xref: /freebsd/sys/kern/uipc_sockbuf.c (revision 652a9748855320619e075c4e83aef2f5294412d2)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_kern_tls.h"
38 #include "opt_param.h"
39 
40 #include <sys/param.h>
41 #include <sys/aio.h> /* for aio_swake proto */
42 #include <sys/kernel.h>
43 #include <sys/ktls.h>
44 #include <sys/lock.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/mutex.h>
48 #include <sys/proc.h>
49 #include <sys/protosw.h>
50 #include <sys/resourcevar.h>
51 #include <sys/signalvar.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sx.h>
55 #include <sys/sysctl.h>
56 
57 /*
58  * Function pointer set by the AIO routines so that the socket buffer code
59  * can call back into the AIO module if it is loaded.
60  */
61 void	(*aio_swake)(struct socket *, struct sockbuf *);
62 
63 /*
64  * Primitive routines for operating on socket buffers
65  */
66 
67 u_long	sb_max = SB_MAX;
68 u_long sb_max_adj =
69        (quad_t)SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
70 
71 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
72 
73 static struct mbuf	*sbcut_internal(struct sockbuf *sb, int len);
74 static void	sbflush_internal(struct sockbuf *sb);
75 
76 /*
77  * Our own version of m_clrprotoflags(), that can preserve M_NOTREADY.
78  */
79 static void
80 sbm_clrprotoflags(struct mbuf *m, int flags)
81 {
82 	int mask;
83 
84 	mask = ~M_PROTOFLAGS;
85 	if (flags & PRUS_NOTREADY)
86 		mask |= M_NOTREADY;
87 	while (m) {
88 		m->m_flags &= mask;
89 		m = m->m_next;
90 	}
91 }
92 
93 /*
94  * Compress M_NOTREADY mbufs after they have been readied by sbready().
95  *
96  * sbcompress() skips M_NOTREADY mbufs since the data is not available to
97  * be copied at the time of sbcompress().  This function combines small
98  * mbufs similar to sbcompress() once mbufs are ready.  'm0' is the first
99  * mbuf sbready() marked ready, and 'end' is the first mbuf still not
100  * ready.
101  */
102 static void
103 sbready_compress(struct sockbuf *sb, struct mbuf *m0, struct mbuf *end)
104 {
105 	struct mbuf *m, *n;
106 	int ext_size;
107 
108 	SOCKBUF_LOCK_ASSERT(sb);
109 
110 	if ((sb->sb_flags & SB_NOCOALESCE) != 0)
111 		return;
112 
113 	for (m = m0; m != end; m = m->m_next) {
114 		MPASS((m->m_flags & M_NOTREADY) == 0);
115 		/*
116 		 * NB: In sbcompress(), 'n' is the last mbuf in the
117 		 * socket buffer and 'm' is the new mbuf being copied
118 		 * into the trailing space of 'n'.  Here, the roles
119 		 * are reversed and 'n' is the next mbuf after 'm'
120 		 * that is being copied into the trailing space of
121 		 * 'm'.
122 		 */
123 		n = m->m_next;
124 #ifdef KERN_TLS
125 		/* Try to coalesce adjacent ktls mbuf hdr/trailers. */
126 		if ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
127 		    (m->m_flags & M_NOMAP) &&
128 		    (n->m_flags & M_NOMAP) &&
129 		    !mbuf_has_tls_session(m) &&
130 		    !mbuf_has_tls_session(n)) {
131 			struct mbuf_ext_pgs *mpgs, *npgs;
132 			int hdr_len, trail_len;
133 
134 			mpgs = m->m_ext.ext_pgs;
135 			npgs = n->m_ext.ext_pgs;
136 			hdr_len = npgs->hdr_len;
137 			trail_len = mpgs->trail_len;
138 			if (trail_len != 0 && hdr_len != 0 &&
139 			    trail_len + hdr_len <= MBUF_PEXT_TRAIL_LEN) {
140 				/* copy n's header to m's trailer */
141 				memcpy(&mpgs->trail[trail_len], npgs->hdr,
142 				    hdr_len);
143 				mpgs->trail_len += hdr_len;
144 				m->m_len += hdr_len;
145 				npgs->hdr_len = 0;
146 				n->m_len -= hdr_len;
147 			}
148 		}
149 #endif
150 
151 		/* Compress small unmapped mbufs into plain mbufs. */
152 		if ((m->m_flags & M_NOMAP) && m->m_len <= MLEN &&
153 		    !mbuf_has_tls_session(m)) {
154 			MPASS(m->m_flags & M_EXT);
155 			ext_size = m->m_ext.ext_size;
156 			if (mb_unmapped_compress(m) == 0) {
157 				sb->sb_mbcnt -= ext_size;
158 				sb->sb_ccnt -= 1;
159 			}
160 		}
161 
162 		while ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
163 		    M_WRITABLE(m) &&
164 		    (m->m_flags & M_NOMAP) == 0 &&
165 		    !mbuf_has_tls_session(n) &&
166 		    !mbuf_has_tls_session(m) &&
167 		    n->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
168 		    n->m_len <= M_TRAILINGSPACE(m) &&
169 		    m->m_type == n->m_type) {
170 			KASSERT(sb->sb_lastrecord != n,
171 		    ("%s: merging start of record (%p) into previous mbuf (%p)",
172 			    __func__, n, m));
173 			m_copydata(n, 0, n->m_len, mtodo(m, m->m_len));
174 			m->m_len += n->m_len;
175 			m->m_next = n->m_next;
176 			m->m_flags |= n->m_flags & M_EOR;
177 			if (sb->sb_mbtail == n)
178 				sb->sb_mbtail = m;
179 
180 			sb->sb_mbcnt -= MSIZE;
181 			sb->sb_mcnt -= 1;
182 			if (n->m_flags & M_EXT) {
183 				sb->sb_mbcnt -= n->m_ext.ext_size;
184 				sb->sb_ccnt -= 1;
185 			}
186 			m_free(n);
187 			n = m->m_next;
188 		}
189 	}
190 	SBLASTRECORDCHK(sb);
191 	SBLASTMBUFCHK(sb);
192 }
193 
194 /*
195  * Mark ready "count" units of I/O starting with "m".  Most mbufs
196  * count as a single unit of I/O except for EXT_PGS-backed mbufs which
197  * can be backed by multiple pages.
