xref: /freebsd/sys/kern/uipc_sockbuf.c (revision 6e8394b8baa7d5d9153ab90de6824bcd19b3b4e1)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
34  *	$Id: uipc_socket2.c,v 1.46 1999/05/10 18:15:40 peter Exp $
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/domain.h>
40 #include <sys/kernel.h>
41 #include <sys/proc.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/protosw.h>
45 #include <sys/stat.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 #include <sys/signalvar.h>
49 #include <sys/sysctl.h>
50 
51 /*
52  * Primitive routines for operating on sockets and socket buffers
53  */
54 
55 u_long	sb_max = SB_MAX;		/* XXX should be static */
56 
57 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
58 
59 /*
60  * Procedures to manipulate state flags of socket
61  * and do appropriate wakeups.  Normal sequence from the
62  * active (originating) side is that soisconnecting() is
63  * called during processing of connect() call,
64  * resulting in an eventual call to soisconnected() if/when the
65  * connection is established.  When the connection is torn down
66  * soisdisconnecting() is called during processing of disconnect() call,
67  * and soisdisconnected() is called when the connection to the peer
68  * is totally severed.  The semantics of these routines are such that
69  * connectionless protocols can call soisconnected() and soisdisconnected()
70  * only, bypassing the in-progress calls when setting up a ``connection''
71  * takes no time.
72  *
73  * From the passive side, a socket is created with
74  * two queues of sockets: so_incomp for connections in progress
75  * and so_comp for connections already made and awaiting user acceptance.
76  * As a protocol is preparing incoming connections, it creates a socket
77  * structure queued on so_incomp by calling sonewconn().  When the connection
78  * is established, soisconnected() is called, and transfers the
79  * socket structure to so_comp, making it available to accept().
80  *
81  * If a socket is closed with sockets on either
82  * so_incomp or so_comp, these sockets are dropped.
83  *
84  * If higher level protocols are implemented in
85  * the kernel, the wakeups done here will sometimes
86  * cause software-interrupt process scheduling.
87  */
88 
89 void
90 soisconnecting(so)
91 	register struct socket *so;
92 {
93 
94 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
95 	so->so_state |= SS_ISCONNECTING;
96 }
97 
98 void
99 soisconnected(so)
100 	register struct socket *so;
101 {
102 	register struct socket *head = so->so_head;
103 
104 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
105 	so->so_state |= SS_ISCONNECTED;
106 	if (head && (so->so_state & SS_INCOMP)) {
107 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
108 		head->so_incqlen--;
109 		so->so_state &= ~SS_INCOMP;
110 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
111 		so->so_state |= SS_COMP;
112 		sorwakeup(head);
113 		wakeup_one(&head->so_timeo);
114 	} else {
115 		wakeup(&so->so_timeo);
116 		sorwakeup(so);
117 		sowwakeup(so);
118 	}
119 }
120 
121 void
122 soisdisconnecting(so)
123 	register struct socket *so;
124 {
125 
126 	so->so_state &= ~SS_ISCONNECTING;
127 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
128 	wakeup((caddr_t)&so->so_timeo);
129 	sowwakeup(so);
130 	sorwakeup(so);
131 }
132 
133 void
134 soisdisconnected(so)
135 	register struct socket *so;
136 {
137 
138 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
139 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
140 	wakeup((caddr_t)&so->so_timeo);
141 	sowwakeup(so);
142 	sorwakeup(so);
143 }
144 
145 /*
146  * Return a random connection that hasn't been serviced yet and
147  * is eligible for discard.  There is a one in qlen chance that
148  * we will return a null, saying that there are no dropable
149  * requests.  In this case, the protocol specific code should drop
150  * the new request.  This insures fairness.
151  *
152  * This may be used in conjunction with protocol specific queue
153  * congestion routines.
