xref: /freebsd/sys/kern/uipc_sockbuf.c (revision 6fd84a627fa066a98777c7ab1e65bdd885407516)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_kern_tls.h"
38 #include "opt_param.h"
39 
40 #include <sys/param.h>
41 #include <sys/aio.h> /* for aio_swake proto */
42 #include <sys/kernel.h>
43 #include <sys/ktls.h>
44 #include <sys/lock.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/mutex.h>
48 #include <sys/proc.h>
49 #include <sys/protosw.h>
50 #include <sys/resourcevar.h>
51 #include <sys/signalvar.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sx.h>
55 #include <sys/sysctl.h>
56 
57 /*
58  * Function pointer set by the AIO routines so that the socket buffer code
59  * can call back into the AIO module if it is loaded.
60  */
61 void	(*aio_swake)(struct socket *, struct sockbuf *);
62 
63 /*
64  * Primitive routines for operating on socket buffers
65  */
66 
67 u_long	sb_max = SB_MAX;
68 u_long sb_max_adj =
69        (quad_t)SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
70 
71 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
72 
73 #ifdef KERN_TLS
74 static void	sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m,
75     struct mbuf *n);
76 #endif
77 static struct mbuf	*sbcut_internal(struct sockbuf *sb, int len);
78 static void	sbflush_internal(struct sockbuf *sb);
79 
80 /*
81  * Our own version of m_clrprotoflags(), that can preserve M_NOTREADY.
82  */
83 static void
84 sbm_clrprotoflags(struct mbuf *m, int flags)
85 {
86 	int mask;
87 
88 	mask = ~M_PROTOFLAGS;
89 	if (flags & PRUS_NOTREADY)
90 		mask |= M_NOTREADY;
91 	while (m) {
92 		m->m_flags &= mask;
93 		m = m->m_next;
94 	}
95 }
96 
97 /*
98  * Compress M_NOTREADY mbufs after they have been readied by sbready().
99  *
100  * sbcompress() skips M_NOTREADY mbufs since the data is not available to
101  * be copied at the time of sbcompress().  This function combines small
102  * mbufs similar to sbcompress() once mbufs are ready.  'm0' is the first
103  * mbuf sbready() marked ready, and 'end' is the first mbuf still not
104  * ready.
105  */
106 static void
107 sbready_compress(struct sockbuf *sb, struct mbuf *m0, struct mbuf *end)
108 {
109 	struct mbuf *m, *n;
110 	int ext_size;
111 
112 	SOCKBUF_LOCK_ASSERT(sb);
113 
114 	if ((sb->sb_flags & SB_NOCOALESCE) != 0)
115 		return;
116 
117 	for (m = m0; m != end; m = m->m_next) {
118 		MPASS((m->m_flags & M_NOTREADY) == 0);
119 		/*
120 		 * NB: In sbcompress(), 'n' is the last mbuf in the
121 		 * socket buffer and 'm' is the new mbuf being copied
122 		 * into the trailing space of 'n'.  Here, the roles
123 		 * are reversed and 'n' is the next mbuf after 'm'
124 		 * that is being copied into the trailing space of
125 		 * 'm'.
126 		 */
127 		n = m->m_next;
128 #ifdef KERN_TLS
129 		/* Try to coalesce adjacent ktls mbuf hdr/trailers. */
130 		if ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
131 		    (m->m_flags & M_EXTPG) &&
132 		    (n->m_flags & M_EXTPG) &&
133 		    !mbuf_has_tls_session(m) &&
134 		    !mbuf_has_tls_session(n)) {
135 			int hdr_len, trail_len;
136 
137 			hdr_len = n->m_epg_hdrlen;
138 			trail_len = m->m_epg_trllen;
139 			if (trail_len != 0 && hdr_len != 0 &&
140 			    trail_len + hdr_len <= MBUF_PEXT_TRAIL_LEN) {
141 				/* copy n's header to m's trailer */
142 				memcpy(&m->m_epg_trail[trail_len],
143 				    n->m_epg_hdr, hdr_len);
144 				m->m_epg_trllen += hdr_len;
145 				m->m_len += hdr_len;
146 				n->m_epg_hdrlen = 0;
147 				n->m_len -= hdr_len;
148 			}
149 		}
150 #endif
151 
152 		/* Compress small unmapped mbufs into plain mbufs. */
153 		if ((m->m_flags & M_EXTPG) && m->m_len <= MLEN &&
154 		    !mbuf_has_tls_session(m)) {
155 			ext_size = m->m_ext.ext_size;
156 			if (mb_unmapped_compress(m) == 0) {
157 				sb->sb_mbcnt -= ext_size;
158 				sb->sb_ccnt -= 1;
159 			}
160 		}
161 
162 		while ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
163 		    M_WRITABLE(m) &&
164 		    (m->m_flags & M_EXTPG) == 0 &&
165 		    !mbuf_has_tls_session(n) &&
166 		    !mbuf_has_tls_session(m) &&
167 		    n->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
168 		    n->m_len <= M_TRAILINGSPACE(m) &&
169 		    m->m_type == n->m_type) {
170 			KASSERT(sb->sb_lastrecord != n,
171 		    ("%s: merging start of record (%p) into previous mbuf (%p)",
172 			    __func__, n, m));
173 			m_copydata(n, 0, n->m_len, mtodo(m, m->m_len));
174 			m->m_len += n->m_len;
175 			m->m_next = n->m_next;
176 			m->m_flags |= n->m_flags & M_EOR;
177 			if (sb->sb_mbtail == n)
178 				sb->sb_mbtail = m;
179 
180 			sb->sb_mbcnt -= MSIZE;
181 			sb->sb_mcnt -= 1;
182 			if (n->m_flags & M_EXT) {
183 				sb->sb_mbcnt -= n->m_ext.ext_size;
184 				sb->sb_ccnt -= 1;
185 			}
186 			m_free(n);
187 			n = m->m_next;
188 		}
189 	}
190 	SBLASTRECORDCHK(sb);
191 	SBLASTMBUFCHK(sb);
192 }
193 
194 /*
195  * Mark ready "count" units of I/O starting with "m".  Most mbufs
196  * count as a single unit of I/O except for M_EXTPG mbufs which
197  * are backed by multiple pages.
198  */
199 int
200 sbready(struct sockbuf *sb, struct mbuf *m0, int count)
201 {
202 	struct mbuf *m;
203 	u_int blocker;
204 
205 	SOCKBUF_LOCK_ASSERT(sb);
206 	KASSERT(sb->sb_fnrdy != NULL, ("%s: sb %p NULL fnrdy", __func__, sb));
207 	KASSERT(count > 0, ("%s: invalid count %d", __func__, count));
208 
209 	m = m0;
210 	blocker = (sb->sb_fnrdy == m) ? M_BLOCKED : 0;
211 
212 	while (count > 0) {
213 		KASSERT(m->m_flags & M_NOTREADY,
214 		    ("%s: m %p !M_NOTREADY", __func__, m));
215 		if ((m->m_flags & M_EXTPG) != 0 && m->m_epg_npgs != 0) {
216 			if (count < m->m_epg_nrdy) {
217 				m->m_epg_nrdy -= count;
218 				count = 0;
219 				break;
220 			}
221 			count -= m->m_epg_nrdy;
222 			m->m_epg_nrdy = 0;
223 		} else
224 			count--;
225 
226 		m->m_flags &= ~(M_NOTREADY | blocker);
227 		if (blocker)
228 			sb->sb_acc += m->m_len;
229 		m = m->m_next;
230 	}
231 
232 	/*
233 	 * If the first mbuf is still not fully ready because only
234 	 * some of its backing pages were readied, no further progress
235 	 * can be made.
