1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_mac.h" 36 #include "opt_param.h" 37 38 #include <sys/param.h> 39 #include <sys/aio.h> /* for aio_swake proto */ 40 #include <sys/domain.h> 41 #include <sys/event.h> 42 #include <sys/file.h> /* for maxfiles */ 43 #include <sys/kernel.h> 44 #include <sys/lock.h> 45 #include <sys/mac.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/mutex.h> 49 #include <sys/proc.h> 50 #include <sys/protosw.h> 51 #include <sys/resourcevar.h> 52 #include <sys/signalvar.h> 53 #include <sys/socket.h> 54 #include <sys/socketvar.h> 55 #include <sys/stat.h> 56 #include <sys/sysctl.h> 57 #include <sys/systm.h> 58 59 int maxsockets; 60 61 void (*aio_swake)(struct socket *, struct sockbuf *); 62 63 /* 64 * Primitive routines for operating on sockets and socket buffers 65 */ 66 67 u_long sb_max = SB_MAX; 68 static u_long sb_max_adj = 69 SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */ 70 71 static u_long sb_efficiency = 8; /* parameter for sbreserve() */ 72 73 /* 74 * Procedures to manipulate state flags of socket 75 * and do appropriate wakeups. Normal sequence from the 76 * active (originating) side is that soisconnecting() is 77 * called during processing of connect() call, 78 * resulting in an eventual call to soisconnected() if/when the 79 * connection is established. When the connection is torn down 80 * soisdisconnecting() is called during processing of disconnect() call, 81 * and soisdisconnected() is called when the connection to the peer 82 * is totally severed. The semantics of these routines are such that 83 * connectionless protocols can call soisconnected() and soisdisconnected() 84 * only, bypassing the in-progress calls when setting up a ``connection'' 85 * takes no time. 86 * 87 * From the passive side, a socket is created with 88 * two queues of sockets: so_incomp for connections in progress 89 * and so_comp for connections already made and awaiting user acceptance. 90 * As a protocol is preparing incoming connections, it creates a socket 91 * structure queued on so_incomp by calling sonewconn(). When the connection 92 * is established, soisconnected() is called, and transfers the 93 * socket structure to so_comp, making it available to accept(). 94 * 95 * If a socket is closed with sockets on either 96 * so_incomp or so_comp, these sockets are dropped. 97 * 98 * If higher level protocols are implemented in 99 * the kernel, the wakeups done here will sometimes 100 * cause software-interrupt process scheduling. 101 */ 102 103 void 104 soisconnecting(so) 105 register struct socket *so; 106 { 107 108 SOCK_LOCK(so); 109 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 110 so->so_state |= SS_ISCONNECTING; 111 SOCK_UNLOCK(so); 112 } 113 114 void 115 soisconnected(so) 116 struct socket *so; 117 { 118 struct socket *head; 119 120 ACCEPT_LOCK(); 121 SOCK_LOCK(so); 122 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 123 so->so_state |= SS_ISCONNECTED; 124 head = so->so_head; 125 if (head != NULL && (so->so_qstate & SQ_INCOMP)) { 126 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 127 SOCK_UNLOCK(so); 128 TAILQ_REMOVE(&head->so_incomp, so, so_list); 129 head->so_incqlen--; 130 so->so_qstate &= ~SQ_INCOMP; 131 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 132 head->so_qlen++; 133 so->so_qstate |= SQ_COMP; 134 ACCEPT_UNLOCK(); 135 sorwakeup(head); 136 wakeup_one(&head->so_timeo); 137 } else { 138 ACCEPT_UNLOCK(); 139 so->so_upcall = 140 head->so_accf->so_accept_filter->accf_callback; 141 so->so_upcallarg = head->so_accf->so_accept_filter_arg; 142 so->so_rcv.sb_flags |= SB_UPCALL; 143 so->so_options &= ~SO_ACCEPTFILTER; 144 SOCK_UNLOCK(so); 145 so->so_upcall(so, so->so_upcallarg, M_DONTWAIT); 146 } 147 return; 148 } 149 SOCK_UNLOCK(so); 150 ACCEPT_UNLOCK(); 151 wakeup(&so->so_timeo); 152 sorwakeup(so); 153 sowwakeup(so); 154 } 155 156 void 157 soisdisconnecting(so) 158 register struct socket *so; 159 { 160 161 /* 162 * XXXRW: This code assumes that SOCK_LOCK(so) and 163 * SOCKBUF_LOCK(&so->so_rcv) are the same. 164 */ 165 SOCKBUF_LOCK(&so->so_rcv); 166 so->so_state &= ~SS_ISCONNECTING; 167 so->so_state |= SS_ISDISCONNECTING; 168 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 169 sorwakeup_locked(so); 170 SOCKBUF_LOCK(&so->so_snd); 171 so->so_snd.sb_state |= SBS_CANTSENDMORE; 172 sowwakeup_locked(so); 173 wakeup(&so->so_timeo); 174 } 175 176 void 177 soisdisconnected(so) 178 register struct socket *so; 179 { 180 181 /* 182 * XXXRW: This code assumes that SOCK_LOCK(so) and 183 * SOCKBUF_LOCK(&so->so_rcv) are the same. 184 */ 185 SOCKBUF_LOCK(&so->so_rcv); 186 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 187 so->so_state |= SS_ISDISCONNECTED; 188 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 189 sorwakeup_locked(so); 190 SOCKBUF_LOCK(&so->so_snd); 191 so->so_snd.sb_state |= SBS_CANTSENDMORE; 192 sbdrop_locked(&so->so_snd, so->so_snd.sb_cc); 193 sowwakeup_locked(so); 194 wakeup(&so->so_timeo); 195 } 196 197 /* 198 * When an attempt at a new connection is noted on a socket 199 * which accepts connections, sonewconn is called. If the 200 * connection is possible (subject to space constraints, etc.) 201 * then we allocate a new structure, propoerly linked into the 202 * data structure of the original socket, and return this. 203 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. 