022     &sb_efficiency, 0, "");
1023 
1024 /*
1025  * Initialise maxsockets
1026  */
1027 static void init_maxsockets(void *ignored)
1028 {
1029 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
1030 	maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
1031 }
1032 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
1033