198  */
199 int
200 sbready(struct sockbuf *sb, struct mbuf *m0, int count)
201 {
202 	struct mbuf *m;
203 	u_int blocker;
204 
205 	SOCKBUF_LOCK_ASSERT(sb);
206 	KASSERT(sb->sb_fnrdy != NULL, ("%s: sb %p NULL fnrdy", __func__, sb));
207 	KASSERT(count > 0, ("%s: invalid count %d", __func__, count));
208 
209 	m = m0;
210 	blocker = (sb->sb_fnrdy == m) ? M_BLOCKED : 0;
211 
212 	while (count > 0) {
213 		KASSERT(m->m_flags & M_NOTREADY,
214 		    ("%s: m %p !M_NOTREADY", __func__, m));
215 		if ((m->m_flags & M_EXT) != 0 &&
216 		    m->m_ext.ext_type == EXT_PGS) {
217 			if (count < m->m_ext.ext_pgs->nrdy) {
218 				m->m_ext.ext_pgs->nrdy -= count;
219 				count = 0;
220 				break;
221 			}
222 			count -= m->m_ext.ext_pgs->nrdy;
223 			m->m_ext.ext_pgs->nrdy = 0;
224 		} else
225 			count--;
226 
227 		m->m_flags &= ~(M_NOTREADY | blocker);
228 		if (blocker)
229 			sb->sb_acc += m->m_len;
230 		m = m->m_next;
231 	}
232 
233 	/*
234 	 * If the first mbuf is still not fully ready because only
235 	 * some of its backing pages were readied, no further progress
236 	 * can be made.
237 	 */
238 	if (m0 == m) {
239 		MPASS(m->m_flags & M_NOTREADY);
240 		return (EINPROGRESS);
241 	}
242 
243 	if (!blocker) {
244 		sbready_compress(sb, m0, m);
245 		return (EINPROGRESS);
246 	}
247 
248 	/* This one was blocking all the queue. */
249 	for (; m && (m->m_flags & M_NOTREADY) == 0; m = m->m_next) {
250 		KASSERT(m->m_flags & M_BLOCKED,
251 		    ("%s: m %p !M_BLOCKED", __func__, m));
252 		m->m_flags &= ~M_BLOCKED;
253 		sb->sb_acc += m->m_len;
254 	}
255 
256 	sb->sb_fnrdy = m;
257 	sbready_compress(sb, m0, m);
258 
259 	return (0);
260 }
261 
262 /*
263  * Adjust sockbuf state reflecting allocation of m.
264  */
265 void
266 sballoc(struct sockbuf *sb, struct mbuf *m)
267 {
268 
269 	SOCKBUF_LOCK_ASSERT(sb);
270 
271 	sb->sb_ccc += m->m_len;
272 
273 	if (sb->sb_fnrdy == NULL) {
274 		if (m->m_flags & M_NOTREADY)
275 			sb->sb_fnrdy = m;
276 		else
277 			sb->sb_acc += m->m_len;
278 	} else
279 		m->m_flags |= M_BLOCKED;
280 
281 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
282 		sb->sb_ctl += m->m_len;
283 
284 	sb->sb_mbcnt += MSIZE;
285 	sb->sb_mcnt += 1;
286 
287 	if (m->m_flags & M_EXT) {
288 		sb->sb_mbcnt += m->m_ext.ext_size;
289 		sb->sb_ccnt += 1;
290 	}
291 }
292 
293 /*
294  * Adjust sockbuf state reflecting freeing of m.
295  */
296 void
297 sbfree(struct sockbuf *sb, struct mbuf *m)
298 {
299 
300 #if 0	/* XXX: not yet: soclose() call path comes here w/o lock. */
301 	SOCKBUF_LOCK_ASSERT(sb);
302 #endif
303 
304 	sb->sb_ccc -= m->m_len;
305 
306 	if (!(m->m_flags & M_NOTAVAIL))
307 		sb->sb_acc -= m->m_len;
308 
309 	if (m == sb->sb_fnrdy) {
310 		struct mbuf *n;
311 
312 		KASSERT(m->m_flags & M_NOTREADY,
313 		    ("%s: m %p !M_NOTREADY", __func__, m));
314 
315 		n = m->m_next;
316 		while (n != NULL && !(n->m_flags & M_NOTREADY)) {
317 			n->m_flags &= ~M_BLOCKED;
318 			sb->sb_acc += n->m_len;
319 			n = n->m_next;
320 		}
321 		sb->sb_fnrdy = n;
322 	}
323 
324 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
325 		sb->sb_ctl -= m->m_len;
326 
327 	sb->sb_mbcnt -= MSIZE;
328 	sb->sb_mcnt -= 1;
329 	if (m->m_flags & M_EXT) {
330 		sb->sb_mbcnt -= m->m_ext.ext_size;
331 		sb->sb_ccnt -= 1;
332 	}
333 
334 	if (sb->sb_sndptr == m) {
335 		sb->sb_sndptr = NULL;
336 		sb->sb_sndptroff = 0;
337 	}
338 	if (sb->sb_sndptroff != 0)
339 		sb->sb_sndptroff -= m->m_len;
340 }
341 
342 /*
343  * Socantsendmore indicates that no more data will be sent on the socket; it
344  * would normally be applied to a socket when the user informs the system
345  * that no more data is to be sent, by the protocol code (in case
346  * PRU_SHUTDOWN).  Socantrcvmore indicates that no more data will be
347  * received, and will normally be applied to the socket by a protocol when it
348  * detects that the peer will send no more data.  Data queued for reading in
349  * the socket may yet be read.