154  */
155 struct socket *
156 sodropablereq(head)
157 	register struct socket *head;
158 {
159 	register struct socket *so;
160 	unsigned int i, j, qlen;
161 	static int rnd;
162 	static struct timeval old_runtime;
163 	static unsigned int cur_cnt, old_cnt;
164 	struct timeval tv;
165 
166 	getmicrouptime(&tv);
167 	if ((i = (tv.tv_sec - old_runtime.tv_sec)) != 0) {
168 		old_runtime = tv;
169 		old_cnt = cur_cnt / i;
170 		cur_cnt = 0;
171 	}
172 
173 	so = TAILQ_FIRST(&head->so_incomp);
174 	if (!so)
175 		return (so);
176 
177 	qlen = head->so_incqlen;
178 	if (++cur_cnt > qlen || old_cnt > qlen) {
179 		rnd = (314159 * rnd + 66329) & 0xffff;
180 		j = ((qlen + 1) * rnd) >> 16;
181 
182 		while (j-- && so)
183 		    so = TAILQ_NEXT(so, so_list);
184 	}
185 
186 	return (so);
187 }
188 
189 /*
190  * When an attempt at a new connection is noted on a socket
191  * which accepts connections, sonewconn is called.  If the
192  * connection is possible (subject to space constraints, etc.)
193  * then we allocate a new structure, propoerly linked into the
194  * data structure of the original socket, and return this.
195  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
196  */
197 struct socket *
198 sonewconn(head, connstatus)
199 	register struct socket *head;
200 	int connstatus;
201 {
202 	register struct socket *so;
203 
204 	if (head->so_qlen > 3 * head->so_qlimit / 2)
205 		return ((struct socket *)0);
206 	so = soalloc(0);
207 	if (so == NULL)
208 		return ((struct socket *)0);
209 	so->so_head = head;
210 	so->so_type = head->so_type;
211 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
212 	so->so_linger = head->so_linger;
213 	so->so_state = head->so_state | SS_NOFDREF;
214 	so->so_proto = head->so_proto;
215 	so->so_timeo = head->so_timeo;
216 	so->so_cred = head->so_cred;
217 	if (so->so_cred)
218 		so->so_cred->p_refcnt++;
219 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
220 
221 	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
222 		sodealloc(so);
223 		return ((struct socket *)0);
224 	}
225 
226 	if (connstatus) {
227 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
228 		so->so_state |= SS_COMP;
229 	} else {
230 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
231 		so->so_state |= SS_INCOMP;
232 		head->so_incqlen++;
233 	}
234 	head->so_qlen++;
235 	if (connstatus) {
236 		sorwakeup(head);
237 		wakeup((caddr_t)&head->so_timeo);
238 		so->so_state |= connstatus;
239 	}
240 	return (so);
241 }
242 
243 /*
244  * Socantsendmore indicates that no more data will be sent on the
245  * socket; it would normally be applied to a socket when the user
246  * informs the system that no more data is to be sent, by the protocol
247  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
248  * will be received, and will normally be applied to the socket by a
249  * protocol when it detects that the peer will send no more data.
250  * Data queued for reading in the socket may yet be read.
251  */
252 
253 void
254 socantsendmore(so)
255 	struct socket *so;
256 {
257 
258 	so->so_state |= SS_CANTSENDMORE;
259 	sowwakeup(so);
260 }
261 
262 void
263 socantrcvmore(so)
264 	struct socket *so;
265 {
266 
267 	so->so_state |= SS_CANTRCVMORE;
268 	sorwakeup(so);
269 }
270 
271 /*
272  * Wait for data to arrive at/drain from a socket buffer.
273  */
274 int
275 sbwait(sb)
276 	struct sockbuf *sb;
277 {
278 
279 	sb->sb_flags |= SB_WAIT;
280 	return (tsleep((caddr_t)&sb->sb_cc,
281 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
282 	    sb->sb_timeo));
283 }
284 
285 /*
286  * Lock a sockbuf already known to be locked;
287  * return any error returned from sleep (EINTR).
288  */
289 int
290 sb_lock(sb)
291 	register struct sockbuf *sb;
292 {
293 	int error;
294 
295 	while (sb->sb_flags & SB_LOCK) {
296 		sb->sb_flags |= SB_WANT;
297 		error = tsleep((caddr_t)&sb->sb_flags,
298 		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
299 		    "sblock", 0);
300 		if (error)
301 			return (error);
302 	}
303 	sb->sb_flags |= SB_LOCK;
304 	return (0);
305 }
306 
307 /*
308  * Wakeup processes waiting on a socket buffer.