204 * 205 * note: the ref count on the socket is 0 on return 206 */ 207 struct socket * 208 sonewconn(head, connstatus) 209 register struct socket *head; 210 int connstatus; 211 { 212 register struct socket *so; 213 int over; 214 215 ACCEPT_LOCK(); 216 over = (head->so_qlen > 3 * head->so_qlimit / 2); 217 ACCEPT_UNLOCK(); 218 if (over) 219 return (NULL); 220 so = soalloc(M_NOWAIT); 221 if (so == NULL) 222 return (NULL); 223 if ((head->so_options & SO_ACCEPTFILTER) != 0) 224 connstatus = 0; 225 so->so_head = head; 226 so->so_type = head->so_type; 227 so->so_options = head->so_options &~ SO_ACCEPTCONN; 228 so->so_linger = head->so_linger; 229 so->so_state = head->so_state | SS_NOFDREF; 230 so->so_proto = head->so_proto; 231 so->so_timeo = head->so_timeo; 232 so->so_cred = crhold(head->so_cred); 233 #ifdef MAC 234 SOCK_LOCK(head); 235 mac_create_socket_from_socket(head, so); 236 SOCK_UNLOCK(head); 237 #endif 238 knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 239 knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 240 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) || 241 (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 242 sodealloc(so); 243 return (NULL); 244 } 245 so->so_state |= connstatus; 246 ACCEPT_LOCK(); 247 if (connstatus) { 248 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 249 so->so_qstate |= SQ_COMP; 250 head->so_qlen++; 251 } else { 252 /* 253 * Keep removing sockets from the head until there's room for 254 * us to insert on the tail. In pre-locking revisions, this 255 * was a simple if(), but as we could be racing with other 256 * threads and soabort() requires dropping locks, we must 257 * loop waiting for the condition to be true. 258 */ 259 while (head->so_incqlen > head->so_qlimit) { 260 struct socket *sp; 261 sp = TAILQ_FIRST(&head->so_incomp); 262 TAILQ_REMOVE(&so->so_incomp, sp, so_list); 263 head->so_incqlen--; 264 sp->so_qstate &= ~SQ_INCOMP; 265 sp->so_head = NULL; 266 ACCEPT_UNLOCK(); 267 (void) soabort(sp); 268 ACCEPT_LOCK(); 269 } 270 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 271 so->so_qstate |= SQ_INCOMP; 272 head->so_incqlen++; 273 } 274 ACCEPT_UNLOCK(); 275 if (connstatus) { 276 sorwakeup(head); 277 wakeup_one(&head->so_timeo); 278 } 279 return (so); 280 } 281 282 /* 283 * Socantsendmore indicates that no more data will be sent on the 284 * socket; it would normally be applied to a socket when the user 285 * informs the system that no more data is to be sent, by the protocol 286 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 287 * will be received, and will normally be applied to the socket by a 288 * protocol when it detects that the peer will send no more data. 289 * Data queued for reading in the socket may yet be read. 290 */ 291 void 292 socantsendmore_locked(so) 293 struct socket *so; 294 { 295 296 SOCKBUF_LOCK_ASSERT(&so->so_snd); 297 298 so->so_snd.sb_state |= SBS_CANTSENDMORE; 299 sowwakeup_locked(so); 300 mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED); 301 } 302 303 void 304 socantsendmore(so) 305 struct socket *so; 306 { 307 308 SOCKBUF_LOCK(&so->so_snd); 309 socantsendmore_locked(so); 310 mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED); 311 } 312 313 void 314 socantrcvmore_locked(so) 315 struct socket *so; 316 { 317 318 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 319 320 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 321 sorwakeup_locked(so); 322 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED); 323 } 324 325 void 326 socantrcvmore(so) 327 struct socket *so; 328 { 329 330 SOCKBUF_LOCK(&so->so_rcv); 331 socantrcvmore_locked(so); 332 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED); 333 } 334 335 /* 336 * Wait for data to arrive at/drain from a socket buffer. 337 */ 338 int 339 sbwait(sb) 340 struct sockbuf *sb; 341 { 342 343 SOCKBUF_LOCK_ASSERT(sb); 344 345 sb->sb_flags |= SB_WAIT; 346 return (msleep(&sb->sb_cc, &sb->sb_mtx, 347 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", 348 sb->sb_timeo)); 349 } 350 351 /* 352 * Lock a sockbuf already known to be locked; 353 * return any error returned from sleep (EINTR). 