1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_param.h" 36 37 #include <sys/param.h> 38 #include <sys/aio.h> /* for aio_swake proto */ 39 #include <sys/kernel.h> 40 #include <sys/lock.h> 41 #include <sys/mbuf.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 #include <sys/protosw.h> 45 #include <sys/resourcevar.h> 46 #include <sys/signalvar.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/sx.h> 50 #include <sys/sysctl.h> 51 52 /* 53 * Function pointer set by the AIO routines so that the socket buffer code 54 * can call back into the AIO module if it is loaded. 55 */ 56 void (*aio_swake)(struct socket *, struct sockbuf *); 57 58 /* 59 * Primitive routines for operating on socket buffers 60 */ 61 62 u_long sb_max = SB_MAX; 63 u_long sb_max_adj = 64 SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */ 65 66 static u_long sb_efficiency = 8; /* parameter for sbreserve() */ 67 68 static void sbdrop_internal(struct sockbuf *sb, int len); 69 static void sbflush_internal(struct sockbuf *sb); 70 71 /* 72 * Socantsendmore indicates that no more data will be sent on the socket; it 73 * would normally be applied to a socket when the user informs the system 74 * that no more data is to be sent, by the protocol code (in case 75 * PRU_SHUTDOWN). Socantrcvmore indicates that no more data will be 76 * received, and will normally be applied to the socket by a protocol when it 77 * detects that the peer will send no more data. Data queued for reading in 78 * the socket may yet be read. 79 */ 80 void 81 socantsendmore_locked(struct socket *so) 82 { 83 84 SOCKBUF_LOCK_ASSERT(&so->so_snd); 85 86 so->so_snd.sb_state |= SBS_CANTSENDMORE; 87 sowwakeup_locked(so); 88 mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED); 89 } 90 91 void 92 socantsendmore(struct socket *so) 93 { 94 95 SOCKBUF_LOCK(&so->so_snd); 96 socantsendmore_locked(so); 97 mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED); 98 } 99 100 void 101 socantrcvmore_locked(struct socket *so) 102 { 103 104 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 105 106 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 107 sorwakeup_locked(so); 108 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED); 109 } 110 111 void 112 socantrcvmore(struct socket *so) 113 { 114 115 SOCKBUF_LOCK(&so->so_rcv); 116 socantrcvmore_locked(so); 117 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED); 118 } 119 120 /* 121 * Wait for data to arrive at/drain from a socket buffer. 122 */ 123 int 124 sbwait(struct sockbuf *sb) 125 { 126 127 SOCKBUF_LOCK_ASSERT(sb); 128 129 sb->sb_flags |= SB_WAIT; 130 return (msleep(&sb->sb_cc, &sb->sb_mtx, 131 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", 132 sb->sb_timeo)); 133 } 134 135 int 136 sblock(struct sockbuf *sb, int flags) 137 { 138 139 KASSERT((flags & SBL_VALID) == flags, 140 ("sblock: flags invalid (0x%x)", flags)); 141 142 if (flags & SBL_WAIT) { 143 if ((sb->sb_flags & SB_NOINTR) || 144 (flags & SBL_NOINTR)) { 145 sx_xlock(&sb->sb_sx); 146 return (0); 147 } 148 return (sx_xlock_sig(&sb->sb_sx)); 149 } else { 150 if (sx_try_xlock(&sb->sb_sx) == 0) 151 return (EWOULDBLOCK); 152 return (0); 153 } 154 } 155 156 void 157 sbunlock(struct sockbuf *sb) 158 { 159 160 sx_xunlock(&sb->sb_sx); 161 } 162 163 /* 164 * Wakeup processes waiting on a socket buffer. Do asynchronous notification 165 * via SIGIO if the socket has the SS_ASYNC flag set. 166 * 167 * Called with the socket buffer lock held; will release the lock by the end 168 * of the function. This allows the caller to acquire the socket buffer lock 169 * while testing for the need for various sorts of wakeup and hold it through 170 * to the point where it's no longer required. We currently hold the lock 171 * through calls out to other subsystems (with the exception of kqueue), and 172 * then release it to avoid lock order issues. It's not clear that's 173 * correct. 