236 	 */
237 	if (m0 == m) {
238 		MPASS(m->m_flags & M_NOTREADY);
239 		return (EINPROGRESS);
240 	}
241 
242 	if (!blocker) {
243 		sbready_compress(sb, m0, m);
244 		return (EINPROGRESS);
245 	}
246 
247 	/* This one was blocking all the queue. */
248 	for (; m && (m->m_flags & M_NOTREADY) == 0; m = m->m_next) {
249 		KASSERT(m->m_flags & M_BLOCKED,
250 		    ("%s: m %p !M_BLOCKED", __func__, m));
251 		m->m_flags &= ~M_BLOCKED;
252 		sb->sb_acc += m->m_len;
253 	}
254 
255 	sb->sb_fnrdy = m;
256 	sbready_compress(sb, m0, m);
257 
258 	return (0);
259 }
260 
261 /*
262  * Adjust sockbuf state reflecting allocation of m.
263  */
264 void
265 sballoc(struct sockbuf *sb, struct mbuf *m)
266 {
267 
268 	SOCKBUF_LOCK_ASSERT(sb);
269 
270 	sb->sb_ccc += m->m_len;
271 
272 	if (sb->sb_fnrdy == NULL) {
273 		if (m->m_flags & M_NOTREADY)
274 			sb->sb_fnrdy = m;
275 		else
276 			sb->sb_acc += m->m_len;
277 	} else
278 		m->m_flags |= M_BLOCKED;
279 
280 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
281 		sb->sb_ctl += m->m_len;
282 
283 	sb->sb_mbcnt += MSIZE;
284 	sb->sb_mcnt += 1;
285 
286 	if (m->m_flags & M_EXT) {
287 		sb->sb_mbcnt += m->m_ext.ext_size;
288 		sb->sb_ccnt += 1;
289 	}
290 }
291 
292 /*
293  * Adjust sockbuf state reflecting freeing of m.
294  */
295 void
296 sbfree(struct sockbuf *sb, struct mbuf *m)
297 {
298 
299 #if 0	/* XXX: not yet: soclose() call path comes here w/o lock. */
300 	SOCKBUF_LOCK_ASSERT(sb);
301 #endif
302 
303 	sb->sb_ccc -= m->m_len;
304 
305 	if (!(m->m_flags & M_NOTAVAIL))
306 		sb->sb_acc -= m->m_len;
307 
308 	if (m == sb->sb_fnrdy) {
309 		struct mbuf *n;
310 
311 		KASSERT(m->m_flags & M_NOTREADY,
312 		    ("%s: m %p !M_NOTREADY", __func__, m));
313 
314 		n = m->m_next;
315 		while (n != NULL && !(n->m_flags & M_NOTREADY)) {
316 			n->m_flags &= ~M_BLOCKED;
317 			sb->sb_acc += n->m_len;
318 			n = n->m_next;
319 		}
320 		sb->sb_fnrdy = n;
321 	}
322 
323 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
324 		sb->sb_ctl -= m->m_len;
325 
326 	sb->sb_mbcnt -= MSIZE;
327 	sb->sb_mcnt -= 1;
328 	if (m->m_flags & M_EXT) {
329 		sb->sb_mbcnt -= m->m_ext.ext_size;
330 		sb->sb_ccnt -= 1;
331 	}
332 
333 	if (sb->sb_sndptr == m) {
334 		sb->sb_sndptr = NULL;
335 		sb->sb_sndptroff = 0;
336 	}
337 	if (sb->sb_sndptroff != 0)
338 		sb->sb_sndptroff -= m->m_len;
339 }
340 
341 #ifdef KERN_TLS
342 /*
343  * Similar to sballoc/sbfree but does not adjust state associated with
344  * the sb_mb chain such as sb_fnrdy or sb_sndptr*.  Also assumes mbufs
345  * are not ready.
346  */
347 void
348 sballoc_ktls_rx(struct sockbuf *sb, struct mbuf *m)
349 {
350 
351 	SOCKBUF_LOCK_ASSERT(sb);
352 
353 	sb->sb_ccc += m->m_len;
354 	sb->sb_tlscc += m->m_len;
355 
356 	sb->sb_mbcnt += MSIZE;
357 	sb->sb_mcnt += 1;
358 
359 	if (m->m_flags & M_EXT) {
360 		sb->sb_mbcnt += m->m_ext.ext_size;
361 		sb->sb_ccnt += 1;
362 	}
363 }
364 
365 void
366 sbfree_ktls_rx(struct sockbuf *sb, struct mbuf *m)
367 {
368 
369 #if 0	/* XXX: not yet: soclose() call path comes here w/o lock. */
370 	SOCKBUF_LOCK_ASSERT(sb);
371 #endif
372 
373 	sb->sb_ccc -= m->m_len;
374 	sb->sb_tlscc -= m->m_len;
375 
376 	sb->sb_mbcnt -= MSIZE;
377 	sb->sb_mcnt -= 1;
378 
379 	if (m->m_flags & M_EXT) {
380 		sb->sb_mbcnt -= m->m_ext.ext_size;
381 		sb->sb_ccnt -= 1;
382 	}
383 }
384 #endif
385 
386 /*
387  * Socantsendmore indicates that no more data will be sent on the socket; it
388  * would normally be applied to a socket when the user informs the system
389  * that no more data is to be sent, by the protocol code (in case
390  * PRU_SHUTDOWN).  Socantrcvmore indicates that no more data will be
391  * received, and will normally be applied to the socket by a protocol when it
392  * detects that the peer will send no more data.  Data queued for reading in
393  * the socket may yet be read.
394  */
395 void
396 socantsendmore_locked(struct socket *so)
397 {
398 
399 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
400 
401 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
402 	sowwakeup_locked(so);
403 	mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
404 }
405 
406 void
407 socantsendmore(struct socket *so)
408 {
409 
410 	SOCKBUF_LOCK(&so->so_snd);
411 	socantsendmore_locked(so);
412 	mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
413 }
414 
415 void
416 socantrcvmore_locked(struct socket *so)
417 {
418 
419 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
420 
421 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
422 #ifdef KERN_TLS
423 	if (so->so_rcv.sb_flags & SB_TLS_RX)
424 		ktls_check_rx(&so->so_rcv);
425 #endif
426 	sorwakeup_locked(so);
427 	mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
428 }
429 
430 void
431 socantrcvmore(struct socket *so)
432 {
433 
434 	SOCKBUF_LOCK(&so->so_rcv);
435 	socantrcvmore_locked(so);
436 	mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
437 }
438 
439 void
440 soroverflow_locked(struct socket *so)
441 {
442 
443 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
444 
445 	if (so->so_options & SO_RERROR) {
446 		so->so_rerror = ENOBUFS;
447 		sorwakeup_locked(so);
448 	} else
449 		SOCKBUF_UNLOCK(&so->so_rcv);
450 
451 	mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
452 }
453 
454 void
455 soroverflow(struct socket *so)
456 {
457 
458 	SOCKBUF_LOCK(&so->so_rcv);
459 	soroverflow_locked(so);
460 	mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
461 }
462 
463 /*
464  * Wait for data to arrive at/drain from a socket buffer.
465  */
466 int
467 sbwait(struct sockbuf *sb)
468 {
469 
470 	SOCKBUF_LOCK_ASSERT(sb);
471 
472 	sb->sb_flags |= SB_WAIT;
473 	return (msleep_sbt(&sb->sb_acc, SOCKBUF_MTX(sb),
474 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
475 	    sb->sb_timeo, 0, 0));
476 }
477 
478 /*
479  * Wakeup processes waiting on a socket buffer.  Do asynchronous notification
480  * via SIGIO if the socket has the SS_ASYNC flag set.