350  */
351 void
352 socantsendmore_locked(struct socket *so)
353 {
354 
355 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
356 
357 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
358 	sowwakeup_locked(so);
359 	mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
360 }
361 
362 void
363 socantsendmore(struct socket *so)
364 {
365 
366 	SOCKBUF_LOCK(&so->so_snd);
367 	socantsendmore_locked(so);
368 	mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
369 }
370 
371 void
372 socantrcvmore_locked(struct socket *so)
373 {
374 
375 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
376 
377 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
378 	sorwakeup_locked(so);
379 	mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
380 }
381 
382 void
383 socantrcvmore(struct socket *so)
384 {
385 
386 	SOCKBUF_LOCK(&so->so_rcv);
387 	socantrcvmore_locked(so);
388 	mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
389 }
390 
391 /*
392  * Wait for data to arrive at/drain from a socket buffer.
393  */
394 int
395 sbwait(struct sockbuf *sb)
396 {
397 
398 	SOCKBUF_LOCK_ASSERT(sb);
399 
400 	sb->sb_flags |= SB_WAIT;
401 	return (msleep_sbt(&sb->sb_acc, &sb->sb_mtx,
402 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
403 	    sb->sb_timeo, 0, 0));
404 }
405 
406 int
407 sblock(struct sockbuf *sb, int flags)
408 {
409 
410 	KASSERT((flags & SBL_VALID) == flags,
411 	    ("sblock: flags invalid (0x%x)", flags));
412 
413 	if (flags & SBL_WAIT) {
414 		if ((sb->sb_flags & SB_NOINTR) ||
415 		    (flags & SBL_NOINTR)) {
416 			sx_xlock(&sb->sb_sx);
417 			return (0);
418 		}
419 		return (sx_xlock_sig(&sb->sb_sx));
420 	} else {
421 		if (sx_try_xlock(&sb->sb_sx) == 0)
422 			return (EWOULDBLOCK);
423 		return (0);
424 	}
425 }
426 
427 void
428 sbunlock(struct sockbuf *sb)
429 {
430 
431 	sx_xunlock(&sb->sb_sx);
432 }
433 
434 /*
435  * Wakeup processes waiting on a socket buffer.  Do asynchronous notification
436  * via SIGIO if the socket has the SS_ASYNC flag set.
437  *
438  * Called with the socket buffer lock held; will release the lock by the end
439  * of the function.  This allows the caller to acquire the socket buffer lock
440  * while testing for the need for various sorts of wakeup and hold it through
441  * to the point where it's no longer required.  We currently hold the lock
442  * through calls out to other subsystems (with the exception of kqueue), and
443  * then release it to avoid lock order issues.  It's not clear that's
444  * correct.
445  */
446 void
447 sowakeup(struct socket *so, struct sockbuf *sb)
448 {
449 	int ret;
450 
451 	SOCKBUF_LOCK_ASSERT(sb);
452 
453 	selwakeuppri(sb->sb_sel, PSOCK);
454 	if (!SEL_WAITING(sb->sb_sel))
455 		sb->sb_flags &= ~SB_SEL;
456 	if (sb->sb_flags & SB_WAIT) {
457 		sb->sb_flags &= ~SB_WAIT;
458 		wakeup(&sb->sb_acc);
459 	}
460 	KNOTE_LOCKED(&sb->sb_sel->si_note, 0);
461 	if (sb->sb_upcall != NULL) {
462 		ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT);
463 		if (ret == SU_ISCONNECTED) {
464 			KASSERT(sb == &so->so_rcv,
465 			    ("SO_SND upcall returned SU_ISCONNECTED"));
466 			soupcall_clear(so, SO_RCV);
467 		}
468 	} else
469 		ret = SU_OK;
470 	if (sb->sb_flags & SB_AIO)
471 		sowakeup_aio(so, sb);
472 	SOCKBUF_UNLOCK(sb);
473 	if (ret == SU_ISCONNECTED)
474 		soisconnected(so);
475 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
476 		pgsigio(&so->so_sigio, SIGIO, 0);
477 	mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED);
478 }
479 
480 /*
481  * Socket buffer (struct sockbuf) utility routines.
482  *
483  * Each socket contains two socket buffers: one for sending data and one for
484  * receiving data.  Each buffer contains a queue of mbufs, information about
485  * the number of mbufs and amount of data in the queue, and other fields
486  * allowing select() statements and notification on data availability to be
487  * implemented.
488  *
489  * Data stored in a socket buffer is maintained as a list of records.  Each
490  * record is a list of mbufs chained together with the m_next field.  Records
491  * are chained together with the m_nextpkt field. The upper level routine
492  * soreceive() expects the following conventions to be observed when placing
493  * information in the receive buffer:
494  *
495  * 1. If the protocol requires each message be preceded by the sender's name,
496  *    then a record containing that name must be present before any
497  *    associated data (mbuf's must be of type MT_SONAME).
498  * 2. If the protocol supports the exchange of ``access rights'' (really just
499  *    additional data associated with the message), and there are ``rights''
500  *    to be received, then a record containing this data should be present
501  *    (mbuf's must be of type MT_RIGHTS).
502  * 3. If a name or rights record exists, then it must be followed by a data
503  *    record, perhaps of zero length.
504  *
505  * Before using a new socket structure it is first necessary to reserve
506  * buffer space to the socket, by calling sbreserve().  This should commit
507  * some of the available buffer space in the system buffer pool for the
508  * socket (currently, it does nothing but enforce limits).  The space should
509  * be released by calling sbrelease() when the socket is destroyed.