174 */ 175 void 176 sowakeup(struct socket *so, struct sockbuf *sb) 177 { 178 int ret; 179 180 SOCKBUF_LOCK_ASSERT(sb); 181 182 selwakeuppri(&sb->sb_sel, PSOCK); 183 if (!SEL_WAITING(&sb->sb_sel)) 184 sb->sb_flags &= ~SB_SEL; 185 if (sb->sb_flags & SB_WAIT) { 186 sb->sb_flags &= ~SB_WAIT; 187 wakeup(&sb->sb_cc); 188 } 189 KNOTE_LOCKED(&sb->sb_sel.si_note, 0); 190 if (sb->sb_upcall != NULL) { 191 ret = sb->sb_upcall(so, sb->sb_upcallarg, M_DONTWAIT); 192 if (ret == SU_ISCONNECTED) { 193 KASSERT(sb == &so->so_rcv, 194 ("SO_SND upcall returned SU_ISCONNECTED")); 195 soupcall_clear(so, SO_RCV); 196 } 197 } else 198 ret = SU_OK; 199 if (sb->sb_flags & SB_AIO) 200 aio_swake(so, sb); 201 SOCKBUF_UNLOCK(sb); 202 if (ret == SU_ISCONNECTED) 203 soisconnected(so); 204 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL) 205 pgsigio(&so->so_sigio, SIGIO, 0); 206 mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED); 207 } 208 209 /* 210 * Socket buffer (struct sockbuf) utility routines. 211 * 212 * Each socket contains two socket buffers: one for sending data and one for 213 * receiving data. Each buffer contains a queue of mbufs, information about 214 * the number of mbufs and amount of data in the queue, and other fields 215 * allowing select() statements and notification on data availability to be 216 * implemented. 217 * 218 * Data stored in a socket buffer is maintained as a list of records. Each 219 * record is a list of mbufs chained together with the m_next field. Records 220 * are chained together with the m_nextpkt field. The upper level routine 221 * soreceive() expects the following conventions to be observed when placing 222 * information in the receive buffer: 223 * 224 * 1. If the protocol requires each message be preceded by the sender's name, 225 * then a record containing that name must be present before any 226 * associated data (mbuf's must be of type MT_SONAME). 227 * 2. If the protocol supports the exchange of ``access rights'' (really just 228 * additional data associated with the message), and there are ``rights'' 229 * to be received, then a record containing this data should be present 230 * (mbuf's must be of type MT_RIGHTS). 231 * 3. If a name or rights record exists, then it must be followed by a data 232 * record, perhaps of zero length. 233 * 234 * Before using a new socket structure it is first necessary to reserve 235 * buffer space to the socket, by calling sbreserve(). This should commit 236 * some of the available buffer space in the system buffer pool for the 237 * socket (currently, it does nothing but enforce limits). The space should 238 * be released by calling sbrelease() when the socket is destroyed. 