481  *
482  * Called with the socket buffer lock held; will release the lock by the end
483  * of the function.  This allows the caller to acquire the socket buffer lock
484  * while testing for the need for various sorts of wakeup and hold it through
485  * to the point where it's no longer required.  We currently hold the lock
486  * through calls out to other subsystems (with the exception of kqueue), and
487  * then release it to avoid lock order issues.  It's not clear that's
488  * correct.
489  */
490 void
491 sowakeup(struct socket *so, struct sockbuf *sb)
492 {
493 	int ret;
494 
495 	SOCKBUF_LOCK_ASSERT(sb);
496 
497 	selwakeuppri(sb->sb_sel, PSOCK);
498 	if (!SEL_WAITING(sb->sb_sel))
499 		sb->sb_flags &= ~SB_SEL;
500 	if (sb->sb_flags & SB_WAIT) {
501 		sb->sb_flags &= ~SB_WAIT;
502 		wakeup(&sb->sb_acc);
503 	}
504 	KNOTE_LOCKED(&sb->sb_sel->si_note, 0);
505 	if (sb->sb_upcall != NULL) {
506 		ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT);
507 		if (ret == SU_ISCONNECTED) {
508 			KASSERT(sb == &so->so_rcv,
509 			    ("SO_SND upcall returned SU_ISCONNECTED"));
510 			soupcall_clear(so, SO_RCV);
511 		}
512 	} else
513 		ret = SU_OK;
514 	if (sb->sb_flags & SB_AIO)
515 		sowakeup_aio(so, sb);
516 	SOCKBUF_UNLOCK(sb);
517 	if (ret == SU_ISCONNECTED)
518 		soisconnected(so);
519 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
520 		pgsigio(&so->so_sigio, SIGIO, 0);
521 	mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED);
522 }
523 
524 /*
525  * Socket buffer (struct sockbuf) utility routines.
526  *
527  * Each socket contains two socket buffers: one for sending data and one for
528  * receiving data.  Each buffer contains a queue of mbufs, information about
529  * the number of mbufs and amount of data in the queue, and other fields
530  * allowing select() statements and notification on data availability to be
531  * implemented.
532  *
533  * Data stored in a socket buffer is maintained as a list of records.  Each
534  * record is a list of mbufs chained together with the m_next field.  Records
535  * are chained together with the m_nextpkt field. The upper level routine
536  * soreceive() expects the following conventions to be observed when placing
537  * information in the receive buffer:
538  *
539  * 1. If the protocol requires each message be preceded by the sender's name,
540  *    then a record containing that name must be present before any
541  *    associated data (mbuf's must be of type MT_SONAME).
542  * 2. If the protocol supports the exchange of ``access rights'' (really just
543  *    additional data associated with the message), and there are ``rights''
544  *    to be received, then a record containing this data should be present
545  *    (mbuf's must be of type MT_RIGHTS).
546  * 3. If a name or rights record exists, then it must be followed by a data
547  *    record, perhaps of zero length.
548  *
549  * Before using a new socket structure it is first necessary to reserve
550  * buffer space to the socket, by calling sbreserve().  This should commit
551  * some of the available buffer space in the system buffer pool for the
552  * socket (currently, it does nothing but enforce limits).  The space should
553  * be released by calling sbrelease() when the socket is destroyed.
554  */
555 int
556 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
557 {
558 	struct thread *td = curthread;
559 
560 	SOCKBUF_LOCK(&so->so_snd);
561 	SOCKBUF_LOCK(&so->so_rcv);
562 	if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0)
563 		goto bad;
564 	if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0)
565 		goto bad2;
566 	if (so->so_rcv.sb_lowat == 0)
567 		so->so_rcv.sb_lowat = 1;
568 	if (so->so_snd.sb_lowat == 0)
569 		so->so_snd.sb_lowat = MCLBYTES;
570 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
571 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
572 	SOCKBUF_UNLOCK(&so->so_rcv);
573 	SOCKBUF_UNLOCK(&so->so_snd);
574 	return (0);
575 bad2:
576 	sbrelease_locked(&so->so_snd, so);
577 bad:
578 	SOCKBUF_UNLOCK(&so->so_rcv);
579 	SOCKBUF_UNLOCK(&so->so_snd);
580 	return (ENOBUFS);
581 }
582 
583 static int
584 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
585 {
586 	int error = 0;
587 	u_long tmp_sb_max = sb_max;
588 
589 	error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req);
590 	if (error || !req->newptr)
591 		return (error);
592 	if (tmp_sb_max < MSIZE + MCLBYTES)
593 		return (EINVAL);
594 	sb_max = tmp_sb_max;
595 	sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
596 	return (0);
597 }
598 
599 /*
600  * Allot mbufs to a sockbuf.  Attempt to scale mbmax so that mbcnt doesn't
601  * become limiting if buffering efficiency is near the normal case.
602  */
603 int
604 sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so,
605     struct thread *td)
606 {
607 	rlim_t sbsize_limit;
608 
609 	SOCKBUF_LOCK_ASSERT(sb);
610 
611 	/*
612 	 * When a thread is passed, we take into account the thread's socket
613 	 * buffer size limit.  The caller will generally pass curthread, but
614 	 * in the TCP input path, NULL will be passed to indicate that no
615 	 * appropriate thread resource limits are available.  In that case,
616 	 * we don't apply a process limit.
617 	 */
618 	if (cc > sb_max_adj)
619 		return (0);
620 	if (td != NULL) {
621 		sbsize_limit = lim_cur(td, RLIMIT_SBSIZE);
622 	} else
623 		sbsize_limit = RLIM_INFINITY;
624 	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
625 	    sbsize_limit))
626 		return (0);
627 	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
628 	if (sb->sb_lowat > sb->sb_hiwat)
629 		sb->sb_lowat = sb->sb_hiwat;
630 	return (1);
631 }
632 
633 int
634 sbsetopt(struct socket *so, int cmd, u_long cc)
635 {
636 	struct sockbuf *sb;
637 	short *flags;
638 	u_int *hiwat, *lowat;
639 	int error;
640 
641 	sb = NULL;
642 	SOCK_LOCK(so);
643 	if (SOLISTENING(so)) {
644 		switch (cmd) {
645 			case SO_SNDLOWAT:
646 			case SO_SNDBUF:
647 				lowat = &so->sol_sbsnd_lowat;
648 				hiwat = &so->sol_sbsnd_hiwat;
649 				flags = &so->sol_sbsnd_flags;
650 				break;
651 			case SO_RCVLOWAT:
652 			case SO_RCVBUF:
653 				lowat = &so->sol_sbrcv_lowat;
654 				hiwat = &so->sol_sbrcv_hiwat;
655 				flags = &so->sol_sbrcv_flags;
656 				break;
657 		}
658 	} else {
659 		switch (cmd) {
660 			case SO_SNDLOWAT:
661 			case SO_SNDBUF:
662 				sb = &so->so_snd;
663 				break;
664 			case SO_RCVLOWAT:
665 			case SO_RCVBUF:
666 				sb = &so->so_rcv;
667 				break;
668 		}
669 		flags = &sb->sb_flags;
670 		hiwat = &sb->sb_hiwat;
671 		lowat = &sb->sb_lowat;
672 		SOCKBUF_LOCK(sb);
673 	}
674 
675 	error = 0;
676 	switch (cmd) {
677 	case SO_SNDBUF:
678 	case SO_RCVBUF:
679 		if (SOLISTENING(so)) {
680 			if (cc > sb_max_adj) {
681 				error = ENOBUFS;
682 				break;
683 			}
684 			*hiwat = cc;
685 			if (*lowat > *hiwat)
686 				*lowat = *hiwat;
687 		} else {
688 			if (!sbreserve_locked(sb, cc, so, curthread))
689 				error = ENOBUFS;
690 		}
691 		if (error == 0)
692 			*flags &= ~SB_AUTOSIZE;
693 		break;
694 	case SO_SNDLOWAT:
695 	case SO_RCVLOWAT:
696 		/*
697 		 * Make sure the low-water is never greater than the
698 		 * high-water.