354 */ 355 int 356 sb_lock(sb) 357 register struct sockbuf *sb; 358 { 359 int error; 360 361 SOCKBUF_LOCK_ASSERT(sb); 362 363 while (sb->sb_flags & SB_LOCK) { 364 sb->sb_flags |= SB_WANT; 365 error = msleep(&sb->sb_flags, &sb->sb_mtx, 366 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH, 367 "sblock", 0); 368 if (error) 369 return (error); 370 } 371 sb->sb_flags |= SB_LOCK; 372 return (0); 373 } 374 375 /* 376 * Wakeup processes waiting on a socket buffer. Do asynchronous 377 * notification via SIGIO if the socket has the SS_ASYNC flag set. 378 * 379 * Called with the socket buffer lock held; will release the lock by the end 380 * of the function. This allows the caller to acquire the socket buffer lock 381 * while testing for the need for various sorts of wakeup and hold it through 382 * to the point where it's no longer required. We currently hold the lock 383 * through calls out to other subsystems (with the exception of kqueue), and 384 * then release it to avoid lock order issues. It's not clear that's 385 * correct. 386 */ 387 void 388 sowakeup(so, sb) 389 register struct socket *so; 390 register struct sockbuf *sb; 391 { 392 393 SOCKBUF_LOCK_ASSERT(sb); 394 395 selwakeuppri(&sb->sb_sel, PSOCK); 396 sb->sb_flags &= ~SB_SEL; 397 if (sb->sb_flags & SB_WAIT) { 398 sb->sb_flags &= ~SB_WAIT; 399 wakeup(&sb->sb_cc); 400 } 401 KNOTE_LOCKED(&sb->sb_sel.si_note, 0); 402 SOCKBUF_UNLOCK(sb); 403 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL) 404 pgsigio(&so->so_sigio, SIGIO, 0); 405 if (sb->sb_flags & SB_UPCALL) 406 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT); 407 if (sb->sb_flags & SB_AIO) 408 aio_swake(so, sb); 409 mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED); 410 } 411 412 /* 413 * Socket buffer (struct sockbuf) utility routines. 414 * 415 * Each socket contains two socket buffers: one for sending data and 416 * one for receiving data. Each buffer contains a queue of mbufs, 417 * information about the number of mbufs and amount of data in the 418 * queue, and other fields allowing select() statements and notification 419 * on data availability to be implemented. 420 * 421 * Data stored in a socket buffer is maintained as a list of records. 422 * Each record is a list of mbufs chained together with the m_next 423 * field. Records are chained together with the m_nextpkt field. The upper 424 * level routine soreceive() expects the following conventions to be 425 * observed when placing information in the receive buffer: 426 * 427 * 1. If the protocol requires each message be preceded by the sender's 428 * name, then a record containing that name must be present before 429 * any associated data (mbuf's must be of type MT_SONAME). 430 * 2. If the protocol supports the exchange of ``access rights'' (really 431 * just additional data associated with the message), and there are 432 * ``rights'' to be received, then a record containing this data 433 * should be present (mbuf's must be of type MT_RIGHTS). 434 * 3. If a name or rights record exists, then it must be followed by 435 * a data record, perhaps of zero length. 436 * 437 * Before using a new socket structure it is first necessary to reserve 438 * buffer space to the socket, by calling sbreserve(). This should commit 439 * some of the available buffer space in the system buffer pool for the 440 * socket (currently, it does nothing but enforce limits). The space 441 * should be released by calling sbrelease() when the socket is destroyed. 442 */ 443 444 int 445 soreserve(so, sndcc, rcvcc) 446 register struct socket *so; 447 u_long sndcc, rcvcc; 448 { 449 struct thread *td = curthread; 450 451 SOCKBUF_LOCK(&so->so_snd); 452 SOCKBUF_LOCK(&so->so_rcv); 453 if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0) 454 goto bad; 455 if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0) 456 goto bad2; 457 if (so->so_rcv.sb_lowat == 0) 458 so->so_rcv.sb_lowat = 1; 459 if (so->so_snd.sb_lowat == 0) 460 so->so_snd.sb_lowat = MCLBYTES; 461 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 462 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 463 SOCKBUF_UNLOCK(&so->so_rcv); 464 SOCKBUF_UNLOCK(&so->so_snd); 465 return (0); 466 bad2: 467 sbrelease_locked(&so->so_snd, so); 468 bad: 469 SOCKBUF_UNLOCK(&so->so_rcv); 470 SOCKBUF_UNLOCK(&so->so_snd); 471 return (ENOBUFS); 472 } 473 474 static int 475 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS) 476 { 477 int error = 0; 478 u_long old_sb_max = sb_max; 479 480 error = SYSCTL_OUT(req, arg1, sizeof(u_long)); 481 if (error || !req->newptr) 482 return (error); 483 error = SYSCTL_IN(req, arg1, sizeof(u_long)); 484 if (error) 485 return (error); 486 if (sb_max < MSIZE + MCLBYTES) { 487 sb_max = old_sb_max; 488 return (EINVAL); 489 } 490 sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES); 491 return (0); 492 } 493 494 /* 495 * Allot mbufs to a sockbuf. 