510  */
511 int
512 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
513 {
514 	struct thread *td = curthread;
515 
516 	SOCKBUF_LOCK(&so->so_snd);
517 	SOCKBUF_LOCK(&so->so_rcv);
518 	if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0)
519 		goto bad;
520 	if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0)
521 		goto bad2;
522 	if (so->so_rcv.sb_lowat == 0)
523 		so->so_rcv.sb_lowat = 1;
524 	if (so->so_snd.sb_lowat == 0)
525 		so->so_snd.sb_lowat = MCLBYTES;
526 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
527 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
528 	SOCKBUF_UNLOCK(&so->so_rcv);
529 	SOCKBUF_UNLOCK(&so->so_snd);
530 	return (0);
531 bad2:
532 	sbrelease_locked(&so->so_snd, so);
533 bad:
534 	SOCKBUF_UNLOCK(&so->so_rcv);
535 	SOCKBUF_UNLOCK(&so->so_snd);
536 	return (ENOBUFS);
537 }
538 
539 static int
540 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
541 {
542 	int error = 0;
543 	u_long tmp_sb_max = sb_max;
544 
545 	error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req);
546 	if (error || !req->newptr)
547 		return (error);
548 	if (tmp_sb_max < MSIZE + MCLBYTES)
549 		return (EINVAL);
550 	sb_max = tmp_sb_max;
551 	sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
552 	return (0);
553 }
554 
555 /*
556  * Allot mbufs to a sockbuf.  Attempt to scale mbmax so that mbcnt doesn't
557  * become limiting if buffering efficiency is near the normal case.
558  */
559 int
560 sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so,
561     struct thread *td)
562 {
563 	rlim_t sbsize_limit;
564 
565 	SOCKBUF_LOCK_ASSERT(sb);
566 
567 	/*
568 	 * When a thread is passed, we take into account the thread's socket
569 	 * buffer size limit.  The caller will generally pass curthread, but
570 	 * in the TCP input path, NULL will be passed to indicate that no
571 	 * appropriate thread resource limits are available.  In that case,
572 	 * we don't apply a process limit.
573 	 */
574 	if (cc > sb_max_adj)
575 		return (0);
576 	if (td != NULL) {
577 		sbsize_limit = lim_cur(td, RLIMIT_SBSIZE);
578 	} else
579 		sbsize_limit = RLIM_INFINITY;
580 	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
581 	    sbsize_limit))
582 		return (0);
583 	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
584 	if (sb->sb_lowat > sb->sb_hiwat)
585 		sb->sb_lowat = sb->sb_hiwat;
586 	return (1);
587 }
588 
589 int
590 sbsetopt(struct socket *so, int cmd, u_long cc)
591 {
592 	struct sockbuf *sb;
593 	short *flags;
594 	u_int *hiwat, *lowat;
595 	int error;
596 
597 	sb = NULL;
598 	SOCK_LOCK(so);
599 	if (SOLISTENING(so)) {
600 		switch (cmd) {
601 			case SO_SNDLOWAT:
602 			case SO_SNDBUF:
603 				lowat = &so->sol_sbsnd_lowat;
604 				hiwat = &so->sol_sbsnd_hiwat;
605 				flags = &so->sol_sbsnd_flags;
606 				break;
607 			case SO_RCVLOWAT:
608 			case SO_RCVBUF:
609 				lowat = &so->sol_sbrcv_lowat;
610 				hiwat = &so->sol_sbrcv_hiwat;
611 				flags = &so->sol_sbrcv_flags;
612 				break;
613 		}
614 	} else {
615 		switch (cmd) {
616 			case SO_SNDLOWAT:
617 			case SO_SNDBUF:
618 				sb = &so->so_snd;
619 				break;
620 			case SO_RCVLOWAT:
621 			case SO_RCVBUF:
622 				sb = &so->so_rcv;
623 				break;
624 		}
625 		flags = &sb->sb_flags;
626 		hiwat = &sb->sb_hiwat;
627 		lowat = &sb->sb_lowat;
628 		SOCKBUF_LOCK(sb);
629 	}
630 
631 	error = 0;
632 	switch (cmd) {
633 	case SO_SNDBUF:
634 	case SO_RCVBUF:
635 		if (SOLISTENING(so)) {
636 			if (cc > sb_max_adj) {
637 				error = ENOBUFS;
638 				break;
639 			}
640 			*hiwat = cc;
641 			if (*lowat > *hiwat)
642 				*lowat = *hiwat;
643 		} else {
644 			if (!sbreserve_locked(sb, cc, so, curthread))
645 				error = ENOBUFS;
646 		}
647 		if (error == 0)
648 			*flags &= ~SB_AUTOSIZE;
649 		break;
650 	case SO_SNDLOWAT:
651 	case SO_RCVLOWAT:
652 		/*
653 		 * Make sure the low-water is never greater than the
654 		 * high-water.
655 		 */
656 		*lowat = (cc > *hiwat) ? *hiwat : cc;
657 		break;
658 	}
659 
660 	if (!SOLISTENING(so))
661 		SOCKBUF_UNLOCK(sb);
662 	SOCK_UNLOCK(so);
663 	return (error);
664 }
665 
666 /*
667  * Free mbufs held by a socket, and reserved mbuf space.
668  */
669 void
670 sbrelease_internal(struct sockbuf *sb, struct socket *so)
671 {
672 
673 	sbflush_internal(sb);
674 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
675 	    RLIM_INFINITY);
676 	sb->sb_mbmax = 0;
677 }
678 
679 void
680 sbrelease_locked(struct sockbuf *sb, struct socket *so)
681 {
682 
683 	SOCKBUF_LOCK_ASSERT(sb);
684 
685 	sbrelease_internal(sb, so);
686 }
687 
688 void
689 sbrelease(struct sockbuf *sb, struct socket *so)
690 {
691 
692 	SOCKBUF_LOCK(sb);
693 	sbrelease_locked(sb, so);
694 	SOCKBUF_UNLOCK(sb);
695 }
696 
697 void
698 sbdestroy(struct sockbuf *sb, struct socket *so)
699 {
700 
701 	sbrelease_internal(sb, so);
702 #ifdef KERN_TLS
703 	if (sb->sb_tls_info != NULL)
704 		ktls_free(sb->sb_tls_info);
705 	sb->sb_tls_info = NULL;
706 #endif
707 }
708 
709 /*
710  * Routines to add and remove data from an mbuf queue.