699 		 */
700 		*lowat = (cc > *hiwat) ? *hiwat : cc;
701 		break;
702 	}
703 
704 	if (!SOLISTENING(so))
705 		SOCKBUF_UNLOCK(sb);
706 	SOCK_UNLOCK(so);
707 	return (error);
708 }
709 
710 /*
711  * Free mbufs held by a socket, and reserved mbuf space.
712  */
713 void
714 sbrelease_internal(struct sockbuf *sb, struct socket *so)
715 {
716 
717 	sbflush_internal(sb);
718 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
719 	    RLIM_INFINITY);
720 	sb->sb_mbmax = 0;
721 }
722 
723 void
724 sbrelease_locked(struct sockbuf *sb, struct socket *so)
725 {
726 
727 	SOCKBUF_LOCK_ASSERT(sb);
728 
729 	sbrelease_internal(sb, so);
730 }
731 
732 void
733 sbrelease(struct sockbuf *sb, struct socket *so)
734 {
735 
736 	SOCKBUF_LOCK(sb);
737 	sbrelease_locked(sb, so);
738 	SOCKBUF_UNLOCK(sb);
739 }
740 
741 void
742 sbdestroy(struct sockbuf *sb, struct socket *so)
743 {
744 
745 	sbrelease_internal(sb, so);
746 #ifdef KERN_TLS
747 	if (sb->sb_tls_info != NULL)
748 		ktls_free(sb->sb_tls_info);
749 	sb->sb_tls_info = NULL;
750 #endif
751 }
752 
753 /*
754  * Routines to add and remove data from an mbuf queue.
755  *
756  * The routines sbappend() or sbappendrecord() are normally called to append
757  * new mbufs to a socket buffer, after checking that adequate space is
758  * available, comparing the function sbspace() with the amount of data to be
759  * added.  sbappendrecord() differs from sbappend() in that data supplied is
760  * treated as the beginning of a new record.  To place a sender's address,
761  * optional access rights, and data in a socket receive buffer,
762  * sbappendaddr() should be used.  To place access rights and data in a
763  * socket receive buffer, sbappendrights() should be used.  In either case,
764  * the new data begins a new record.  Note that unlike sbappend() and
765  * sbappendrecord(), these routines check for the caller that there will be
766  * enough space to store the data.  Each fails if there is not enough space,
767  * or if it cannot find mbufs to store additional information in.
768  *
769  * Reliable protocols may use the socket send buffer to hold data awaiting
770  * acknowledgement.  Data is normally copied from a socket send buffer in a
771  * protocol with m_copy for output to a peer, and then removing the data from
772  * the socket buffer with sbdrop() or sbdroprecord() when the data is
773  * acknowledged by the peer.
774  */
775 #ifdef SOCKBUF_DEBUG
776 void
777 sblastrecordchk(struct sockbuf *sb, const char *file, int line)
778 {
779 	struct mbuf *m = sb->sb_mb;
780 
781 	SOCKBUF_LOCK_ASSERT(sb);
782 
783 	while (m && m->m_nextpkt)
784 		m = m->m_nextpkt;
785 
786 	if (m != sb->sb_lastrecord) {
787 		printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
788 			__func__, sb->sb_mb, sb->sb_lastrecord, m);
789 		printf("packet chain:\n");
790 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
791 			printf("\t%p\n", m);
792 		panic("%s from %s:%u", __func__, file, line);
793 	}
794 }
795 
796 void
797 sblastmbufchk(struct sockbuf *sb, const char *file, int line)
798 {
799 	struct mbuf *m = sb->sb_mb;
800 	struct mbuf *n;
801 
802 	SOCKBUF_LOCK_ASSERT(sb);
803 
804 	while (m && m->m_nextpkt)
805 		m = m->m_nextpkt;
806 
807 	while (m && m->m_next)
808 		m = m->m_next;
809 
810 	if (m != sb->sb_mbtail) {
811 		printf("%s: sb_mb %p sb_mbtail %p last %p\n",
812 			__func__, sb->sb_mb, sb->sb_mbtail, m);
813 		printf("packet tree:\n");
814 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
815 			printf("\t");
816 			for (n = m; n != NULL; n = n->m_next)
817 				printf("%p ", n);
818 			printf("\n");
819 		}
820 		panic("%s from %s:%u", __func__, file, line);
821 	}
822 
823 #ifdef KERN_TLS
824 	m = sb->sb_mtls;
825 	while (m && m->m_next)
826 		m = m->m_next;
827 
828 	if (m != sb->sb_mtlstail) {
829 		printf("%s: sb_mtls %p sb_mtlstail %p last %p\n",
830 			__func__, sb->sb_mtls, sb->sb_mtlstail, m);
831 		printf("TLS packet tree:\n");
832 		printf("\t");
833 		for (m = sb->sb_mtls; m != NULL; m = m->m_next) {
834 			printf("%p ", m);
835 		}
836 		printf("\n");
837 		panic("%s from %s:%u", __func__, file, line);
838 	}
839 #endif
840 }
841 #endif /* SOCKBUF_DEBUG */
842 
843 #define SBLINKRECORD(sb, m0) do {					\
844 	SOCKBUF_LOCK_ASSERT(sb);					\
845 	if ((sb)->sb_lastrecord != NULL)				\
846 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
847 	else								\
848 		(sb)->sb_mb = (m0);					\
849 	(sb)->sb_lastrecord = (m0);					\
850 } while (/*CONSTCOND*/0)
851 
852 /*
853  * Append mbuf chain m to the last record in the socket buffer sb.  The
854  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
855  * are discarded and mbufs are compacted where possible.
856  */
857 void
858 sbappend_locked(struct sockbuf *sb, struct mbuf *m, int flags)
859 {
860 	struct mbuf *n;
861 
862 	SOCKBUF_LOCK_ASSERT(sb);
863 
864 	if (m == NULL)
865 		return;
866 	sbm_clrprotoflags(m, flags);
867 	SBLASTRECORDCHK(sb);
868 	n = sb->sb_mb;
869 	if (n) {
870 		while (n->m_nextpkt)
871 			n = n->m_nextpkt;
872 		do {
873 			if (n->m_flags & M_EOR) {
874 				sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
875 				return;
876 			}
877 		} while (n->m_next && (n = n->m_next));
878 	} else {
879 		/*
880 		 * XXX Would like to simply use sb_mbtail here, but
881 		 * XXX I need to verify that I won't miss an EOR that
882 		 * XXX way.
883 		 */
884 		if ((n = sb->sb_lastrecord) != NULL) {
885 			do {
886 				if (n->m_flags & M_EOR) {
887 					sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
888 					return;
889 				}
890 			} while (n->m_next && (n = n->m_next));
891 		} else {
892 			/*
893 			 * If this is the first record in the socket buffer,
894 			 * it's also the last record.
895 			 */
896 			sb->sb_lastrecord = m;
897 		}
898 	}
899 	sbcompress(sb, m, n);
900 	SBLASTRECORDCHK(sb);
901 }
902 
903 /*
904  * Append mbuf chain m to the last record in the socket buffer sb.  The
905  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
906  * are discarded and mbufs are compacted where possible.
907  */
908 void
909 sbappend(struct sockbuf *sb, struct mbuf *m, int flags)
910 {
911 
912 	SOCKBUF_LOCK(sb);
913 	sbappend_locked(sb, m, flags);
914 	SOCKBUF_UNLOCK(sb);
915 }
916 
917 #ifdef KERN_TLS
918 /*
919  * Append an mbuf containing encrypted TLS data.  The data
920  * is marked M_NOTREADY until it has been decrypted and
921  * stored as a TLS record.