496 * Attempt to scale mbmax so that mbcnt doesn't become limiting 497 * if buffering efficiency is near the normal case. 498 */ 499 int 500 sbreserve_locked(sb, cc, so, td) 501 struct sockbuf *sb; 502 u_long cc; 503 struct socket *so; 504 struct thread *td; 505 { 506 rlim_t sbsize_limit; 507 508 SOCKBUF_LOCK_ASSERT(sb); 509 510 /* 511 * td will only be NULL when we're in an interrupt 512 * (e.g. in tcp_input()) 513 */ 514 if (cc > sb_max_adj) 515 return (0); 516 if (td != NULL) { 517 PROC_LOCK(td->td_proc); 518 sbsize_limit = lim_cur(td->td_proc, RLIMIT_SBSIZE); 519 PROC_UNLOCK(td->td_proc); 520 } else 521 sbsize_limit = RLIM_INFINITY; 522 if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc, 523 sbsize_limit)) 524 return (0); 525 sb->sb_mbmax = min(cc * sb_efficiency, sb_max); 526 if (sb->sb_lowat > sb->sb_hiwat) 527 sb->sb_lowat = sb->sb_hiwat; 528 return (1); 529 } 530 531 int 532 sbreserve(sb, cc, so, td) 533 struct sockbuf *sb; 534 u_long cc; 535 struct socket *so; 536 struct thread *td; 537 { 538 int error; 539 540 SOCKBUF_LOCK(sb); 541 error = sbreserve_locked(sb, cc, so, td); 542 SOCKBUF_UNLOCK(sb); 543 return (error); 544 } 545 546 /* 547 * Free mbufs held by a socket, and reserved mbuf space. 548 */ 549 void 550 sbrelease_locked(sb, so) 551 struct sockbuf *sb; 552 struct socket *so; 553 { 554 555 SOCKBUF_LOCK_ASSERT(sb); 556 557 sbflush_locked(sb); 558 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0, 559 RLIM_INFINITY); 560 sb->sb_mbmax = 0; 561 } 562 563 void 564 sbrelease(sb, so) 565 struct sockbuf *sb; 566 struct socket *so; 567 { 568 569 SOCKBUF_LOCK(sb); 570 sbrelease_locked(sb, so); 571 SOCKBUF_UNLOCK(sb); 572 } 573 /* 574 * Routines to add and remove 575 * data from an mbuf queue. 576 * 577 * The routines sbappend() or sbappendrecord() are normally called to 578 * append new mbufs to a socket buffer, after checking that adequate 579 * space is available, comparing the function sbspace() with the amount 580 * of data to be added. sbappendrecord() differs from sbappend() in 581 * that data supplied is treated as the beginning of a new record. 582 * To place a sender's address, optional access rights, and data in a 583 * socket receive buffer, sbappendaddr() should be used. To place 584 * access rights and data in a socket receive buffer, sbappendrights() 585 * should be used. In either case, the new data begins a new record. 586 * Note that unlike sbappend() and sbappendrecord(), these routines check 587 * for the caller that there will be enough space to store the data. 588 * Each fails if there is not enough space, or if it cannot find mbufs 589 * to store additional information in. 590 * 591 * Reliable protocols may use the socket send buffer to hold data 592 * awaiting acknowledgement. Data is normally copied from a socket 593 * send buffer in a protocol with m_copy for output to a peer, 594 * and then removing the data from the socket buffer with sbdrop() 595 * or sbdroprecord() when the data is acknowledged by the peer. 596 */ 597 598 #ifdef SOCKBUF_DEBUG 599 void 600 sblastrecordchk(struct sockbuf *sb, const char *file, int line) 601 { 602 struct mbuf *m = sb->sb_mb; 603 604 SOCKBUF_LOCK_ASSERT(sb); 605 606 while (m && m->m_nextpkt) 607 m = m->m_nextpkt; 608 609 if (m != sb->sb_lastrecord) { 610 printf("%s: sb_mb %p sb_lastrecord %p last %p\n", 611 __func__, sb->sb_mb, sb->sb_lastrecord, m); 612 printf("packet chain:\n"); 613 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) 614 printf("\t%p\n", m); 615 panic("%s from %s:%u", __func__, file, line); 616 } 617 } 618 619 void 620 sblastmbufchk(struct sockbuf *sb, const char *file, int line) 621 { 622 struct mbuf *m = sb->sb_mb; 623 struct mbuf *n; 624 625 SOCKBUF_LOCK_ASSERT(sb); 626 627 while (m && m->m_nextpkt) 628 m = m->m_nextpkt; 629 630 while (m && m->m_next) 631 m = m->m_next; 632 633 if (m != sb->sb_mbtail) { 634 printf("%s: sb_mb %p sb_mbtail %p last %p\n", 635 __func__, sb->sb_mb, sb->sb_mbtail, m); 636 printf("packet tree:\n"); 637 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) { 638 printf("\t"); 639 for (n = m; n != NULL; n = n->m_next) 640 printf("%p ", n); 641 printf("\n"); 642 } 643 panic("%s from %s:%u", __func__, file, line); 644 } 645 } 646 #endif /* SOCKBUF_DEBUG */ 647 648 #define SBLINKRECORD(sb, m0) do { \ 649 SOCKBUF_LOCK_ASSERT(sb); \ 650 if ((sb)->sb_lastrecord != NULL) \ 651 (sb)->sb_lastrecord->m_nextpkt = (m0); \ 652 else \ 653 (sb)->sb_mb = (m0); \ 654 (sb)->sb_lastrecord = (m0); \ 655 } while (/*CONSTCOND*/0) 656 657 /* 658 * Append mbuf chain m to the last record in the 659 * socket buffer sb. The additional space associated 660 * the mbuf chain is recorded in sb. Empty mbufs are 661 * discarded and mbufs are compacted where possible. 662 */ 663 void 664 sbappend_locked(sb, m) 665 struct sockbuf *sb; 666 struct mbuf *m; 667 { 668 register struct mbuf *n; 669 670 SOCKBUF_LOCK_ASSERT(sb); 671 672 if (m == 0) 673 return; 674 675 SBLASTRECORDCHK(sb); 676 n = sb->sb_mb; 677 if (n) { 678 while (n->m_nextpkt) 679 n = n->m_nextpkt; 680 do { 681 if (n->m_flags & M_EOR) { 682 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */ 683 return; 684 } 685 } while (n->m_next && (n = n->m_next)); 686 } else { 687 /* 688 * XXX Would like to simply use sb_mbtail here, but 689 * XXX I need to verify that I won't miss an EOR that 690 * XXX way. 691 */ 692 if ((n = sb->sb_lastrecord) != NULL) { 693 do { 694 if (n->m_flags & M_EOR) { 695 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */ 696 return; 697 } 698 } while (n->m_next && (n = n->m_next)); 699 } else { 700 /* 701 * If this is the first record in the socket buffer, 702 * it's also the last record. 