239 */ 240 int 241 soreserve(struct socket *so, u_long sndcc, u_long rcvcc) 242 { 243 struct thread *td = curthread; 244 245 SOCKBUF_LOCK(&so->so_snd); 246 SOCKBUF_LOCK(&so->so_rcv); 247 if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0) 248 goto bad; 249 if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0) 250 goto bad2; 251 if (so->so_rcv.sb_lowat == 0) 252 so->so_rcv.sb_lowat = 1; 253 if (so->so_snd.sb_lowat == 0) 254 so->so_snd.sb_lowat = MCLBYTES; 255 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 256 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 257 SOCKBUF_UNLOCK(&so->so_rcv); 258 SOCKBUF_UNLOCK(&so->so_snd); 259 return (0); 260 bad2: 261 sbrelease_locked(&so->so_snd, so); 262 bad: 263 SOCKBUF_UNLOCK(&so->so_rcv); 264 SOCKBUF_UNLOCK(&so->so_snd); 265 return (ENOBUFS); 266 } 267 268 static int 269 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS) 270 { 271 int error = 0; 272 u_long tmp_sb_max = sb_max; 273 274 error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req); 275 if (error || !req->newptr) 276 return (error); 277 if (tmp_sb_max < MSIZE + MCLBYTES) 278 return (EINVAL); 279 sb_max = tmp_sb_max; 280 sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES); 281 return (0); 282 } 283 284 /* 285 * Allot mbufs to a sockbuf. Attempt to scale mbmax so that mbcnt doesn't 286 * become limiting if buffering efficiency is near the normal case. 287 */ 288 int 289 sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so, 290 struct thread *td) 291 { 292 rlim_t sbsize_limit; 293 294 SOCKBUF_LOCK_ASSERT(sb); 295 296 /* 297 * When a thread is passed, we take into account the thread's socket 298 * buffer size limit. The caller will generally pass curthread, but 299 * in the TCP input path, NULL will be passed to indicate that no 300 * appropriate thread resource limits are available. In that case, 301 * we don't apply a process limit. 302 */ 303 if (cc > sb_max_adj) 304 return (0); 305 if (td != NULL) { 306 PROC_LOCK(td->td_proc); 307 sbsize_limit = lim_cur(td->td_proc, RLIMIT_SBSIZE); 308 PROC_UNLOCK(td->td_proc); 309 } else 310 sbsize_limit = RLIM_INFINITY; 311 if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc, 312 sbsize_limit)) 313 return (0); 314 sb->sb_mbmax = min(cc * sb_efficiency, sb_max); 315 if (sb->sb_lowat > sb->sb_hiwat) 316 sb->sb_lowat = sb->sb_hiwat; 317 return (1); 318 } 319 320 int 321 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so, 322 struct thread *td) 323 { 324 int error; 325 326 SOCKBUF_LOCK(sb); 327 error = sbreserve_locked(sb, cc, so, td); 328 SOCKBUF_UNLOCK(sb); 329 return (error); 330 } 331 332 /* 333 * Free mbufs held by a socket, and reserved mbuf space. 334 */ 335 void 336 sbrelease_internal(struct sockbuf *sb, struct socket *so) 337 { 338 339 sbflush_internal(sb); 340 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0, 341 RLIM_INFINITY); 342 sb->sb_mbmax = 0; 343 } 344 345 void 346 sbrelease_locked(struct sockbuf *sb, struct socket *so) 347 { 348 349 SOCKBUF_LOCK_ASSERT(sb); 350 351 sbrelease_internal(sb, so); 352 } 353 354 void 355 sbrelease(struct sockbuf *sb, struct socket *so) 356 { 357 358 SOCKBUF_LOCK(sb); 359 sbrelease_locked(sb, so); 360 SOCKBUF_UNLOCK(sb); 361 } 362 363 void 364 sbdestroy(struct sockbuf *sb, struct socket *so) 365 { 366 367 sbrelease_internal(sb, so); 368 } 369 370 /* 371 * Routines to add and remove data from an mbuf queue. 372 * 373 * The routines sbappend() or sbappendrecord() are normally called to append 374 * new mbufs to a socket buffer, after checking that adequate space is 375 * available, comparing the function sbspace() with the amount of data to be 376 * added. sbappendrecord() differs from sbappend() in that data supplied is 377 * treated as the beginning of a new record. To place a sender's address, 378 * optional access rights, and data in a socket receive buffer, 379 * sbappendaddr() should be used. To place access rights and data in a 380 * socket