922  */
923 static void
924 sbappend_ktls_rx(struct sockbuf *sb, struct mbuf *m)
925 {
926 	struct mbuf *n;
927 
928 	SBLASTMBUFCHK(sb);
929 
930 	/* Remove all packet headers and mbuf tags to get a pure data chain. */
931 	m_demote(m, 1, 0);
932 
933 	for (n = m; n != NULL; n = n->m_next)
934 		n->m_flags |= M_NOTREADY;
935 	sbcompress_ktls_rx(sb, m, sb->sb_mtlstail);
936 	ktls_check_rx(sb);
937 }
938 #endif
939 
940 /*
941  * This version of sbappend() should only be used when the caller absolutely
942  * knows that there will never be more than one record in the socket buffer,
943  * that is, a stream protocol (such as TCP).
944  */
945 void
946 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags)
947 {
948 	SOCKBUF_LOCK_ASSERT(sb);
949 
950 	KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
951 
952 #ifdef KERN_TLS
953 	/*
954 	 * Decrypted TLS records are appended as records via
955 	 * sbappendrecord().  TCP passes encrypted TLS records to this
956 	 * function which must be scheduled for decryption.
957 	 */
958 	if (sb->sb_flags & SB_TLS_RX) {
959 		sbappend_ktls_rx(sb, m);
960 		return;
961 	}
962 #endif
963 
964 	KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
965 
966 	SBLASTMBUFCHK(sb);
967 
968 #ifdef KERN_TLS
969 	if (sb->sb_tls_info != NULL)
970 		ktls_seq(sb, m);
971 #endif
972 
973 	/* Remove all packet headers and mbuf tags to get a pure data chain. */
974 	m_demote(m, 1, flags & PRUS_NOTREADY ? M_NOTREADY : 0);
975 
976 	sbcompress(sb, m, sb->sb_mbtail);
977 
978 	sb->sb_lastrecord = sb->sb_mb;
979 	SBLASTRECORDCHK(sb);
980 }
981 
982 /*
983  * This version of sbappend() should only be used when the caller absolutely
984  * knows that there will never be more than one record in the socket buffer,
985  * that is, a stream protocol (such as TCP).
986  */
987 void
988 sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags)
989 {
990 
991 	SOCKBUF_LOCK(sb);
992 	sbappendstream_locked(sb, m, flags);
993 	SOCKBUF_UNLOCK(sb);
994 }
995 
996 #ifdef SOCKBUF_DEBUG
997 void
998 sbcheck(struct sockbuf *sb, const char *file, int line)
999 {
1000 	struct mbuf *m, *n, *fnrdy;
1001 	u_long acc, ccc, mbcnt;
1002 #ifdef KERN_TLS
1003 	u_long tlscc;
1004 #endif
1005 
1006 	SOCKBUF_LOCK_ASSERT(sb);
1007 
1008 	acc = ccc = mbcnt = 0;
1009 	fnrdy = NULL;
1010 
1011 	for (m = sb->sb_mb; m; m = n) {
1012 	    n = m->m_nextpkt;
1013 	    for (; m; m = m->m_next) {
1014 		if (m->m_len == 0) {
1015 			printf("sb %p empty mbuf %p\n", sb, m);
1016 			goto fail;
1017 		}
1018 		if ((m->m_flags & M_NOTREADY) && fnrdy == NULL) {
1019 			if (m != sb->sb_fnrdy) {
1020 				printf("sb %p: fnrdy %p != m %p\n",
1021 				    sb, sb->sb_fnrdy, m);
1022 				goto fail;
1023 			}
1024 			fnrdy = m;
1025 		}
1026 		if (fnrdy) {
1027 			if (!(m->m_flags & M_NOTAVAIL)) {
1028 				printf("sb %p: fnrdy %p, m %p is avail\n",
1029 				    sb, sb->sb_fnrdy, m);
1030 				goto fail;
1031 			}
1032 		} else
1033 			acc += m->m_len;
1034 		ccc += m->m_len;
1035 		mbcnt += MSIZE;
1036 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1037 			mbcnt += m->m_ext.ext_size;
1038 	    }
1039 	}
1040 #ifdef KERN_TLS
1041 	/*
1042 	 * Account for mbufs "detached" by ktls_detach_record() while
1043 	 * they are decrypted by ktls_decrypt().  tlsdcc gives a count
1044 	 * of the detached bytes that are included in ccc.  The mbufs
1045 	 * and clusters are not included in the socket buffer
1046 	 * accounting.
1047 	 */
1048 	ccc += sb->sb_tlsdcc;
1049 
1050 	tlscc = 0;
1051 	for (m = sb->sb_mtls; m; m = m->m_next) {
1052 		if (m->m_nextpkt != NULL) {
1053 			printf("sb %p TLS mbuf %p with nextpkt\n", sb, m);
1054 			goto fail;
1055 		}
1056 		if ((m->m_flags & M_NOTREADY) == 0) {
1057 			printf("sb %p TLS mbuf %p ready\n", sb, m);
1058 			goto fail;
1059 		}
1060 		tlscc += m->m_len;
1061 		ccc += m->m_len;
1062 		mbcnt += MSIZE;
1063 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1064 			mbcnt += m->m_ext.ext_size;
1065 	}
1066 
1067 	if (sb->sb_tlscc != tlscc) {
1068 		printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
1069 		    sb->sb_tlsdcc);
1070 		goto fail;
1071 	}
1072 #endif
1073 	if (acc != sb->sb_acc || ccc != sb->sb_ccc || mbcnt != sb->sb_mbcnt) {
1074 		printf("acc %ld/%u ccc %ld/%u mbcnt %ld/%u\n",
1075 		    acc, sb->sb_acc, ccc, sb->sb_ccc, mbcnt, sb->sb_mbcnt);
1076 #ifdef KERN_TLS
1077 		printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
1078 		    sb->sb_tlsdcc);
1079 #endif
1080 		goto fail;
1081 	}
1082 	return;
1083 fail:
1084 	panic("%s from %s:%u", __func__, file, line);
1085 }
1086 #endif
1087 
1088 /*
1089  * As above, except the mbuf chain begins a new record.
1090  */
1091 void
1092 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
1093 {
1094 	struct mbuf *m;
1095 
1096 	SOCKBUF_LOCK_ASSERT(sb);
1097 
1098 	if (m0 == NULL)
1099 		return;
1100 	m_clrprotoflags(m0);
1101 	/*
1102 	 * Put the first mbuf on the queue.  Note this permits zero length
1103 	 * records.
1104 	 */
1105 	sballoc(sb, m0);
1106 	SBLASTRECORDCHK(sb);
1107 	SBLINKRECORD(sb, m0);
1108 	sb->sb_mbtail = m0;
1109 	m = m0->m_next;
1110 	m0->m_next = 0;
1111 	if (m && (m0->m_flags & M_EOR)) {
1112 		m0->m_flags &= ~M_EOR;
1113 		m->m_flags |= M_EOR;
1114 	}
1115 	/* always call sbcompress() so it can do SBLASTMBUFCHK() */
1116 	sbcompress(sb, m, m0);
1117 }
1118 
1119 /*
1120  * As above, except the mbuf chain begins a new record.