703 */ 704 sb->sb_lastrecord = m; 705 } 706 } 707 sbcompress(sb, m, n); 708 SBLASTRECORDCHK(sb); 709 } 710 711 /* 712 * Append mbuf chain m to the last record in the 713 * socket buffer sb. The additional space associated 714 * the mbuf chain is recorded in sb. Empty mbufs are 715 * discarded and mbufs are compacted where possible. 716 */ 717 void 718 sbappend(sb, m) 719 struct sockbuf *sb; 720 struct mbuf *m; 721 { 722 723 SOCKBUF_LOCK(sb); 724 sbappend_locked(sb, m); 725 SOCKBUF_UNLOCK(sb); 726 } 727 728 /* 729 * This version of sbappend() should only be used when the caller 730 * absolutely knows that there will never be more than one record 731 * in the socket buffer, that is, a stream protocol (such as TCP). 732 */ 733 void 734 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m) 735 { 736 SOCKBUF_LOCK_ASSERT(sb); 737 738 KASSERT(m->m_nextpkt == NULL,("sbappendstream 0")); 739 KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1")); 740 741 SBLASTMBUFCHK(sb); 742 743 sbcompress(sb, m, sb->sb_mbtail); 744 745 sb->sb_lastrecord = sb->sb_mb; 746 SBLASTRECORDCHK(sb); 747 } 748 749 /* 750 * This version of sbappend() should only be used when the caller 751 * absolutely knows that there will never be more than one record 752 * in the socket buffer, that is, a stream protocol (such as TCP). 753 */ 754 void 755 sbappendstream(struct sockbuf *sb, struct mbuf *m) 756 { 757 758 SOCKBUF_LOCK(sb); 759 sbappendstream_locked(sb, m); 760 SOCKBUF_UNLOCK(sb); 761 } 762 763 #ifdef SOCKBUF_DEBUG 764 void 765 sbcheck(sb) 766 struct sockbuf *sb; 767 { 768 struct mbuf *m; 769 struct mbuf *n = 0; 770 u_long len = 0, mbcnt = 0; 771 772 SOCKBUF_LOCK_ASSERT(sb); 773 774 for (m = sb->sb_mb; m; m = n) { 775 n = m->m_nextpkt; 776 for (; m; m = m->m_next) { 777 len += m->m_len; 778 mbcnt += MSIZE; 779 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ 780 mbcnt += m->m_ext.ext_size; 781 } 782 } 783 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 784 printf("cc %ld != %u || mbcnt %ld != %u\n", len, sb->sb_cc, 785 mbcnt, sb->sb_mbcnt); 786 panic("sbcheck"); 787 } 788 } 789 #endif 790 791 /* 792 * As above, except the mbuf chain 793 * begins a new record. 794 */ 795 void 796 sbappendrecord_locked(sb, m0) 797 register struct sockbuf *sb; 798 register struct mbuf *m0; 799 { 800 register struct mbuf *m; 801 802 SOCKBUF_LOCK_ASSERT(sb); 803 804 if (m0 == 0) 805 return; 806 m = sb->sb_mb; 807 if (m) 808 while (m->m_nextpkt) 809 m = m->m_nextpkt; 810 /* 811 * Put the first mbuf on the queue. 812 * Note this permits zero length records. 813 */ 814 sballoc(sb, m0); 815 SBLASTRECORDCHK(sb); 816 SBLINKRECORD(sb, m0); 817 if (m) 818 m->m_nextpkt = m0; 819 else 820 sb->sb_mb = m0; 821 m = m0->m_next; 822 m0->m_next = 0; 823 if (m && (m0->m_flags & M_EOR)) { 824 m0->m_flags &= ~M_EOR; 825 m->m_flags |= M_EOR; 826 } 827 sbcompress(sb, m, m0); 828 } 829 830 /* 831 * As above, except the mbuf chain 832 * begins a new record. 833 */ 834 void 835 sbappendrecord(sb, m0) 836 register struct sockbuf *sb; 837 register struct mbuf *m0; 838 { 839 840 SOCKBUF_LOCK(sb); 841 sbappendrecord_locked(sb, m0); 842 SOCKBUF_UNLOCK(sb); 843 } 844 845 /* 846 * As above except that OOB data 847 * is inserted at the beginning of the sockbuf, 848 * but after any other OOB data. 849 */ 850 void 851 sbinsertoob_locked(sb, m0) 852 register struct sockbuf *sb; 853 register struct mbuf *m0; 854 { 855 register struct mbuf *m; 856 register struct mbuf **mp; 857 858 SOCKBUF_LOCK_ASSERT(sb); 859 860 if (m0 == 0) 861 return; 862 for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) { 863 m = *mp; 864 again: 865 switch (m->m_type) { 866 867 case MT_OOBDATA: 868 continue; /* WANT next train */ 869 870 case MT_CONTROL: 871 m = m->m_next; 872 if (m) 873 goto again; /* inspect THIS train further */ 874 } 875 break; 876 } 877 /* 878 * Put the first mbuf on the queue. 879 * Note this permits zero length records. 880 */ 881 sballoc(sb, m0); 882 m0->m_nextpkt = *mp; 883 *mp = m0; 884 m = m0->m_next; 885 m0->m_next = 0; 886 if (m && (m0->m_flags & M_EOR)) { 887 m0->m_flags &= ~M_EOR; 888 m->m_flags |= M_EOR; 889 } 890 sbcompress(sb, m, m0); 891 } 892 893 /* 894 * As above except that OOB data 895 * is inserted at the beginning of the sockbuf, 896 * but after any other OOB data. 897 */ 898 void 899 sbinsertoob(sb, m0) 900 register struct sockbuf *sb; 901 register struct mbuf *m0; 902 { 903 904 SOCKBUF_LOCK(sb); 905 sbinsertoob_locked(sb, m0); 906 SOCKBUF_UNLOCK(sb); 907 } 908 909 /* 910 * Append address and data, and optionally, control (ancillary) data 911 * to the receive queue of a socket. If present, 912 * m0 must include a packet header with total length. 