309  * Do asynchronous notification via SIGIO
310  * if the socket has the SS_ASYNC flag set.
311  */
312 void
313 sowakeup(so, sb)
314 	register struct socket *so;
315 	register struct sockbuf *sb;
316 {
317 	selwakeup(&sb->sb_sel);
318 	sb->sb_flags &= ~SB_SEL;
319 	if (sb->sb_flags & SB_WAIT) {
320 		sb->sb_flags &= ~SB_WAIT;
321 		wakeup((caddr_t)&sb->sb_cc);
322 	}
323 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
324 		pgsigio(so->so_sigio, SIGIO, 0);
325 	if (sb->sb_flags & SB_UPCALL)
326 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
327 }
328 
329 /*
330  * Socket buffer (struct sockbuf) utility routines.
331  *
332  * Each socket contains two socket buffers: one for sending data and
333  * one for receiving data.  Each buffer contains a queue of mbufs,
334  * information about the number of mbufs and amount of data in the
335  * queue, and other fields allowing select() statements and notification
336  * on data availability to be implemented.
337  *
338  * Data stored in a socket buffer is maintained as a list of records.
339  * Each record is a list of mbufs chained together with the m_next
340  * field.  Records are chained together with the m_nextpkt field. The upper
341  * level routine soreceive() expects the following conventions to be
342  * observed when placing information in the receive buffer:
343  *
344  * 1. If the protocol requires each message be preceded by the sender's
345  *    name, then a record containing that name must be present before
346  *    any associated data (mbuf's must be of type MT_SONAME).
347  * 2. If the protocol supports the exchange of ``access rights'' (really
348  *    just additional data associated with the message), and there are
349  *    ``rights'' to be received, then a record containing this data
350  *    should be present (mbuf's must be of type MT_RIGHTS).
351  * 3. If a name or rights record exists, then it must be followed by
352  *    a data record, perhaps of zero length.
353  *
354  * Before using a new socket structure it is first necessary to reserve
355  * buffer space to the socket, by calling sbreserve().  This should commit
356  * some of the available buffer space in the system buffer pool for the
357  * socket (currently, it does nothing but enforce limits).  The space
358  * should be released by calling sbrelease() when the socket is destroyed.
359  */
360 
361 int
362 soreserve(so, sndcc, rcvcc)
363 	register struct socket *so;
364 	u_long sndcc, rcvcc;
365 {
366 
367 	if (sbreserve(&so->so_snd, sndcc) == 0)
368 		goto bad;
369 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
370 		goto bad2;
371 	if (so->so_rcv.sb_lowat == 0)
372 		so->so_rcv.sb_lowat = 1;
373 	if (so->so_snd.sb_lowat == 0)
374 		so->so_snd.sb_lowat = MCLBYTES;
375 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
376 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
377 	return (0);
378 bad2:
379 	sbrelease(&so->so_snd);
380 bad:
381 	return (ENOBUFS);
382 }
383 
384 /*
385  * Allot mbufs to a sockbuf.
386  * Attempt to scale mbmax so that mbcnt doesn't become limiting
387  * if buffering efficiency is near the normal case.
388  */
389 int
390 sbreserve(sb, cc)
391 	struct sockbuf *sb;
392 	u_long cc;
393 {
394 	if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES))
395 		return (0);
396 	sb->sb_hiwat = cc;
397 	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
398 	if (sb->sb_lowat > sb->sb_hiwat)
399 		sb->sb_lowat = sb->sb_hiwat;
400 	return (1);
401 }
402 
403 /*
404  * Free mbufs held by a socket, and reserved mbuf space.
405  */
406 void
407 sbrelease(sb)
408 	struct sockbuf *sb;
409 {
410 
411 	sbflush(sb);
412 	sb->sb_hiwat = sb->sb_mbmax = 0;
413 }
414 
415 /*
416  * Routines to add and remove
417  * data from an mbuf queue.