1121  */
1122 void
1123 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
1124 {
1125 
1126 	SOCKBUF_LOCK(sb);
1127 	sbappendrecord_locked(sb, m0);
1128 	SOCKBUF_UNLOCK(sb);
1129 }
1130 
1131 /* Helper routine that appends data, control, and address to a sockbuf. */
1132 static int
1133 sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa,
1134     struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last)
1135 {
1136 	struct mbuf *m, *n, *nlast;
1137 #if MSIZE <= 256
1138 	if (asa->sa_len > MLEN)
1139 		return (0);
1140 #endif
1141 	m = m_get(M_NOWAIT, MT_SONAME);
1142 	if (m == NULL)
1143 		return (0);
1144 	m->m_len = asa->sa_len;
1145 	bcopy(asa, mtod(m, caddr_t), asa->sa_len);
1146 	if (m0) {
1147 		M_ASSERT_NO_SND_TAG(m0);
1148 		m_clrprotoflags(m0);
1149 		m_tag_delete_chain(m0, NULL);
1150 		/*
1151 		 * Clear some persistent info from pkthdr.
1152 		 * We don't use m_demote(), because some netgraph consumers
1153 		 * expect M_PKTHDR presence.
1154 		 */
1155 		m0->m_pkthdr.rcvif = NULL;
1156 		m0->m_pkthdr.flowid = 0;
1157 		m0->m_pkthdr.csum_flags = 0;
1158 		m0->m_pkthdr.fibnum = 0;
1159 		m0->m_pkthdr.rsstype = 0;
1160 	}
1161 	if (ctrl_last)
1162 		ctrl_last->m_next = m0;	/* concatenate data to control */
1163 	else
1164 		control = m0;
1165 	m->m_next = control;
1166 	for (n = m; n->m_next != NULL; n = n->m_next)
1167 		sballoc(sb, n);
1168 	sballoc(sb, n);
1169 	nlast = n;
1170 	SBLINKRECORD(sb, m);
1171 
1172 	sb->sb_mbtail = nlast;
1173 	SBLASTMBUFCHK(sb);
1174 
1175 	SBLASTRECORDCHK(sb);
1176 	return (1);
1177 }
1178 
1179 /*
1180  * Append address and data, and optionally, control (ancillary) data to the
1181  * receive queue of a socket.  If present, m0 must include a packet header
1182  * with total length.  Returns 0 if no space in sockbuf or insufficient
1183  * mbufs.
1184  */
1185 int
1186 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
1187     struct mbuf *m0, struct mbuf *control)
1188 {
1189 	struct mbuf *ctrl_last;
1190 	int space = asa->sa_len;
1191 
1192 	SOCKBUF_LOCK_ASSERT(sb);
1193 
1194 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1195 		panic("sbappendaddr_locked");
1196 	if (m0)
1197 		space += m0->m_pkthdr.len;
1198 	space += m_length(control, &ctrl_last);
1199 
1200 	if (space > sbspace(sb))
1201 		return (0);
1202 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1203 }
1204 
1205 /*
1206  * Append address and data, and optionally, control (ancillary) data to the
1207  * receive queue of a socket.  If present, m0 must include a packet header
1208  * with total length.  Returns 0 if insufficient mbufs.  Does not validate space
1209  * on the receiving sockbuf.
1210  */
1211 int
1212 sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa,
1213     struct mbuf *m0, struct mbuf *control)
1214 {
1215 	struct mbuf *ctrl_last;
1216 
1217 	SOCKBUF_LOCK_ASSERT(sb);
1218 
1219 	ctrl_last = (control == NULL) ? NULL : m_last(control);
1220 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1221 }
1222 
1223 /*
1224  * Append address and data, and optionally, control (ancillary) data to the
1225  * receive queue of a socket.  If present, m0 must include a packet header
1226  * with total length.  Returns 0 if no space in sockbuf or insufficient
1227  * mbufs.
1228  */
1229 int
1230 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
1231     struct mbuf *m0, struct mbuf *control)
1232 {
1233 	int retval;
1234 
1235 	SOCKBUF_LOCK(sb);
1236 	retval = sbappendaddr_locked(sb, asa, m0, control);
1237 	SOCKBUF_UNLOCK(sb);
1238 	return (retval);
1239 }
1240 
1241 void
1242 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
1243     struct mbuf *control, int flags)
1244 {
1245 	struct mbuf *m, *mlast;
1246 
1247 	sbm_clrprotoflags(m0, flags);
1248 	m_last(control)->m_next = m0;
1249 
1250 	SBLASTRECORDCHK(sb);
1251 
1252 	for (m = control; m->m_next; m = m->m_next)
1253 		sballoc(sb, m);
1254 	sballoc(sb, m);
1255 	mlast = m;
1256 	SBLINKRECORD(sb, control);
1257 
1258 	sb->sb_mbtail = mlast;
1259 	SBLASTMBUFCHK(sb);
1260 
1261 	SBLASTRECORDCHK(sb);
1262 }
1263 
1264 void
1265 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control,
1266     int flags)
1267 {
1268 
1269 	SOCKBUF_LOCK(sb);
1270 	sbappendcontrol_locked(sb, m0, control, flags);
1271 	SOCKBUF_UNLOCK(sb);
1272 }
1273 
1274 /*
1275  * Append the data in mbuf chain (m) into the socket buffer sb following mbuf
1276  * (n).  If (n) is NULL, the buffer is presumed empty.
1277  *
1278  * When the data is compressed, mbufs in the chain may be handled in one of
1279  * three ways:
1280  *
1281  * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
1282  *     record boundary, and no change in data type).
1283  *
1284  * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
1285  *     an mbuf already in the socket buffer.  This can occur if an
1286  *     appropriate mbuf exists, there is room, both mbufs are not marked as
1287  *     not ready, and no merging of data types will occur.
1288  *
1289  * (3) The mbuf may be appended to the end of the existing mbuf chain.
1290  *
1291  * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
1292  * end-of-record.
1293  */
1294 void
1295 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1296 {
1297 	int eor = 0;
1298 	struct mbuf *o;
1299 
1300 	SOCKBUF_LOCK_ASSERT(sb);
1301 
1302 	while (m) {
1303 		eor |= m->m_flags & M_EOR;
1304 		if (m->m_len == 0 &&
1305 		    (eor == 0 ||
1306 		     (((o = m->m_next) || (o = n)) &&
1307 		      o->m_type == m->m_type))) {
1308 			if (sb->sb_lastrecord == m)
1309 				sb->sb_lastrecord = m->m_next;
1310 			m = m_free(m);
1311 			continue;
1312 		}
1313 		if (n && (n->m_flags & M_EOR) == 0 &&
1314 		    M_WRITABLE(n) &&
1315 		    ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
1316 		    !(m->m_flags & M_NOTREADY) &&
1317 		    !(n->m_flags & (M_NOTREADY | M_EXTPG)) &&
1318 		    !mbuf_has_tls_session(m) &&
1319 		    !mbuf_has_tls_session(n) &&
1320 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1321 		    m->m_len <= M_TRAILINGSPACE(n) &&
1322 		    n->m_type == m->m_type) {
1323 			m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1324 			n->m_len += m->m_len;
1325 			sb->sb_ccc += m->m_len;
1326 			if (sb->sb_fnrdy == NULL)
1327 				sb->sb_acc += m->m_len;
1328 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1329 				/* XXX: Probably don't need.*/
1330 				sb->sb_ctl += m->m_len;
1331 			m = m_free(m);
1332 			continue;
1333 		}
1334 		if (m->m_len <= MLEN && (m->m_flags & M_EXTPG) &&
1335 		    (m->m_flags & M_NOTREADY) == 0 &&
1336 		    !mbuf_has_tls_session(m))
1337 			(void)mb_unmapped_compress(m);
1338 		if (n)
1339 			n->m_next = m;
1340 		else
1341 			sb->sb_mb = m;
1342 		sb->sb_mbtail = m;
1343 		sballoc(sb, m);
1344 		n = m;
1345 		m->m_flags &= ~M_EOR;
1346 		m = m->m_next;
1347 		n->m_next = 0;
1348 	}
1349 	if (eor) {
1350 		KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
1351 		n->m_flags |= eor;
1352 	}
1353 	SBLASTMBUFCHK(sb);
1354 }
1355 
1356 #ifdef KERN_TLS
1357 /*
1358  * A version of sbcompress() for encrypted TLS RX mbufs.  These mbufs
1359  * are appended to the 'sb_mtls' chain instead of 'sb_mb' and are also
1360  * a bit simpler (no EOR markers, always MT_DATA, etc.).