receive buffer, sbappendrights() should be used. In either case, 381 * the new data begins a new record. Note that unlike sbappend() and 382 * sbappendrecord(), these routines check for the caller that there will be 383 * enough space to store the data. Each fails if there is not enough space, 384 * or if it cannot find mbufs to store additional information in. 385 * 386 * Reliable protocols may use the socket send buffer to hold data awaiting 387 * acknowledgement. Data is normally copied from a socket send buffer in a 388 * protocol with m_copy for output to a peer, and then removing the data from 389 * the socket buffer with sbdrop() or sbdroprecord() when the data is 390 * acknowledged by the peer. 391 */ 392 #ifdef SOCKBUF_DEBUG 393 void 394 sblastrecordchk(struct sockbuf *sb, const char *file, int line) 395 { 396 struct mbuf *m = sb->sb_mb; 397 398 SOCKBUF_LOCK_ASSERT(sb); 399 400 while (m && m->m_nextpkt) 401 m = m->m_nextpkt; 402 403 if (m != sb->sb_lastrecord) { 404 printf("%s: sb_mb %p sb_lastrecord %p last %p\n", 405 __func__, sb->sb_mb, sb->sb_lastrecord, m); 406 printf("packet chain:\n"); 407 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) 408 printf("\t%p\n", m); 409 panic("%s from %s:%u", __func__, file, line); 410 } 411 } 412 413 void 414 sblastmbufchk(struct sockbuf *sb, const char *file, int line) 415 { 416 struct mbuf *m = sb->sb_mb; 417 struct mbuf *n; 418 419 SOCKBUF_LOCK_ASSERT(sb); 420 421 while (m && m->m_nextpkt) 422 m = m->m_nextpkt; 423 424 while (m && m->m_next) 425 m = m->m_next; 426 427 if (m != sb->sb_mbtail) { 428 printf("%s: sb_mb %p sb_mbtail %p last %p\n", 429 __func__, sb->sb_mb, sb->sb_mbtail, m); 430 printf("packet tree:\n"); 431 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) { 432 printf("\t"); 433 for (n = m; n != NULL; n = n->m_next) 434 printf("%p ", n); 435 printf("\n"); 436 } 437 panic("%s from %s:%u", __func__, file, line); 438 } 439 } 440 #endif /* SOCKBUF_DEBUG */ 441 442 #define SBLINKRECORD(sb, m0) do { \ 443 SOCKBUF_LOCK_ASSERT(sb); \ 444 if ((sb)->sb_lastrecord != NULL) \ 445 (sb)->sb_lastrecord->m_nextpkt = (m0); \ 446 else \ 447 (sb)->sb_mb = (m0); \ 448 (sb)->sb_lastrecord = (m0); \ 449 } while (/*CONSTCOND*/0) 450 451 /* 452 * Append mbuf chain m to the last record in the socket buffer sb. The 453 * additional space associated the mbuf chain is recorded in sb. Empty mbufs 454 * are discarded and mbufs are compacted where possible. 455 */ 456 void 457 sbappend_locked(struct sockbuf *sb, struct mbuf *m) 458 { 459 struct mbuf *n; 460 461 SOCKBUF_LOCK_ASSERT(sb); 462 463 if (m == 0) 464 return; 465 466 SBLASTRECORDCHK(sb); 467 n = sb->sb_mb; 468 if (n) { 469 while (n->m_nextpkt) 470 n = n->m_nextpkt; 471 do { 472 if (n->m_flags & M_EOR) { 473 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */ 474 return; 475 } 476 } while (n->m_next && (n = n->m_next)); 477 } else { 478 /* 479 * XXX Would like to simply use sb_mbtail here, but 480 * XXX I need to verify that I won't miss an EOR that 481 * XXX way. 482 */ 483 if ((n = sb->sb_lastrecord) != NULL) { 484 do { 485 if (n->m_flags & M_EOR) { 486 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */ 487 return; 488 } 489 } while (n->m_next && (n = n->m_next)); 490 } else { 491 /* 492 * If this is the first record in the socket buffer, 493 * it's also the last record. 494 */ 495 sb->sb_lastrecord = m; 496 } 497 } 498 sbcompress(sb, m, n); 499 SBLASTRECORDCHK(sb); 500 } 501 502 /* 503 * Append mbuf chain m to the last record in the socket buffer sb. The 504 * additional space associated the mbuf chain is recorded in sb. Empty mbufs 505 * are discarded and mbufs are compacted where possible. 