711  *
712  * The routines sbappend() or sbappendrecord() are normally called to append
713  * new mbufs to a socket buffer, after checking that adequate space is
714  * available, comparing the function sbspace() with the amount of data to be
715  * added.  sbappendrecord() differs from sbappend() in that data supplied is
716  * treated as the beginning of a new record.  To place a sender's address,
717  * optional access rights, and data in a socket receive buffer,
718  * sbappendaddr() should be used.  To place access rights and data in a
719  * socket receive buffer, sbappendrights() should be used.  In either case,
720  * the new data begins a new record.  Note that unlike sbappend() and
721  * sbappendrecord(), these routines check for the caller that there will be
722  * enough space to store the data.  Each fails if there is not enough space,
723  * or if it cannot find mbufs to store additional information in.
724  *
725  * Reliable protocols may use the socket send buffer to hold data awaiting
726  * acknowledgement.  Data is normally copied from a socket send buffer in a
727  * protocol with m_copy for output to a peer, and then removing the data from
728  * the socket buffer with sbdrop() or sbdroprecord() when the data is
729  * acknowledged by the peer.
730  */
731 #ifdef SOCKBUF_DEBUG
732 void
733 sblastrecordchk(struct sockbuf *sb, const char *file, int line)
734 {
735 	struct mbuf *m = sb->sb_mb;
736 
737 	SOCKBUF_LOCK_ASSERT(sb);
738 
739 	while (m && m->m_nextpkt)
740 		m = m->m_nextpkt;
741 
742 	if (m != sb->sb_lastrecord) {
743 		printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
744 			__func__, sb->sb_mb, sb->sb_lastrecord, m);
745 		printf("packet chain:\n");
746 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
747 			printf("\t%p\n", m);
748 		panic("%s from %s:%u", __func__, file, line);
749 	}
750 }
751 
752 void
753 sblastmbufchk(struct sockbuf *sb, const char *file, int line)
754 {
755 	struct mbuf *m = sb->sb_mb;
756 	struct mbuf *n;
757 
758 	SOCKBUF_LOCK_ASSERT(sb);
759 
760 	while (m && m->m_nextpkt)
761 		m = m->m_nextpkt;
762 
763 	while (m && m->m_next)
764 		m = m->m_next;
765 
766 	if (m != sb->sb_mbtail) {
767 		printf("%s: sb_mb %p sb_mbtail %p last %p\n",
768 			__func__, sb->sb_mb, sb->sb_mbtail, m);
769 		printf("packet tree:\n");
770 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
771 			printf("\t");
772 			for (n = m; n != NULL; n = n->m_next)
773 				printf("%p ", n);
774 			printf("\n");
775 		}
776 		panic("%s from %s:%u", __func__, file, line);
777 	}
778 }
779 #endif /* SOCKBUF_DEBUG */
780 
781 #define SBLINKRECORD(sb, m0) do {					\
782 	SOCKBUF_LOCK_ASSERT(sb);					\
783 	if ((sb)->sb_lastrecord != NULL)				\
784 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
785 	else								\
786 		(sb)->sb_mb = (m0);					\
787 	(sb)->sb_lastrecord = (m0);					\
788 } while (/*CONSTCOND*/0)
789 
790 /*
791  * Append mbuf chain m to the last record in the socket buffer sb.  The
792  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
793  * are discarded and mbufs are compacted where possible.
794  */
795 void
796 sbappend_locked(struct sockbuf *sb, struct mbuf *m, int flags)
797 {
798 	struct mbuf *n;
799 
800 	SOCKBUF_LOCK_ASSERT(sb);
801 
802 	if (m == NULL)
803 		return;
804 	sbm_clrprotoflags(m, flags);
805 	SBLASTRECORDCHK(sb);
806 	n = sb->sb_mb;
807 	if (n) {
808 		while (n->m_nextpkt)
809 			n = n->m_nextpkt;
810 		do {
811 			if (n->m_flags & M_EOR) {
812 				sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
813 				return;
814 			}
815 		} while (n->m_next && (n = n->m_next));
816 	} else {
817 		/*
818 		 * XXX Would like to simply use sb_mbtail here, but
819 		 * XXX I need to verify that I won't miss an EOR that
820 		 * XXX way.
821 		 */
822 		if ((n = sb->sb_lastrecord) != NULL) {
823 			do {
824 				if (n->m_flags & M_EOR) {
825 					sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
826 					return;
827 				}
828 			} while (n->m_next && (n = n->m_next));
829 		} else {
830 			/*
831 			 * If this is the first record in the socket buffer,
832 			 * it's also the last record.
833 			 */
834 			sb->sb_lastrecord = m;
835 		}
836 	}
837 	sbcompress(sb, m, n);
838 	SBLASTRECORDCHK(sb);
839 }
840 
841 /*
842  * Append mbuf chain m to the last record in the socket buffer sb.  The
843  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
844  * are discarded and mbufs are compacted where possible.
845  */
846 void
847 sbappend(struct sockbuf *sb, struct mbuf *m, int flags)
848 {
849 
850 	SOCKBUF_LOCK(sb);
851 	sbappend_locked(sb, m, flags);
852 	SOCKBUF_UNLOCK(sb);
853 }
854 
855 /*
856  * This version of sbappend() should only be used when the caller absolutely
857  * knows that there will never be more than one record in the socket buffer,
858  * that is, a stream protocol (such as TCP).