1361  */
1362 static void
1363 sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1364 {
1365 
1366 	SOCKBUF_LOCK_ASSERT(sb);
1367 
1368 	while (m) {
1369 		KASSERT((m->m_flags & M_EOR) == 0,
1370 		    ("TLS RX mbuf %p with EOR", m));
1371 		KASSERT(m->m_type == MT_DATA,
1372 		    ("TLS RX mbuf %p is not MT_DATA", m));
1373 		KASSERT((m->m_flags & M_NOTREADY) != 0,
1374 		    ("TLS RX mbuf %p ready", m));
1375 		KASSERT((m->m_flags & M_EXTPG) == 0,
1376 		    ("TLS RX mbuf %p unmapped", m));
1377 
1378 		if (m->m_len == 0) {
1379 			m = m_free(m);
1380 			continue;
1381 		}
1382 
1383 		/*
1384 		 * Even though both 'n' and 'm' are NOTREADY, it's ok
1385 		 * to coalesce the data.
1386 		 */
1387 		if (n &&
1388 		    M_WRITABLE(n) &&
1389 		    ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
1390 		    !(n->m_flags & (M_EXTPG)) &&
1391 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1392 		    m->m_len <= M_TRAILINGSPACE(n)) {
1393 			m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1394 			n->m_len += m->m_len;
1395 			sb->sb_ccc += m->m_len;
1396 			sb->sb_tlscc += m->m_len;
1397 			m = m_free(m);
1398 			continue;
1399 		}
1400 		if (n)
1401 			n->m_next = m;
1402 		else
1403 			sb->sb_mtls = m;
1404 		sb->sb_mtlstail = m;
1405 		sballoc_ktls_rx(sb, m);
1406 		n = m;
1407 		m = m->m_next;
1408 		n->m_next = NULL;
1409 	}
1410 	SBLASTMBUFCHK(sb);
1411 }
1412 #endif
1413 
1414 /*
1415  * Free all mbufs in a sockbuf.  Check that all resources are reclaimed.
1416  */
1417 static void
1418 sbflush_internal(struct sockbuf *sb)
1419 {
1420 
1421 	while (sb->sb_mbcnt || sb->sb_tlsdcc) {
1422 		/*
1423 		 * Don't call sbcut(sb, 0) if the leading mbuf is non-empty:
1424 		 * we would loop forever. Panic instead.
1425 		 */
1426 		if (sb->sb_ccc == 0 && (sb->sb_mb == NULL || sb->sb_mb->m_len))
1427 			break;
1428 		m_freem(sbcut_internal(sb, (int)sb->sb_ccc));
1429 	}
1430 	KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
1431 	    ("%s: ccc %u mb %p mbcnt %u", __func__,
1432 	    sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
1433 }
1434 
1435 void
1436 sbflush_locked(struct sockbuf *sb)
1437 {
1438 
1439 	SOCKBUF_LOCK_ASSERT(sb);
1440 	sbflush_internal(sb);
1441 }
1442 
1443 void
1444 sbflush(struct sockbuf *sb)
1445 {
1446 
1447 	SOCKBUF_LOCK(sb);
1448 	sbflush_locked(sb);
1449 	SOCKBUF_UNLOCK(sb);
1450 }
1451 
1452 /*
1453  * Cut data from (the front of) a sockbuf.
1454  */
1455 static struct mbuf *
1456 sbcut_internal(struct sockbuf *sb, int len)
1457 {
1458 	struct mbuf *m, *next, *mfree;
1459 	bool is_tls;
1460 
1461 	KASSERT(len >= 0, ("%s: len is %d but it is supposed to be >= 0",
1462 	    __func__, len));
1463 	KASSERT(len <= sb->sb_ccc, ("%s: len: %d is > ccc: %u",
1464 	    __func__, len, sb->sb_ccc));
1465 
1466 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1467 	is_tls = false;
1468 	mfree = NULL;
1469 
1470 	while (len > 0) {
1471 		if (m == NULL) {
1472 #ifdef KERN_TLS
1473 			if (next == NULL && !is_tls) {
1474 				if (sb->sb_tlsdcc != 0) {
1475 					MPASS(len >= sb->sb_tlsdcc);
1476 					len -= sb->sb_tlsdcc;
1477 					sb->sb_ccc -= sb->sb_tlsdcc;
1478 					sb->sb_tlsdcc = 0;
1479 					if (len == 0)
1480 						break;
1481 				}
1482 				next = sb->sb_mtls;
1483 				is_tls = true;
1484 			}
1485 #endif
1486 			KASSERT(next, ("%s: no next, len %d", __func__, len));
1487 			m = next;
1488 			next = m->m_nextpkt;
1489 		}
1490 		if (m->m_len > len) {
1491 			KASSERT(!(m->m_flags & M_NOTAVAIL),
1492 			    ("%s: m %p M_NOTAVAIL", __func__, m));
1493 			m->m_len -= len;
1494 			m->m_data += len;
1495 			sb->sb_ccc -= len;
1496 			sb->sb_acc -= len;
1497 			if (sb->sb_sndptroff != 0)
1498 				sb->sb_sndptroff -= len;
1499 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1500 				sb->sb_ctl -= len;
1501 			break;
1502 		}
1503 		len -= m->m_len;
1504 #ifdef KERN_TLS
1505 		if (is_tls)
1506 			sbfree_ktls_rx(sb, m);
1507 		else
1508 #endif
1509 			sbfree(sb, m);
1510 		/*
1511 		 * Do not put M_NOTREADY buffers to the free list, they
1512 		 * are referenced from outside.
1513 		 */
1514 		if (m->m_flags & M_NOTREADY && !is_tls)
1515 			m = m->m_next;
1516 		else {
1517 			struct mbuf *n;
1518 
1519 			n = m->m_next;
1520 			m->m_next = mfree;
1521 			mfree = m;
1522 			m = n;
1523 		}
1524 	}
1525 	/*
1526 	 * Free any zero-length mbufs from the buffer.
1527 	 * For SOCK_DGRAM sockets such mbufs represent empty records.
1528 	 * XXX: For SOCK_STREAM sockets such mbufs can appear in the buffer,
1529 	 * when sosend_generic() needs to send only control data.
1530 	 */
1531 	while (m && m->m_len == 0) {
1532 		struct mbuf *n;
1533 
1534 		sbfree(sb, m);
1535 		n = m->m_next;
1536 		m->m_next = mfree;
1537 		mfree = m;
1538 		m = n;
1539 	}
1540 #ifdef KERN_TLS
1541 	if (is_tls) {
1542 		sb->sb_mb = NULL;
1543 		sb->sb_mtls = m;
1544 		if (m == NULL)
1545 			sb->sb_mtlstail = NULL;
1546 	} else
1547 #endif
1548 	if (m) {
1549 		sb->sb_mb = m;
1550 		m->m_nextpkt = next;
1551 	} else
1552 		sb->sb_mb = next;
1553 	/*
1554 	 * First part is an inline SB_EMPTY_FIXUP().  Second part makes sure
1555 	 * sb_lastrecord is up-to-date if we dropped part of the last record.
1556 	 */
1557 	m = sb->sb_mb;
1558 	if (m == NULL) {
1559 		sb->sb_mbtail = NULL;
1560 		sb->sb_lastrecord = NULL;
1561 	} else if (m->m_nextpkt == NULL) {
1562 		sb->sb_lastrecord = m;
1563 	}
1564 
1565 	return (mfree);
1566 }
1567 
1568 /*
1569  * Drop data from (the front of) a sockbuf.