506 */ 507 void 508 sbappend(struct sockbuf *sb, struct mbuf *m) 509 { 510 511 SOCKBUF_LOCK(sb); 512 sbappend_locked(sb, m); 513 SOCKBUF_UNLOCK(sb); 514 } 515 516 /* 517 * This version of sbappend() should only be used when the caller absolutely 518 * knows that there will never be more than one record in the socket buffer, 519 * that is, a stream protocol (such as TCP). 520 */ 521 void 522 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m) 523 { 524 SOCKBUF_LOCK_ASSERT(sb); 525 526 KASSERT(m->m_nextpkt == NULL,("sbappendstream 0")); 527 KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1")); 528 529 SBLASTMBUFCHK(sb); 530 531 /* Remove all packet headers and mbuf tags to get a pure data chain. */ 532 m_demote(m, 1); 533 534 sbcompress(sb, m, sb->sb_mbtail); 535 536 sb->sb_lastrecord = sb->sb_mb; 537 SBLASTRECORDCHK(sb); 538 } 539 540 /* 541 * This version of sbappend() should only be used when the caller absolutely 542 * knows that there will never be more than one record in the socket buffer, 543 * that is, a stream protocol (such as TCP). 544 */ 545 void 546 sbappendstream(struct sockbuf *sb, struct mbuf *m) 547 { 548 549 SOCKBUF_LOCK(sb); 550 sbappendstream_locked(sb, m); 551 SOCKBUF_UNLOCK(sb); 552 } 553 554 #ifdef SOCKBUF_DEBUG 555 void 556 sbcheck(struct sockbuf *sb) 557 { 558 struct mbuf *m; 559 struct mbuf *n = 0; 560 u_long len = 0, mbcnt = 0; 561 562 SOCKBUF_LOCK_ASSERT(sb); 563 564 for (m = sb->sb_mb; m; m = n) { 565 n = m->m_nextpkt; 566 for (; m; m = m->m_next) { 567 len += m->m_len; 568 mbcnt += MSIZE; 569 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ 570 mbcnt += m->m_ext.ext_size; 571 } 572 } 573 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 574 printf("cc %ld != %u || mbcnt %ld != %u\n", len, sb->sb_cc, 575 mbcnt, sb->sb_mbcnt); 576 panic("sbcheck"); 577 } 578 } 579 #endif 580 581 /* 582 * As above, except the mbuf chain begins a new record. 583 */ 584 void 585 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0) 586 { 587 struct mbuf *m; 588 589 SOCKBUF_LOCK_ASSERT(sb); 590 591 if (m0 == 0) 592 return; 593 /* 594 * Put the first mbuf on the queue. Note this permits zero length 595 * records. 596 */ 597 sballoc(sb, m0); 598 SBLASTRECORDCHK(sb); 599 SBLINKRECORD(sb, m0); 600 sb->sb_mbtail = m0; 601 m = m0->m_next; 602 m0->m_next = 0; 603 if (m && (m0->m_flags & M_EOR)) { 604 m0->m_flags &= ~M_EOR; 605 m->m_flags |= M_EOR; 606 } 607 /* always call sbcompress() so it can do SBLASTMBUFCHK() */ 608 sbcompress(sb, m, m0); 609 } 610 611 /* 612 * As above, except the mbuf chain begins a new record. 613 */ 614 void 615 sbappendrecord(struct sockbuf *sb, struct mbuf *m0) 616 { 617 618 SOCKBUF_LOCK(sb); 619 sbappendrecord_locked(sb, m0); 620 SOCKBUF_UNLOCK(sb); 621 } 622 623 /* 624 * Append address and data, and optionally, control (ancillary) data to the 625 * receive queue of a socket. If present, m0 must include a packet header 626 * with total length. Returns 0 if no space in sockbuf or insufficient 627 * mbufs. 