859  */
860 void
861 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags)
862 {
863 	SOCKBUF_LOCK_ASSERT(sb);
864 
865 	KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
866 	KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
867 
868 	SBLASTMBUFCHK(sb);
869 
870 #ifdef KERN_TLS
871 	if (sb->sb_tls_info != NULL)
872 		ktls_seq(sb, m);
873 #endif
874 
875 	/* Remove all packet headers and mbuf tags to get a pure data chain. */
876 	m_demote(m, 1, flags & PRUS_NOTREADY ? M_NOTREADY : 0);
877 
878 	sbcompress(sb, m, sb->sb_mbtail);
879 
880 	sb->sb_lastrecord = sb->sb_mb;
881 	SBLASTRECORDCHK(sb);
882 }
883 
884 /*
885  * This version of sbappend() should only be used when the caller absolutely
886  * knows that there will never be more than one record in the socket buffer,
887  * that is, a stream protocol (such as TCP).
888  */
889 void
890 sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags)
891 {
892 
893 	SOCKBUF_LOCK(sb);
894 	sbappendstream_locked(sb, m, flags);
895 	SOCKBUF_UNLOCK(sb);
896 }
897 
898 #ifdef SOCKBUF_DEBUG
899 void
900 sbcheck(struct sockbuf *sb, const char *file, int line)
901 {
902 	struct mbuf *m, *n, *fnrdy;
903 	u_long acc, ccc, mbcnt;
904 
905 	SOCKBUF_LOCK_ASSERT(sb);
906 
907 	acc = ccc = mbcnt = 0;
908 	fnrdy = NULL;
909 
910 	for (m = sb->sb_mb; m; m = n) {
911 	    n = m->m_nextpkt;
912 	    for (; m; m = m->m_next) {
913 		if (m->m_len == 0) {
914 			printf("sb %p empty mbuf %p\n", sb, m);
915 			goto fail;
916 		}
917 		if ((m->m_flags & M_NOTREADY) && fnrdy == NULL) {
918 			if (m != sb->sb_fnrdy) {
919 				printf("sb %p: fnrdy %p != m %p\n",
920 				    sb, sb->sb_fnrdy, m);
921 				goto fail;
922 			}
923 			fnrdy = m;
924 		}
925 		if (fnrdy) {
926 			if (!(m->m_flags & M_NOTAVAIL)) {
927 				printf("sb %p: fnrdy %p, m %p is avail\n",
928 				    sb, sb->sb_fnrdy, m);
929 				goto fail;
930 			}
931 		} else
932 			acc += m->m_len;
933 		ccc += m->m_len;
934 		mbcnt += MSIZE;
935 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
936 			mbcnt += m->m_ext.ext_size;
937 	    }
938 	}
939 	if (acc != sb->sb_acc || ccc != sb->sb_ccc || mbcnt != sb->sb_mbcnt) {
940 		printf("acc %ld/%u ccc %ld/%u mbcnt %ld/%u\n",
941 		    acc, sb->sb_acc, ccc, sb->sb_ccc, mbcnt, sb->sb_mbcnt);
942 		goto fail;
943 	}
944 	return;
945 fail:
946 	panic("%s from %s:%u", __func__, file, line);
947 }
948 #endif
949 
950 /*
951  * As above, except the mbuf chain begins a new record.
952  */
953 void
954 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
955 {
956 	struct mbuf *m;
957 
958 	SOCKBUF_LOCK_ASSERT(sb);
959 
960 	if (m0 == NULL)
961 		return;
962 	m_clrprotoflags(m0);
963 	/*
964 	 * Put the first mbuf on the queue.  Note this permits zero length
965 	 * records.
966 	 */
967 	sballoc(sb, m0);
968 	SBLASTRECORDCHK(sb);
969 	SBLINKRECORD(sb, m0);
970 	sb->sb_mbtail = m0;
971 	m = m0->m_next;
972 	m0->m_next = 0;
973 	if (m && (m0->m_flags & M_EOR)) {
974 		m0->m_flags &= ~M_EOR;
975 		m->m_flags |= M_EOR;
976 	}
977 	/* always call sbcompress() so it can do SBLASTMBUFCHK() */
978 	sbcompress(sb, m, m0);
979 }
980 
981 /*
982  * As above, except the mbuf chain begins a new record.
983  */
984 void
985 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
986 {
987 
988 	SOCKBUF_LOCK(sb);
989 	sbappendrecord_locked(sb, m0);
990 	SOCKBUF_UNLOCK(sb);
991 }
992 
993 /* Helper routine that appends data, control, and address to a sockbuf. */
994 static int
995 sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa,
996     struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last)
997 {
998 	struct mbuf *m, *n, *nlast;
999 #if MSIZE <= 256
1000 	if (asa->sa_len > MLEN)
1001 		return (0);
1002 #endif
1003 	m = m_get(M_NOWAIT, MT_SONAME);
1004 	if (m == NULL)
1005 		return (0);
1006 	m->m_len = asa->sa_len;
1007 	bcopy(asa, mtod(m, caddr_t), asa->sa_len);
1008 	if (m0) {
1009 		m_clrprotoflags(m0);
1010 		m_tag_delete_chain(m0, NULL);
1011 		/*
1012 		 * Clear some persistent info from pkthdr.
1013 		 * We don't use m_demote(), because some netgraph consumers
1014 		 * expect M_PKTHDR presence.
1015 		 */
1016 		m0->m_pkthdr.rcvif = NULL;
1017 		m0->m_pkthdr.flowid = 0;
1018 		m0->m_pkthdr.csum_flags = 0;
1019 		m0->m_pkthdr.fibnum = 0;
1020 		m0->m_pkthdr.rsstype = 0;
1021 	}
1022 	if (ctrl_last)
1023 		ctrl_last->m_next = m0;	/* concatenate data to control */
1024 	else
1025 		control = m0;
1026 	m->m_next = control;
1027 	for (n = m; n->m_next != NULL; n = n->m_next)
1028 		sballoc(sb, n);
1029 	sballoc(sb, n);
1030 	nlast = n;
1031 	SBLINKRECORD(sb, m);
1032 
1033 	sb->sb_mbtail = nlast;
1034 	SBLASTMBUFCHK(sb);
1035 
1036 	SBLASTRECORDCHK(sb);
1037 	return (1);
1038 }
1039 
1040 /*
1041  * Append address and data, and optionally, control (ancillary) data to the
1042  * receive queue of a socket.  If present, m0 must include a packet header
1043  * with total length.  Returns 0 if no space in sockbuf or insufficient
1044  * mbufs.