913 * Returns 0 if no space in sockbuf or insufficient mbufs. 914 */ 915 int 916 sbappendaddr_locked(sb, asa, m0, control) 917 struct sockbuf *sb; 918 const struct sockaddr *asa; 919 struct mbuf *m0, *control; 920 { 921 struct mbuf *m, *n, *nlast; 922 int space = asa->sa_len; 923 924 SOCKBUF_LOCK_ASSERT(sb); 925 926 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 927 panic("sbappendaddr_locked"); 928 if (m0) 929 space += m0->m_pkthdr.len; 930 space += m_length(control, &n); 931 932 if (space > sbspace(sb)) 933 return (0); 934 #if MSIZE <= 256 935 if (asa->sa_len > MLEN) 936 return (0); 937 #endif 938 MGET(m, M_DONTWAIT, MT_SONAME); 939 if (m == 0) 940 return (0); 941 m->m_len = asa->sa_len; 942 bcopy(asa, mtod(m, caddr_t), asa->sa_len); 943 if (n) 944 n->m_next = m0; /* concatenate data to control */ 945 else 946 control = m0; 947 m->m_next = control; 948 for (n = m; n->m_next != NULL; n = n->m_next) 949 sballoc(sb, n); 950 sballoc(sb, n); 951 nlast = n; 952 SBLINKRECORD(sb, m); 953 954 sb->sb_mbtail = nlast; 955 SBLASTMBUFCHK(sb); 956 957 SBLASTRECORDCHK(sb); 958 return (1); 959 } 960 961 /* 962 * Append address and data, and optionally, control (ancillary) data 963 * to the receive queue of a socket. If present, 964 * m0 must include a packet header with total length. 965 * Returns 0 if no space in sockbuf or insufficient mbufs. 966 */ 967 int 968 sbappendaddr(sb, asa, m0, control) 969 struct sockbuf *sb; 970 const struct sockaddr *asa; 971 struct mbuf *m0, *control; 972 { 973 int retval; 974 975 SOCKBUF_LOCK(sb); 976 retval = sbappendaddr_locked(sb, asa, m0, control); 977 SOCKBUF_UNLOCK(sb); 978 return (retval); 979 } 980 981 int 982 sbappendcontrol_locked(sb, m0, control) 983 struct sockbuf *sb; 984 struct mbuf *control, *m0; 985 { 986 struct mbuf *m, *n, *mlast; 987 int space; 988 989 SOCKBUF_LOCK_ASSERT(sb); 990 991 if (control == 0) 992 panic("sbappendcontrol_locked"); 993 space = m_length(control, &n) + m_length(m0, NULL); 994 995 if (space > sbspace(sb)) 996 return (0); 997 n->m_next = m0; /* concatenate data to control */ 998 999 SBLASTRECORDCHK(sb); 1000 1001 for (m = control; m->m_next; m = m->m_next) 1002 sballoc(sb, m); 1003 sballoc(sb, m); 1004 mlast = m; 1005 SBLINKRECORD(sb, control); 1006 1007 sb->sb_mbtail = mlast; 1008 SBLASTMBUFCHK(sb); 1009 1010 SBLASTRECORDCHK(sb); 1011 return (1); 1012 } 1013 1014 int 1015 sbappendcontrol(sb, m0, control) 1016 struct sockbuf *sb; 1017 struct mbuf *control, *m0; 1018 { 1019 int retval; 1020 1021 SOCKBUF_LOCK(sb); 1022 retval = sbappendcontrol_locked(sb, m0, control); 1023 SOCKBUF_UNLOCK(sb); 1024 return (retval); 1025 } 1026 1027 /* 1028 * Compress mbuf chain m into the socket 1029 * buffer sb following mbuf n. If n 1030 * is null, the buffer is presumed empty. 1031 */ 1032 void 1033 sbcompress(sb, m, n) 1034 register struct sockbuf *sb; 1035 register struct mbuf *m, *n; 1036 { 1037 register int eor = 0; 1038 register struct mbuf *o; 1039 1040 SOCKBUF_LOCK_ASSERT(sb); 1041 1042 while (m) { 1043 eor |= m->m_flags & M_EOR; 1044 if (m->m_len == 0 && 1045 (eor == 0 || 1046 (((o = m->m_next) || (o = n)) && 1047 o->m_type == m->m_type))) { 1048 if (sb->sb_lastrecord == m) 1049 sb->sb_lastrecord = m->m_next; 1050 m = m_free(m); 1051 continue; 1052 } 1053 if (n && (n->m_flags & M_EOR) == 0 && 1054 M_WRITABLE(n) && 1055 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ 1056 m->m_len <= M_TRAILINGSPACE(n) && 1057 n->m_type == m->m_type) { 1058 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, 1059 (unsigned)m->m_len); 1060 n->m_len += m->m_len; 1061 sb->sb_cc += m->m_len; 1062 if (m->m_type != MT_DATA && m->m_type != MT_HEADER && 1063 m->m_type != MT_OOBDATA) 1064 /* XXX: Probably don't need.*/ 1065 sb->sb_ctl += m->m_len; 1066 m = m_free(m); 1067 continue; 1068 } 1069 if (n) 1070 n->m_next = m; 1071 else 1072 sb->sb_mb = m; 1073 sb->sb_mbtail = m; 1074 sballoc(sb, m); 1075 n = m; 1076 m->m_flags &= ~M_EOR; 1077 m = m->m_next; 1078 n->m_next = 0; 1079 } 1080 if (eor) { 1081 if (n) 1082 n->m_flags |= eor; 1083 else 1084 printf("semi-panic: sbcompress\n"); 1085 } 1086 SBLASTMBUFCHK(sb); 1087 } 1088 1089 /* 1090 * Free all mbufs in a sockbuf. 1091 * Check that all resources are reclaimed. 1092 */ 1093 void 1094 sbflush_locked(sb) 1095 register struct sockbuf *sb; 1096 { 1097 1098 SOCKBUF_LOCK_ASSERT(sb); 1099 1100 if (sb->sb_flags & SB_LOCK) 1101 panic("sbflush_locked: locked"); 1102 while (sb->sb_mbcnt) { 1103 /* 1104 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty: 1105 * we would loop forever. Panic instead. 