418  *
419  * The routines sbappend() or sbappendrecord() are normally called to
420  * append new mbufs to a socket buffer, after checking that adequate
421  * space is available, comparing the function sbspace() with the amount
422  * of data to be added.  sbappendrecord() differs from sbappend() in
423  * that data supplied is treated as the beginning of a new record.
424  * To place a sender's address, optional access rights, and data in a
425  * socket receive buffer, sbappendaddr() should be used.  To place
426  * access rights and data in a socket receive buffer, sbappendrights()
427  * should be used.  In either case, the new data begins a new record.
428  * Note that unlike sbappend() and sbappendrecord(), these routines check
429  * for the caller that there will be enough space to store the data.
430  * Each fails if there is not enough space, or if it cannot find mbufs
431  * to store additional information in.
432  *
433  * Reliable protocols may use the socket send buffer to hold data
434  * awaiting acknowledgement.  Data is normally copied from a socket
435  * send buffer in a protocol with m_copy for output to a peer,
436  * and then removing the data from the socket buffer with sbdrop()
437  * or sbdroprecord() when the data is acknowledged by the peer.
438  */
439 
440 /*
441  * Append mbuf chain m to the last record in the
442  * socket buffer sb.  The additional space associated
443  * the mbuf chain is recorded in sb.  Empty mbufs are
444  * discarded and mbufs are compacted where possible.
445  */
446 void
447 sbappend(sb, m)
448 	struct sockbuf *sb;
449 	struct mbuf *m;
450 {
451 	register struct mbuf *n;
452 
453 	if (m == 0)
454 		return;
455 	n = sb->sb_mb;
456 	if (n) {
457 		while (n->m_nextpkt)
458 			n = n->m_nextpkt;
459 		do {
460 			if (n->m_flags & M_EOR) {
461 				sbappendrecord(sb, m); /* XXXXXX!!!! */
462 				return;
463 			}
464 		} while (n->m_next && (n = n->m_next));
465 	}
466 	sbcompress(sb, m, n);
467 }
468 
469 #ifdef SOCKBUF_DEBUG
470 void
471 sbcheck(sb)
472 	register struct sockbuf *sb;
473 {
474 	register struct mbuf *m;
475 	register struct mbuf *n = 0;
476 	register u_long len = 0, mbcnt = 0;
477 
478 	for (m = sb->sb_mb; m; m = n) {
479 	    n = m->m_nextpkt;
480 	    for (; m; m = m->m_next) {
481 		len += m->m_len;
482 		mbcnt += MSIZE;
483 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
484 			mbcnt += m->m_ext.ext_size;
485 	    }
486 	}
487 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
488 		printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
489 		    mbcnt, sb->sb_mbcnt);
490 		panic("sbcheck");
491 	}
492 }
493 #endif
494 
495 /*
496  * As above, except the mbuf chain
497  * begins a new record.
498  */
499 void
500 sbappendrecord(sb, m0)
501 	register struct sockbuf *sb;
502 	register struct mbuf *m0;
503 {
504 	register struct mbuf *m;
505 
506 	if (m0 == 0)
507 		return;
508 	m = sb->sb_mb;
509 	if (m)
510 		while (m->m_nextpkt)
511 			m = m->m_nextpkt;
512 	/*
513 	 * Put the first mbuf on the queue.
514 	 * Note this permits zero length records.
515 	 */
516 	sballoc(sb, m0);
517 	if (m)
518 		m->m_nextpkt = m0;
519 	else
520 		sb->sb_mb = m0;
521 	m = m0->m_next;
522 	m0->m_next = 0;
523 	if (m && (m0->m_flags & M_EOR)) {
524 		m0->m_flags &= ~M_EOR;
525 		m->m_flags |= M_EOR;
526 	}
527 	sbcompress(sb, m, m0);
528 }
529 
530 /*
531  * As above except that OOB data
532  * is inserted at the beginning of the sockbuf,
533  * but after any other OOB data.