1045  */
1046 int
1047 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
1048     struct mbuf *m0, struct mbuf *control)
1049 {
1050 	struct mbuf *ctrl_last;
1051 	int space = asa->sa_len;
1052 
1053 	SOCKBUF_LOCK_ASSERT(sb);
1054 
1055 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1056 		panic("sbappendaddr_locked");
1057 	if (m0)
1058 		space += m0->m_pkthdr.len;
1059 	space += m_length(control, &ctrl_last);
1060 
1061 	if (space > sbspace(sb))
1062 		return (0);
1063 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1064 }
1065 
1066 /*
1067  * Append address and data, and optionally, control (ancillary) data to the
1068  * receive queue of a socket.  If present, m0 must include a packet header
1069  * with total length.  Returns 0 if insufficient mbufs.  Does not validate space
1070  * on the receiving sockbuf.
1071  */
1072 int
1073 sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa,
1074     struct mbuf *m0, struct mbuf *control)
1075 {
1076 	struct mbuf *ctrl_last;
1077 
1078 	SOCKBUF_LOCK_ASSERT(sb);
1079 
1080 	ctrl_last = (control == NULL) ? NULL : m_last(control);
1081 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1082 }
1083 
1084 /*
1085  * Append address and data, and optionally, control (ancillary) data to the
1086  * receive queue of a socket.  If present, m0 must include a packet header
1087  * with total length.  Returns 0 if no space in sockbuf or insufficient
1088  * mbufs.
1089  */
1090 int
1091 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
1092     struct mbuf *m0, struct mbuf *control)
1093 {
1094 	int retval;
1095 
1096 	SOCKBUF_LOCK(sb);
1097 	retval = sbappendaddr_locked(sb, asa, m0, control);
1098 	SOCKBUF_UNLOCK(sb);
1099 	return (retval);
1100 }
1101 
1102 void
1103 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
1104     struct mbuf *control)
1105 {
1106 	struct mbuf *m, *mlast;
1107 
1108 	m_clrprotoflags(m0);
1109 	m_last(control)->m_next = m0;
1110 
1111 	SBLASTRECORDCHK(sb);
1112 
1113 	for (m = control; m->m_next; m = m->m_next)
1114 		sballoc(sb, m);
1115 	sballoc(sb, m);
1116 	mlast = m;
1117 	SBLINKRECORD(sb, control);
1118 
1119 	sb->sb_mbtail = mlast;
1120 	SBLASTMBUFCHK(sb);
1121 
1122 	SBLASTRECORDCHK(sb);
1123 }
1124 
1125 void
1126 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1127 {
1128 
1129 	SOCKBUF_LOCK(sb);
1130 	sbappendcontrol_locked(sb, m0, control);
1131 	SOCKBUF_UNLOCK(sb);
1132 }
1133 
1134 /*
1135  * Append the data in mbuf chain (m) into the socket buffer sb following mbuf
1136  * (n).  If (n) is NULL, the buffer is presumed empty.
1137  *
1138  * When the data is compressed, mbufs in the chain may be handled in one of
1139  * three ways:
1140  *
1141  * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
1142  *     record boundary, and no change in data type).
1143  *
1144  * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
1145  *     an mbuf already in the socket buffer.  This can occur if an
1146  *     appropriate mbuf exists, there is room, both mbufs are not marked as
1147  *     not ready, and no merging of data types will occur.
1148  *
1149  * (3) The mbuf may be appended to the end of the existing mbuf chain.
1150  *
1151  * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
1152  * end-of-record.
1153  */
1154 void
1155 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1156 {
1157 	int eor = 0;
1158 	struct mbuf *o;
1159 
1160 	SOCKBUF_LOCK_ASSERT(sb);
1161 
1162 	while (m) {
1163 		eor |= m->m_flags & M_EOR;
1164 		if (m->m_len == 0 &&
1165 		    (eor == 0 ||
1166 		     (((o = m->m_next) || (o = n)) &&
1167 		      o->m_type == m->m_type))) {
1168 			if (sb->sb_lastrecord == m)
1169 				sb->sb_lastrecord = m->m_next;
1170 			m = m_free(m);
1171 			continue;
1172 		}
1173 		if (n && (n->m_flags & M_EOR) == 0 &&
1174 		    M_WRITABLE(n) &&
1175 		    ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
1176 		    !(m->m_flags & M_NOTREADY) &&
1177 		    !(n->m_flags & (M_NOTREADY | M_NOMAP)) &&
1178 		    !mbuf_has_tls_session(m) &&
1179 		    !mbuf_has_tls_session(n) &&
1180 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1181 		    m->m_len <= M_TRAILINGSPACE(n) &&
1182 		    n->m_type == m->m_type) {
1183 			m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1184 			n->m_len += m->m_len;
1185 			sb->sb_ccc += m->m_len;
1186 			if (sb->sb_fnrdy == NULL)
1187 				sb->sb_acc += m->m_len;
1188 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1189 				/* XXX: Probably don't need.*/
1190 				sb->sb_ctl += m->m_len;
1191 			m = m_free(m);
1192 			continue;
1193 		}
1194 		if (m->m_len <= MLEN && (m->m_flags & M_NOMAP) &&
1195 		    (m->m_flags & M_NOTREADY) == 0 &&
1196 		    !mbuf_has_tls_session(m))
1197 			(void)mb_unmapped_compress(m);
1198 		if (n)
1199 			n->m_next = m;
1200 		else
1201 			sb->sb_mb = m;
1202 		sb->sb_mbtail = m;
1203 		sballoc(sb, m);
1204 		n = m;
1205 		m->m_flags &= ~M_EOR;
1206 		m = m->m_next;
1207 		n->m_next = 0;
1208 	}
1209 	if (eor) {
1210 		KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
1211 		n->m_flags |= eor;
1212 	}
1213 	SBLASTMBUFCHK(sb);
1214 }
1215 
1216 /*
1217  * Free all mbufs in a sockbuf.  Check that all resources are reclaimed.