1106 */ 1107 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len)) 1108 break; 1109 sbdrop_locked(sb, (int)sb->sb_cc); 1110 } 1111 if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt) 1112 panic("sbflush_locked: cc %u || mb %p || mbcnt %u", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt); 1113 } 1114 1115 void 1116 sbflush(sb) 1117 register struct sockbuf *sb; 1118 { 1119 1120 SOCKBUF_LOCK(sb); 1121 sbflush_locked(sb); 1122 SOCKBUF_UNLOCK(sb); 1123 } 1124 1125 /* 1126 * Drop data from (the front of) a sockbuf. 1127 */ 1128 void 1129 sbdrop_locked(sb, len) 1130 register struct sockbuf *sb; 1131 register int len; 1132 { 1133 register struct mbuf *m; 1134 struct mbuf *next; 1135 1136 SOCKBUF_LOCK_ASSERT(sb); 1137 1138 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 1139 while (len > 0) { 1140 if (m == 0) { 1141 if (next == 0) 1142 panic("sbdrop"); 1143 m = next; 1144 next = m->m_nextpkt; 1145 continue; 1146 } 1147 if (m->m_len > len) { 1148 m->m_len -= len; 1149 m->m_data += len; 1150 sb->sb_cc -= len; 1151 if (m->m_type != MT_DATA && m->m_type != MT_HEADER && 1152 m->m_type != MT_OOBDATA) 1153 sb->sb_ctl -= len; 1154 break; 1155 } 1156 len -= m->m_len; 1157 sbfree(sb, m); 1158 m = m_free(m); 1159 } 1160 while (m && m->m_len == 0) { 1161 sbfree(sb, m); 1162 m = m_free(m); 1163 } 1164 if (m) { 1165 sb->sb_mb = m; 1166 m->m_nextpkt = next; 1167 } else 1168 sb->sb_mb = next; 1169 /* 1170 * First part is an inline SB_EMPTY_FIXUP(). Second part 1171 * makes sure sb_lastrecord is up-to-date if we dropped 1172 * part of the last record. 1173 */ 1174 m = sb->sb_mb; 1175 if (m == NULL) { 1176 sb->sb_mbtail = NULL; 1177 sb->sb_lastrecord = NULL; 1178 } else if (m->m_nextpkt == NULL) { 1179 sb->sb_lastrecord = m; 1180 } 1181 } 1182 1183 /* 1184 * Drop data from (the front of) a sockbuf. 1185 */ 1186 void 1187 sbdrop(sb, len) 1188 register struct sockbuf *sb; 1189 register int len; 1190 { 1191 1192 SOCKBUF_LOCK(sb); 1193 sbdrop_locked(sb, len); 1194 SOCKBUF_UNLOCK(sb); 1195 } 1196 1197 /* 1198 * Drop a record off the front of a sockbuf 1199 * and move the next record to the front. 1200 */ 1201 void 1202 sbdroprecord_locked(sb) 1203 register struct sockbuf *sb; 1204 { 1205 register struct mbuf *m; 1206 1207 SOCKBUF_LOCK_ASSERT(sb); 1208 1209 m = sb->sb_mb; 1210 if (m) { 1211 sb->sb_mb = m->m_nextpkt; 1212 do { 1213 sbfree(sb, m); 1214 m = m_free(m); 1215 } while (m); 1216 } 1217 SB_EMPTY_FIXUP(sb); 1218 } 1219 1220 /* 1221 * Drop a record off the front of a sockbuf 1222 * and move the next record to the front. 1223 */ 1224 void 1225 sbdroprecord(sb) 1226 register struct sockbuf *sb; 1227 { 1228 1229 SOCKBUF_LOCK(sb); 1230 sbdroprecord_locked(sb); 1231 SOCKBUF_UNLOCK(sb); 1232 } 1233 1234 /* 1235 * Create a "control" mbuf containing the specified data 1236 * with the specified type for presentation on a socket buffer. 1237 */ 1238 struct mbuf * 1239 sbcreatecontrol(p, size, type, level) 1240 caddr_t p; 1241 register int size; 1242 int type, level; 1243 { 1244 register struct cmsghdr *cp; 1245 struct mbuf *m; 1246 1247 if (CMSG_SPACE((u_int)size) > MCLBYTES) 1248 return ((struct mbuf *) NULL); 1249 if (CMSG_SPACE((u_int)size) > MLEN) 1250 m = m_getcl(M_DONTWAIT, MT_CONTROL, 0); 1251 else 1252 m = m_get(M_DONTWAIT, MT_CONTROL); 1253 if (m == NULL) 1254 return ((struct mbuf *) NULL); 1255 cp = mtod(m, struct cmsghdr *); 1256 m->m_len = 0; 1257 KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m), 1258 ("sbcreatecontrol: short mbuf")); 1259 if (p != NULL) 1260 (void)memcpy(CMSG_DATA(cp), p, size); 1261 m->m_len = CMSG_SPACE(size); 1262 cp->cmsg_len = CMSG_LEN(size); 1263 cp->cmsg_level = level; 1264 cp->cmsg_type = type; 1265 return (m); 1266 } 1267 1268 /* 1269 * Some routines that return EOPNOTSUPP for entry points that are not 1270 * supported by a protocol. Fill in as needed. 1271 */ 1272 int 1273 pru_abort_notsupp(struct socket *so) 1274 { 1275 return EOPNOTSUPP; 1276 } 1277 1278 int 1279 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 1280 { 1281 return EOPNOTSUPP; 1282 } 1283 1284 int 1285 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 1286 { 1287 return EOPNOTSUPP; 1288 } 1289 1290 int 1291 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 1292 { 1293 return EOPNOTSUPP; 1294 } 1295 1296 int 1297 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 1298 { 1299 return EOPNOTSUPP; 1300 } 1301 1302 int 1303 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 1304 { 1305 return EOPNOTSUPP; 1306 } 1307 1308 int 1309 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 1310 struct ifnet *ifp, struct thread *td) 1311 { 1312 return EOPNOTSUPP; 1313 } 1314 1315 int 1316 pru_detach_notsupp(struct socket *so) 1317 { 1318 return EOPNOTSUPP; 1319 } 1320 1321 int 1322 pru_disconnect_notsupp(struct socket *so) 1323 { 1324 return EOPNOTSUPP; 1325 } 1326 1327 int 1328 pru_listen_notsupp(struct socket *so, struct thread *td) 1329 { 1330 return EOPNOTSUPP; 1331 } 1332 1333 int 1334 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 1335 { 1336 return EOPNOTSUPP; 1337 } 1338 1339 int 1340 pru_rcvd_notsupp(struct socket *so, int flags) 1341 { 1342 return EOPNOTSUPP; 1343 } 1344 1345 int 1346 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 1347 { 1348 return EOPNOTSUPP; 1349 } 1350 1351 int 1352 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 1353 struct sockaddr *addr, struct mbuf *control, struct thread *td) 1354 { 1355 return EOPNOTSUPP; 1356 } 1357 1358 /* 1359 * This isn't really a ``null'' operation, but it's the default one 1360 * and doesn't do anything destructive. 