534  */
535 void
536 sbinsertoob(sb, m0)
537 	register struct sockbuf *sb;
538 	register struct mbuf *m0;
539 {
540 	register struct mbuf *m;
541 	register struct mbuf **mp;
542 
543 	if (m0 == 0)
544 		return;
545 	for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
546 	    m = *mp;
547 	    again:
548 		switch (m->m_type) {
549 
550 		case MT_OOBDATA:
551 			continue;		/* WANT next train */
552 
553 		case MT_CONTROL:
554 			m = m->m_next;
555 			if (m)
556 				goto again;	/* inspect THIS train further */
557 		}
558 		break;
559 	}
560 	/*
561 	 * Put the first mbuf on the queue.
562 	 * Note this permits zero length records.
563 	 */
564 	sballoc(sb, m0);
565 	m0->m_nextpkt = *mp;
566 	*mp = m0;
567 	m = m0->m_next;
568 	m0->m_next = 0;
569 	if (m && (m0->m_flags & M_EOR)) {
570 		m0->m_flags &= ~M_EOR;
571 		m->m_flags |= M_EOR;
572 	}
573 	sbcompress(sb, m, m0);
574 }
575 
576 /*
577  * Append address and data, and optionally, control (ancillary) data
578  * to the receive queue of a socket.  If present,
579  * m0 must include a packet header with total length.
580  * Returns 0 if no space in sockbuf or insufficient mbufs.
581  */
582 int
583 sbappendaddr(sb, asa, m0, control)
584 	register struct sockbuf *sb;
585 	struct sockaddr *asa;
586 	struct mbuf *m0, *control;
587 {
588 	register struct mbuf *m, *n;
589 	int space = asa->sa_len;
590 
591 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
592 panic("sbappendaddr");
593 	if (m0)
594 		space += m0->m_pkthdr.len;
595 	for (n = control; n; n = n->m_next) {
596 		space += n->m_len;
597 		if (n->m_next == 0)	/* keep pointer to last control buf */
598 			break;
599 	}
600 	if (space > sbspace(sb))
601 		return (0);
602 	if (asa->sa_len > MLEN)
603 		return (0);
604 	MGET(m, M_DONTWAIT, MT_SONAME);
605 	if (m == 0)
606 		return (0);
607 	m->m_len = asa->sa_len;
608 	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
609 	if (n)
610 		n->m_next = m0;		/* concatenate data to control */
611 	else
612 		control = m0;
613 	m->m_next = control;
614 	for (n = m; n; n = n->m_next)
615 		sballoc(sb, n);
616 	n = sb->sb_mb;
617 	if (n) {
618 		while (n->m_nextpkt)
619 			n = n->m_nextpkt;
620 		n->m_nextpkt = m;
621 	} else
622 		sb->sb_mb = m;
623 	return (1);
624 }
625 
626 int
627 sbappendcontrol(sb, m0, control)
628 	struct sockbuf *sb;
629 	struct mbuf *control, *m0;
630 {
631 	register struct mbuf *m, *n;
632 	int space = 0;
633 
634 	if (control == 0)
635 		panic("sbappendcontrol");
636 	for (m = control; ; m = m->m_next) {
637 		space += m->m_len;
638 		if (m->m_next == 0)
639 			break;
640 	}
641 	n = m;			/* save pointer to last control buffer */
642 	for (m = m0; m; m = m->m_next)
643 		space += m->m_len;
644 	if (space > sbspace(sb))
645 		return (0);
646 	n->m_next = m0;			/* concatenate data to control */
647 	for (m = control; m; m = m->m_next)
648 		sballoc(sb, m);
649 	n = sb->sb_mb;
650 	if (n) {
651 		while (n->m_nextpkt)
652 			n = n->m_nextpkt;
653 		n->m_nextpkt = control;
654 	} else
655 		sb->sb_mb = control;
656 	return (1);
657 }
658 
659 /*
660  * Compress mbuf chain m into the socket
661  * buffer sb following mbuf n.  If n
662  * is null, the buffer is presumed empty.