628 */ 629 int 630 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa, 631 struct mbuf *m0, struct mbuf *control) 632 { 633 struct mbuf *m, *n, *nlast; 634 int space = asa->sa_len; 635 636 SOCKBUF_LOCK_ASSERT(sb); 637 638 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 639 panic("sbappendaddr_locked"); 640 if (m0) 641 space += m0->m_pkthdr.len; 642 space += m_length(control, &n); 643 644 if (space > sbspace(sb)) 645 return (0); 646 #if MSIZE <= 256 647 if (asa->sa_len > MLEN) 648 return (0); 649 #endif 650 MGET(m, M_DONTWAIT, MT_SONAME); 651 if (m == 0) 652 return (0); 653 m->m_len = asa->sa_len; 654 bcopy(asa, mtod(m, caddr_t), asa->sa_len); 655 if (n) 656 n->m_next = m0; /* concatenate data to control */ 657 else 658 control = m0; 659 m->m_next = control; 660 for (n = m; n->m_next != NULL; n = n->m_next) 661 sballoc(sb, n); 662 sballoc(sb, n); 663 nlast = n; 664 SBLINKRECORD(sb, m); 665 666 sb->sb_mbtail = nlast; 667 SBLASTMBUFCHK(sb); 668 669 SBLASTRECORDCHK(sb); 670 return (1); 671 } 672 673 /* 674 * Append address and data, and optionally, control (ancillary) data to the 675 * receive queue of a socket. If present, m0 must include a packet header 676 * with total length. Returns 0 if no space in sockbuf or insufficient 677 * mbufs. 678 */ 679 int 680 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, 681 struct mbuf *m0, struct mbuf *control) 682 { 683 int retval; 684 685 SOCKBUF_LOCK(sb); 686 retval = sbappendaddr_locked(sb, asa, m0, control); 687 SOCKBUF_UNLOCK(sb); 688 return (retval); 689 } 690 691 int 692 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0, 693 struct mbuf *control) 694 { 695 struct mbuf *m, *n, *mlast; 696 int space; 697 698 SOCKBUF_LOCK_ASSERT(sb); 699 700 if (control == 0) 701 panic("sbappendcontrol_locked"); 702 space = m_length(control, &n) + m_length(m0, NULL); 703 704 if (space > sbspace(sb)) 705 return (0); 706 n->m_next = m0; /* concatenate data to control */ 707 708 SBLASTRECORDCHK(sb); 709 710 for (m = control; m->m_next; m = m->m_next) 711 sballoc(sb, m); 712 sballoc(sb, m); 713 mlast = m; 714 SBLINKRECORD(sb, control); 715 716 sb->sb_mbtail = mlast; 717 SBLASTMBUFCHK(sb); 718 719 SBLASTRECORDCHK(sb); 720 return (1); 721 } 722 723 int 724 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control) 725 { 726 int retval; 727 728 SOCKBUF_LOCK(sb); 729 retval = sbappendcontrol_locked(sb, m0, control); 730 SOCKBUF_UNLOCK(sb); 731 return (retval); 732 } 733 734 /* 735 * Append the data in mbuf chain (m) into the socket buffer sb following mbuf 736 * (n). If (n) is NULL, the buffer is presumed empty. 737 * 738 * When the data is compressed, mbufs in the chain may be handled in one of 739 * three ways: 740 * 741 * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no 742 * record boundary, and no change in data type). 743 * 744 * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into 745 * an mbuf already in the socket buffer. This can occur if an 746 * appropriate mbuf exists, there is room, and no merging of data types 747 * will occur. 748 * 749 * (3) The mbuf may be appended to the end of the existing mbuf chain. 750 * 751 * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as 752 * end-of-record. 753 */ 754 void 755 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n) 756 { 757 int eor = 0; 758 struct mbuf *o; 759 760 SOCKBUF_LOCK_ASSERT(sb); 761 762 while (m) { 763 eor |= m->m_flags & M_EOR; 764 if (m->m_len == 0 && 765 (eor == 0 || 766 (((o = m->m_next) || (o = n)) && 767 o->m_type == m->m_type))) { 768 if (sb->sb_lastrecord == m) 769 sb->sb_lastrecord = m->m_next; 770 m = m_free(m); 771 continue; 772 } 773 if (n && (n->m_flags & M_EOR) == 0 && 774 M_WRITABLE(n) && 775 ((sb->sb_flags & SB_NOCOALESCE) == 0) && 776 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ 777 m->m_len <= M_TRAILINGSPACE(n) && 778 n->m_type == m->m_type) { 779 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, 780 (unsigned)m->m_len); 781 n->m_len += m->m_len; 782 sb->sb_cc += m->m_len; 783 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA) 784 /* XXX: Probably don't need.