1361 */ 1362 int 1363 pru_sense_null(struct socket *so, struct stat *sb) 1364 { 1365 sb->st_blksize = so->so_snd.sb_hiwat; 1366 return 0; 1367 } 1368 1369 int 1370 pru_shutdown_notsupp(struct socket *so) 1371 { 1372 return EOPNOTSUPP; 1373 } 1374 1375 int 1376 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 1377 { 1378 return EOPNOTSUPP; 1379 } 1380 1381 int 1382 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 1383 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1384 { 1385 return EOPNOTSUPP; 1386 } 1387 1388 int 1389 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 1390 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, 1391 int *flagsp) 1392 { 1393 return EOPNOTSUPP; 1394 } 1395 1396 int 1397 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 1398 struct thread *td) 1399 { 1400 return EOPNOTSUPP; 1401 } 1402 1403 /* 1404 * For protocol types that don't keep cached copies of labels in their 1405 * pcbs, provide a null sosetlabel that does a NOOP. 1406 */ 1407 void 1408 pru_sosetlabel_null(struct socket *so) 1409 { 1410 1411 } 1412 1413 /* 1414 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 1415 */ 1416 struct sockaddr * 1417 sodupsockaddr(const struct sockaddr *sa, int mflags) 1418 { 1419 struct sockaddr *sa2; 1420 1421 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 1422 if (sa2) 1423 bcopy(sa, sa2, sa->sa_len); 1424 return sa2; 1425 } 1426 1427 /* 1428 * Create an external-format (``xsocket'') structure using the information 1429 * in the kernel-format socket structure pointed to by so. This is done 1430 * to reduce the spew of irrelevant information over this interface, 1431 * to isolate user code from changes in the kernel structure, and 1432 * potentially to provide information-hiding if we decide that 1433 * some of this information should be hidden from users. 1434 */ 1435 void 1436 sotoxsocket(struct socket *so, struct xsocket *xso) 1437 { 1438 xso->xso_len = sizeof *xso; 1439 xso->xso_so = so; 1440 xso->so_type = so->so_type; 1441 xso->so_options = so->so_options; 1442 xso->so_linger = so->so_linger; 1443 xso->so_state = so->so_state; 1444 xso->so_pcb = so->so_pcb; 1445 xso->xso_protocol = so->so_proto->pr_protocol; 1446 xso->xso_family = so->so_proto->pr_domain->dom_family; 1447 xso->so_qlen = so->so_qlen; 1448 xso->so_incqlen = so->so_incqlen; 1449 xso->so_qlimit = so->so_qlimit; 1450 xso->so_timeo = so->so_timeo; 1451 xso->so_error = so->so_error; 1452 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 1453 xso->so_oobmark = so->so_oobmark; 1454 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 1455 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 1456 xso->so_uid = so->so_cred->cr_uid; 1457 } 1458 1459 /* 1460 * This does the same for sockbufs. Note that the xsockbuf structure, 1461 * since it is always embedded in a socket, does not include a self 1462 * pointer nor a length. We make this entry point public in case 1463 * some other mechanism needs it. 1464 */ 1465 void 1466 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb) 1467 { 1468 xsb->sb_cc = sb->sb_cc; 1469 xsb->sb_hiwat = sb->sb_hiwat; 1470 xsb->sb_mbcnt = sb->sb_mbcnt; 1471 xsb->sb_mbmax = sb->sb_mbmax; 1472 xsb->sb_lowat = sb->sb_lowat; 1473 xsb->sb_flags = sb->sb_flags; 1474 xsb->sb_timeo = sb->sb_timeo; 1475 } 1476 1477 /* 1478 * Here is the definition of some of the basic objects in the kern.ipc 1479 * branch of the MIB. 1480 */ 1481 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 1482 1483 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */ 1484 static int dummy; 1485 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, ""); 1486 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_ULONG|CTLFLAG_RW, 1487 &sb_max, 0, sysctl_handle_sb_max, "LU", "Maximum socket buffer size"); 1488 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RDTUN, 1489 &maxsockets, 0, "Maximum number of sockets avaliable"); 1490 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW, 1491 &sb_efficiency, 0, ""); 1492 1493 /* 1494 * Initialise maxsockets 1495 */ 1496 static void init_maxsockets(void *ignored) 1497 { 1498 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 1499 maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters)); 1500 } 1501 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 1502