1570  */
1571 void
1572 sbdrop_locked(struct sockbuf *sb, int len)
1573 {
1574 
1575 	SOCKBUF_LOCK_ASSERT(sb);
1576 	m_freem(sbcut_internal(sb, len));
1577 }
1578 
1579 /*
1580  * Drop data from (the front of) a sockbuf,
1581  * and return it to caller.
1582  */
1583 struct mbuf *
1584 sbcut_locked(struct sockbuf *sb, int len)
1585 {
1586 
1587 	SOCKBUF_LOCK_ASSERT(sb);
1588 	return (sbcut_internal(sb, len));
1589 }
1590 
1591 void
1592 sbdrop(struct sockbuf *sb, int len)
1593 {
1594 	struct mbuf *mfree;
1595 
1596 	SOCKBUF_LOCK(sb);
1597 	mfree = sbcut_internal(sb, len);
1598 	SOCKBUF_UNLOCK(sb);
1599 
1600 	m_freem(mfree);
1601 }
1602 
1603 struct mbuf *
1604 sbsndptr_noadv(struct sockbuf *sb, uint32_t off, uint32_t *moff)
1605 {
1606 	struct mbuf *m;
1607 
1608 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1609 	if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1610 		*moff = off;
1611 		if (sb->sb_sndptr == NULL) {
1612 			sb->sb_sndptr = sb->sb_mb;
1613 			sb->sb_sndptroff = 0;
1614 		}
1615 		return (sb->sb_mb);
1616 	} else {
1617 		m = sb->sb_sndptr;
1618 		off -= sb->sb_sndptroff;
1619 	}
1620 	*moff = off;
1621 	return (m);
1622 }
1623 
1624 void
1625 sbsndptr_adv(struct sockbuf *sb, struct mbuf *mb, uint32_t len)
1626 {
1627 	/*
1628 	 * A small copy was done, advance forward the sb_sbsndptr to cover
1629 	 * it.
1630 	 */
1631 	struct mbuf *m;
1632 
1633 	if (mb != sb->sb_sndptr) {
1634 		/* Did not copyout at the same mbuf */
1635 		return;
1636 	}
1637 	m = mb;
1638 	while (m && (len > 0)) {
1639 		if (len >= m->m_len) {
1640 			len -= m->m_len;
1641 			if (m->m_next) {
1642 				sb->sb_sndptroff += m->m_len;
1643 				sb->sb_sndptr = m->m_next;
1644 			}
1645 			m = m->m_next;
1646 		} else {
1647 			len = 0;
1648 		}
1649 	}
1650 }
1651 
1652 /*
1653  * Return the first mbuf and the mbuf data offset for the provided
1654  * send offset without changing the "sb_sndptroff" field.
1655  */
1656 struct mbuf *
1657 sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff)
1658 {
1659 	struct mbuf *m;
1660 
1661 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1662 
1663 	/*
1664 	 * If the "off" is below the stored offset, which happens on
1665 	 * retransmits, just use "sb_mb":
1666 	 */
1667 	if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1668 		m = sb->sb_mb;
1669 	} else {
1670 		m = sb->sb_sndptr;
1671 		off -= sb->sb_sndptroff;
1672 	}
1673 	while (off > 0 && m != NULL) {
1674 		if (off < m->m_len)
1675 			break;
1676 		off -= m->m_len;
1677 		m = m->m_next;
1678 	}
1679 	*moff = off;
1680 	return (m);
1681 }
1682 
1683 /*
1684  * Drop a record off the front of a sockbuf and move the next record to the
1685  * front.
1686  */
1687 void
1688 sbdroprecord_locked(struct sockbuf *sb)
1689 {
1690 	struct mbuf *m;
1691 
1692 	SOCKBUF_LOCK_ASSERT(sb);
1693 
1694 	m = sb->sb_mb;
1695 	if (m) {
1696 		sb->sb_mb = m->m_nextpkt;
1697 		do {
1698 			sbfree(sb, m);
1699 			m = m_free(m);
1700 		} while (m);
1701 	}
1702 	SB_EMPTY_FIXUP(sb);
1703 }
1704 
1705 /*
1706  * Drop a record off the front of a sockbuf and move the next record to the
1707  * front.
1708  */
1709 void
1710 sbdroprecord(struct sockbuf *sb)
1711 {
1712 
1713 	SOCKBUF_LOCK(sb);
1714 	sbdroprecord_locked(sb);
1715 	SOCKBUF_UNLOCK(sb);
1716 }
1717 
1718 /*
1719  * Create a "control" mbuf containing the specified data with the specified
1720  * type for presentation on a socket buffer.
1721  */
1722 struct mbuf *
1723 sbcreatecontrol_how(void *p, int size, int type, int level, int wait)
1724 {
1725 	struct cmsghdr *cp;
1726 	struct mbuf *m;
1727 
1728 	MBUF_CHECKSLEEP(wait);
1729 	if (CMSG_SPACE((u_int)size) > MCLBYTES)
1730 		return ((struct mbuf *) NULL);
1731 	if (CMSG_SPACE((u_int)size) > MLEN)
1732 		m = m_getcl(wait, MT_CONTROL, 0);
1733 	else
1734 		m = m_get(wait, MT_CONTROL);
1735 	if (m == NULL)
1736 		return ((struct mbuf *) NULL);
1737 	cp = mtod(m, struct cmsghdr *);
1738 	m->m_len = 0;
1739 	KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
1740 	    ("sbcreatecontrol: short mbuf"));
1741 	/*
1742 	 * Don't leave the padding between the msg header and the
1743 	 * cmsg data and the padding after the cmsg data un-initialized.
1744 	 */
1745 	bzero(cp, CMSG_SPACE((u_int)size));
1746 	if (p != NULL)
1747 		(void)memcpy(CMSG_DATA(cp), p, size);
1748 	m->m_len = CMSG_SPACE(size);
1749 	cp->cmsg_len = CMSG_LEN(size);
1750 	cp->cmsg_level = level;
1751 	cp->cmsg_type = type;
1752 	return (m);
1753 }
1754 
1755 struct mbuf *
1756 sbcreatecontrol(caddr_t p, int size, int type, int level)
1757 {
1758 
1759 	return (sbcreatecontrol_how(p, size, type, level, M_NOWAIT));
1760 }
1761 
1762 /*
1763  * This does the same for socket buffers that sotoxsocket does for sockets:
1764  * generate an user-format data structure describing the socket buffer.  Note
1765  * that the xsockbuf structure, since it is always embedded in a socket, does
1766  * not include a self pointer nor a length.  We make this entry point public
1767  * in case some other mechanism needs it.
1768  */
1769 void
1770 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1771 {
1772 
1773 	xsb->sb_cc = sb->sb_ccc;
1774 	xsb->sb_hiwat = sb->sb_hiwat;
1775 	xsb->sb_mbcnt = sb->sb_mbcnt;
1776 	xsb->sb_mcnt = sb->sb_mcnt;
1777 	xsb->sb_ccnt = sb->sb_ccnt;
1778 	xsb->sb_mbmax = sb->sb_mbmax;
1779 	xsb->sb_lowat = sb->sb_lowat;
1780 	xsb->sb_flags = sb->sb_flags;
1781 	xsb->sb_timeo = sb->sb_timeo;
1782 }
1783 
1784 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1785 static int dummy;
1786 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW | CTLFLAG_SKIP, &dummy, 0, "");
1787 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf,
1788     CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, &sb_max, 0,
1789     sysctl_handle_sb_max, "LU",
1790     "Maximum socket buffer size");
1791 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1792     &sb_efficiency, 0, "Socket buffer size waste factor");
1793