663  */
664 void
665 sbcompress(sb, m, n)
666 	register struct sockbuf *sb;
667 	register struct mbuf *m, *n;
668 {
669 	register int eor = 0;
670 	register struct mbuf *o;
671 
672 	while (m) {
673 		eor |= m->m_flags & M_EOR;
674 		if (m->m_len == 0 &&
675 		    (eor == 0 ||
676 		     (((o = m->m_next) || (o = n)) &&
677 		      o->m_type == m->m_type))) {
678 			m = m_free(m);
679 			continue;
680 		}
681 		if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
682 		    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
683 		    n->m_type == m->m_type) {
684 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
685 			    (unsigned)m->m_len);
686 			n->m_len += m->m_len;
687 			sb->sb_cc += m->m_len;
688 			m = m_free(m);
689 			continue;
690 		}
691 		if (n)
692 			n->m_next = m;
693 		else
694 			sb->sb_mb = m;
695 		sballoc(sb, m);
696 		n = m;
697 		m->m_flags &= ~M_EOR;
698 		m = m->m_next;
699 		n->m_next = 0;
700 	}
701 	if (eor) {
702 		if (n)
703 			n->m_flags |= eor;
704 		else
705 			printf("semi-panic: sbcompress\n");
706 	}
707 }
708 
709 /*
710  * Free all mbufs in a sockbuf.
711  * Check that all resources are reclaimed.
712  */
713 void
714 sbflush(sb)
715 	register struct sockbuf *sb;
716 {
717 
718 	if (sb->sb_flags & SB_LOCK)
719 		panic("sbflush: locked");
720 	while (sb->sb_mbcnt && sb->sb_cc)
721 		sbdrop(sb, (int)sb->sb_cc);
722 	if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt)
723 		panic("sbflush: cc %ld || mb %p || mbcnt %ld", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt);
724 }
725 
726 /*
727  * Drop data from (the front of) a sockbuf.
728  */
729 void
730 sbdrop(sb, len)
731 	register struct sockbuf *sb;
732 	register int len;
733 {
734 	register struct mbuf *m, *mn;
735 	struct mbuf *next;
736 
737 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
738 	while (len > 0) {
739 		if (m == 0) {
740 			if (next == 0)
741 				panic("sbdrop");
742 			m = next;
743 			next = m->m_nextpkt;
744 			continue;
745 		}
746 		if (m->m_len > len) {
747 			m->m_len -= len;
748 			m->m_data += len;
749 			sb->sb_cc -= len;
750 			break;
751 		}
752 		len -= m->m_len;
753 		sbfree(sb, m);
754 		MFREE(m, mn);
755 		m = mn;
756 	}
757 	while (m && m->m_len == 0) {
758 		sbfree(sb, m);
759 		MFREE(m, mn);
760 		m = mn;
761 	}
762 	if (m) {
763 		sb->sb_mb = m;
764 		m->m_nextpkt = next;
765 	} else
766 		sb->sb_mb = next;
767 }
768 
769 /*
770  * Drop a record off the front of a sockbuf
771  * and move the next record to the front.
772  */
773 void
774 sbdroprecord(sb)
775 	register struct sockbuf *sb;
776 {
777 	register struct mbuf *m, *mn;
778 
779 	m = sb->sb_mb;
780 	if (m) {
781 		sb->sb_mb = m->m_nextpkt;
782 		do {
783 			sbfree(sb, m);
784 			MFREE(m, mn);
785 			m = mn;
786 		} while (m);
787 	}
788 }
789 
790 /*
791  * Create a "control" mbuf containing the specified data
792  * with the specified type for presentation on a socket buffer.
793  */
794 struct mbuf *
795 sbcreatecontrol(p, size, type, level)
796 	caddr_t p;
797 	register int size;
798 	int type, level;
799 {
800 	register struct cmsghdr *cp;
801 	struct mbuf *m;
802 
803 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
804 		return ((struct mbuf *) NULL);
805 	cp = mtod(m, struct cmsghdr *);
806 	/* XXX check size? */
807 	(void)memcpy(CMSG_DATA(cp), p, size);
808 	size += sizeof(*cp);
809 	m->m_len = size;
810 	cp->cmsg_len = size;
811 	cp->cmsg_level = level;
812 	cp->cmsg_type = type;
813 	return (m);
814 }
815 
816 /*
817  * Some routines that return EOPNOTSUPP for entry points that are not
818  * supported by a protocol.  Fill in as needed.