*/ 785 sb->sb_ctl += m->m_len; 786 m = m_free(m); 787 continue; 788 } 789 if (n) 790 n->m_next = m; 791 else 792 sb->sb_mb = m; 793 sb->sb_mbtail = m; 794 sballoc(sb, m); 795 n = m; 796 m->m_flags &= ~M_EOR; 797 m = m->m_next; 798 n->m_next = 0; 799 } 800 if (eor) { 801 KASSERT(n != NULL, ("sbcompress: eor && n == NULL")); 802 n->m_flags |= eor; 803 } 804 SBLASTMBUFCHK(sb); 805 } 806 807 /* 808 * Free all mbufs in a sockbuf. Check that all resources are reclaimed. 809 */ 810 static void 811 sbflush_internal(struct sockbuf *sb) 812 { 813 814 while (sb->sb_mbcnt) { 815 /* 816 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty: 817 * we would loop forever. Panic instead. 818 */ 819 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len)) 820 break; 821 sbdrop_internal(sb, (int)sb->sb_cc); 822 } 823 if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt) 824 panic("sbflush_internal: cc %u || mb %p || mbcnt %u", 825 sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt); 826 } 827 828 void 829 sbflush_locked(struct sockbuf *sb) 830 { 831 832 SOCKBUF_LOCK_ASSERT(sb); 833 sbflush_internal(sb); 834 } 835 836 void 837 sbflush(struct sockbuf *sb) 838 { 839 840 SOCKBUF_LOCK(sb); 841 sbflush_locked(sb); 842 SOCKBUF_UNLOCK(sb); 843 } 844 845 /* 846 * Drop data from (the front of) a sockbuf. 847 */ 848 static void 849 sbdrop_internal(struct sockbuf *sb, int len) 850 { 851 struct mbuf *m; 852 struct mbuf *next; 853 854 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 855 while (len > 0) { 856 if (m == 0) { 857 if (next == 0) 858 panic("sbdrop"); 859 m = next; 860 next = m->m_nextpkt; 861 continue; 862 } 863 if (m->m_len > len) { 864 m->m_len -= len; 865 m->m_data += len; 866 sb->sb_cc -= len; 867 if (sb->sb_sndptroff != 0) 868 sb->sb_sndptroff -= len; 869 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA) 870 sb->sb_ctl -= len; 871 break; 872 } 873 len -= m->m_len; 874 sbfree(sb, m); 875 m = m_free(m); 876 } 877 while (m && m->m_len == 0) { 878 sbfree(sb, m); 879 m = m_free(m); 880 } 881 if (m) { 882 sb->sb_mb = m; 883 m->m_nextpkt = next; 884 } else 885 sb->sb_mb = next; 886 /* 887 * First part is an inline SB_EMPTY_FIXUP(). Second part makes sure 888 * sb_lastrecord is up-to-date if we dropped part of the last record. 889 */ 890 m = sb->sb_mb; 891 if (m == NULL) { 892 sb->sb_mbtail = NULL; 893 sb->sb_lastrecord = NULL; 894 } else if (m->m_nextpkt == NULL) { 895 sb->sb_lastrecord = m; 896 } 897 } 898 899 /* 900 * Drop data from (the front of) a sockbuf. 901 */ 902 void 903 sbdrop_locked(struct sockbuf *sb, int len) 904 { 905 906 SOCKBUF_LOCK_ASSERT(sb); 907 908 sbdrop_internal(sb, len); 909 } 910 911 void 912 sbdrop(struct sockbuf *sb, int len) 913 { 914 915 SOCKBUF_LOCK(sb); 916 sbdrop_locked(sb, len); 917 SOCKBUF_UNLOCK(sb); 918 } 919 920 /* 921 * Maintain a pointer and offset pair into the socket buffer mbuf chain to 922 * avoid traversal of the entire socket buffer for larger offsets. 923 */ 924 struct mbuf * 925 sbsndptr(struct sockbuf *sb, u_int off, u_int len, u_int *moff) 926 { 927 struct mbuf *m, *ret; 928 929 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__)); 930 KASSERT(off + len <= sb->sb_cc, ("%s: beyond sb", __func__)); 931 KASSERT(sb->sb_sndptroff <= sb->sb_cc, ("%s: sndptroff broken", __func__)); 932 933 /* 934 * Is off below stored offset? Happens on retransmits. 