819  */
820 int
821 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
822 {
823 	return EOPNOTSUPP;
824 }
825 
826 int
827 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p)
828 {
829 	return EOPNOTSUPP;
830 }
831 
832 int
833 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
834 {
835 	return EOPNOTSUPP;
836 }
837 
838 int
839 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
840 		    struct ifnet *ifp, struct proc *p)
841 {
842 	return EOPNOTSUPP;
843 }
844 
845 int
846 pru_listen_notsupp(struct socket *so, struct proc *p)
847 {
848 	return EOPNOTSUPP;
849 }
850 
851 int
852 pru_rcvd_notsupp(struct socket *so, int flags)
853 {
854 	return EOPNOTSUPP;
855 }
856 
857 int
858 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
859 {
860 	return EOPNOTSUPP;
861 }
862 
863 /*
864  * This isn't really a ``null'' operation, but it's the default one
865  * and doesn't do anything destructive.
866  */
867 int
868 pru_sense_null(struct socket *so, struct stat *sb)
869 {
870 	sb->st_blksize = so->so_snd.sb_hiwat;
871 	return 0;
872 }
873 
874 /*
875  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
876  */
877 struct sockaddr *
878 dup_sockaddr(sa, canwait)
879 	struct sockaddr *sa;
880 	int canwait;
881 {
882 	struct sockaddr *sa2;
883 
884 	MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
885 	       canwait ? M_WAITOK : M_NOWAIT);
886 	if (sa2)
887 		bcopy(sa, sa2, sa->sa_len);
888 	return sa2;
889 }
890 
891 /*
892  * Create an external-format (``xsocket'') structure using the information
893  * in the kernel-format socket structure pointed to by so.  This is done
894  * to reduce the spew of irrelevant information over this interface,
895  * to isolate user code from changes in the kernel structure, and
896  * potentially to provide information-hiding if we decide that
897  * some of this information should be hidden from users.
898  */
899 void
900 sotoxsocket(struct socket *so, struct xsocket *xso)
901 {
902 	xso->xso_len = sizeof *xso;
903 	xso->xso_so = so;
904 	xso->so_type = so->so_type;
905 	xso->so_options = so->so_options;
906 	xso->so_linger = so->so_linger;
907 	xso->so_state = so->so_state;
908 	xso->so_pcb = so->so_pcb;
909 	xso->xso_protocol = so->so_proto->pr_protocol;
910 	xso->xso_family = so->so_proto->pr_domain->dom_family;
911 	xso->so_qlen = so->so_qlen;
912 	xso->so_incqlen = so->so_incqlen;
913 	xso->so_qlimit = so->so_qlimit;
914 	xso->so_timeo = so->so_timeo;
915 	xso->so_error = so->so_error;
916 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
917 	xso->so_oobmark = so->so_oobmark;
918 	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
919 	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
920 	xso->so_uid = so->so_cred ? so->so_cred->pc_ucred->cr_uid : -1;
921 }
922 
923 /*
924  * This does the same for sockbufs.  Note that the xsockbuf structure,
925  * since it is always embedded in a socket, does not include a self
926  * pointer nor a length.  We make this entry point public in case
927  * some other mechanism needs it.
928  */
929 void
930 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
931 {
932 	xsb->sb_cc = sb->sb_cc;
933 	xsb->sb_hiwat = sb->sb_hiwat;
934 	xsb->sb_mbcnt = sb->sb_mbcnt;
935 	xsb->sb_mbmax = sb->sb_mbmax;
936 	xsb->sb_lowat = sb->sb_lowat;
937 	xsb->sb_flags = sb->sb_flags;
938 	xsb->sb_timeo = sb->sb_timeo;
939 }
940 
941 /*
942  * Here is the definition of some of the basic objects in the kern.ipc
943  * branch of the MIB.
944  */
945 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
946 
947 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
948 static int dummy;
949 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
950 
951 SYSCTL_INT(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW,
952     &sb_max, 0, "Maximum socket buffer size");
953 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD,
954     &maxsockets, 0, "Maximum number of sockets avaliable");
955 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
956     &sb_efficiency, 0, "");
957 SYSCTL_INT(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters, CTLFLAG_RD,
958     &nmbclusters, 0, "Maximum number of mbuf clusters avaliable");
959 
960