935 * Just return, we can't help here. 936 */ 937 if (sb->sb_sndptroff > off) { 938 *moff = off; 939 return (sb->sb_mb); 940 } 941 942 /* Return closest mbuf in chain for current offset. */ 943 *moff = off - sb->sb_sndptroff; 944 m = ret = sb->sb_sndptr ? sb->sb_sndptr : sb->sb_mb; 945 946 /* Advance by len to be as close as possible for the next transmit. */ 947 for (off = off - sb->sb_sndptroff + len - 1; 948 off > 0 && m != NULL && off >= m->m_len; 949 m = m->m_next) { 950 sb->sb_sndptroff += m->m_len; 951 off -= m->m_len; 952 } 953 if (off > 0 && m == NULL) 954 panic("%s: sockbuf %p and mbuf %p clashing", __func__, sb, ret); 955 sb->sb_sndptr = m; 956 957 return (ret); 958 } 959 960 /* 961 * Drop a record off the front of a sockbuf and move the next record to the 962 * front. 963 */ 964 void 965 sbdroprecord_locked(struct sockbuf *sb) 966 { 967 struct mbuf *m; 968 969 SOCKBUF_LOCK_ASSERT(sb); 970 971 m = sb->sb_mb; 972 if (m) { 973 sb->sb_mb = m->m_nextpkt; 974 do { 975 sbfree(sb, m); 976 m = m_free(m); 977 } while (m); 978 } 979 SB_EMPTY_FIXUP(sb); 980 } 981 982 /* 983 * Drop a record off the front of a sockbuf and move the next record to the 984 * front. 985 */ 986 void 987 sbdroprecord(struct sockbuf *sb) 988 { 989 990 SOCKBUF_LOCK(sb); 991 sbdroprecord_locked(sb); 992 SOCKBUF_UNLOCK(sb); 993 } 994 995 /* 996 * Create a "control" mbuf containing the specified data with the specified 997 * type for presentation on a socket buffer. 998 */ 999 struct mbuf * 1000 sbcreatecontrol(caddr_t p, int size, int type, int level) 1001 { 1002 struct cmsghdr *cp; 1003 struct mbuf *m; 1004 1005 if (CMSG_SPACE((u_int)size) > MCLBYTES) 1006 return ((struct mbuf *) NULL); 1007 if (CMSG_SPACE((u_int)size) > MLEN) 1008 m = m_getcl(M_DONTWAIT, MT_CONTROL, 0); 1009 else 1010 m = m_get(M_DONTWAIT, MT_CONTROL); 1011 if (m == NULL) 1012 return ((struct mbuf *) NULL); 1013 cp = mtod(m, struct cmsghdr *); 1014 m->m_len = 0; 1015 KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m), 1016 ("sbcreatecontrol: short mbuf")); 1017 if (p != NULL) 1018 (void)memcpy(CMSG_DATA(cp), p, size); 1019 m->m_len = CMSG_SPACE(size); 1020 cp->cmsg_len = CMSG_LEN(size); 1021 cp->cmsg_level = level; 1022 cp->cmsg_type = type; 1023 return (m); 1024 } 1025 1026 /* 1027 * This does the same for socket buffers that sotoxsocket does for sockets: 1028 * generate an user-format data structure describing the socket buffer. Note 1029 * that the xsockbuf structure, since it is always embedded in a socket, does 1030 * not include a self pointer nor a length. We make this entry point public 1031 * in case some other mechanism needs it. 1032 */ 1033 void 1034 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb) 1035 { 1036 1037 xsb->sb_cc = sb->sb_cc; 1038 xsb->sb_hiwat = sb->sb_hiwat; 1039 xsb->sb_mbcnt = sb->sb_mbcnt; 1040 xsb->sb_mcnt = sb->sb_mcnt; 1041 xsb->sb_ccnt = sb->sb_ccnt; 1042 xsb->sb_mbmax = sb->sb_mbmax; 1043 xsb->sb_lowat = sb->sb_lowat; 1044 xsb->sb_flags = sb->sb_flags; 1045 xsb->sb_timeo = sb->sb_timeo; 1046 } 1047 1048 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */ 1049 static int dummy; 1050 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, ""); 1051 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_ULONG|CTLFLAG_RW, 1052 &sb_max, 0, sysctl_handle_sb_max, "LU", "Maximum socket buffer size"); 1053 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW, 1054 &sb_efficiency, 0, ""); 1055