1218  */
1219 static void
1220 sbflush_internal(struct sockbuf *sb)
1221 {
1222 
1223 	while (sb->sb_mbcnt) {
1224 		/*
1225 		 * Don't call sbcut(sb, 0) if the leading mbuf is non-empty:
1226 		 * we would loop forever. Panic instead.
1227 		 */
1228 		if (sb->sb_ccc == 0 && (sb->sb_mb == NULL || sb->sb_mb->m_len))
1229 			break;
1230 		m_freem(sbcut_internal(sb, (int)sb->sb_ccc));
1231 	}
1232 	KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
1233 	    ("%s: ccc %u mb %p mbcnt %u", __func__,
1234 	    sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
1235 }
1236 
1237 void
1238 sbflush_locked(struct sockbuf *sb)
1239 {
1240 
1241 	SOCKBUF_LOCK_ASSERT(sb);
1242 	sbflush_internal(sb);
1243 }
1244 
1245 void
1246 sbflush(struct sockbuf *sb)
1247 {
1248 
1249 	SOCKBUF_LOCK(sb);
1250 	sbflush_locked(sb);
1251 	SOCKBUF_UNLOCK(sb);
1252 }
1253 
1254 /*
1255  * Cut data from (the front of) a sockbuf.
1256  */
1257 static struct mbuf *
1258 sbcut_internal(struct sockbuf *sb, int len)
1259 {
1260 	struct mbuf *m, *next, *mfree;
1261 
1262 	KASSERT(len >= 0, ("%s: len is %d but it is supposed to be >= 0",
1263 	    __func__, len));
1264 	KASSERT(len <= sb->sb_ccc, ("%s: len: %d is > ccc: %u",
1265 	    __func__, len, sb->sb_ccc));
1266 
1267 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1268 	mfree = NULL;
1269 
1270 	while (len > 0) {
1271 		if (m == NULL) {
1272 			KASSERT(next, ("%s: no next, len %d", __func__, len));
1273 			m = next;
1274 			next = m->m_nextpkt;
1275 		}
1276 		if (m->m_len > len) {
1277 			KASSERT(!(m->m_flags & M_NOTAVAIL),
1278 			    ("%s: m %p M_NOTAVAIL", __func__, m));
1279 			m->m_len -= len;
1280 			m->m_data += len;
1281 			sb->sb_ccc -= len;
1282 			sb->sb_acc -= len;
1283 			if (sb->sb_sndptroff != 0)
1284 				sb->sb_sndptroff -= len;
1285 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1286 				sb->sb_ctl -= len;
1287 			break;
1288 		}
1289 		len -= m->m_len;
1290 		sbfree(sb, m);
1291 		/*
1292 		 * Do not put M_NOTREADY buffers to the free list, they
1293 		 * are referenced from outside.
1294 		 */
1295 		if (m->m_flags & M_NOTREADY)
1296 			m = m->m_next;
1297 		else {
1298 			struct mbuf *n;
1299 
1300 			n = m->m_next;
1301 			m->m_next = mfree;
1302 			mfree = m;
1303 			m = n;
1304 		}
1305 	}
1306 	/*
1307 	 * Free any zero-length mbufs from the buffer.
1308 	 * For SOCK_DGRAM sockets such mbufs represent empty records.
1309 	 * XXX: For SOCK_STREAM sockets such mbufs can appear in the buffer,
1310 	 * when sosend_generic() needs to send only control data.
1311 	 */
1312 	while (m && m->m_len == 0) {
1313 		struct mbuf *n;
1314 
1315 		sbfree(sb, m);
1316 		n = m->m_next;
1317 		m->m_next = mfree;
1318 		mfree = m;
1319 		m = n;
1320 	}
1321 	if (m) {
1322 		sb->sb_mb = m;
1323 		m->m_nextpkt = next;
1324 	} else
1325 		sb->sb_mb = next;
1326 	/*
1327 	 * First part is an inline SB_EMPTY_FIXUP().  Second part makes sure
1328 	 * sb_lastrecord is up-to-date if we dropped part of the last record.
1329 	 */
1330 	m = sb->sb_mb;
1331 	if (m == NULL) {
1332 		sb->sb_mbtail = NULL;
1333 		sb->sb_lastrecord = NULL;
1334 	} else if (m->m_nextpkt == NULL) {
1335 		sb->sb_lastrecord = m;
1336 	}
1337 
1338 	return (mfree);
1339 }
1340 
1341 /*
1342  * Drop data from (the front of) a sockbuf.
1343  */
1344 void
1345 sbdrop_locked(struct sockbuf *sb, int len)
1346 {
1347 
1348 	SOCKBUF_LOCK_ASSERT(sb);
1349 	m_freem(sbcut_internal(sb, len));
1350 }
1351 
1352 /*
1353  * Drop data from (the front of) a sockbuf,
1354  * and return it to caller.
1355  */
1356 struct mbuf *
1357 sbcut_locked(struct sockbuf *sb, int len)
1358 {
1359 
1360 	SOCKBUF_LOCK_ASSERT(sb);
1361 	return (sbcut_internal(sb, len));
1362 }
1363 
1364 void
1365 sbdrop(struct sockbuf *sb, int len)
1366 {
1367 	struct mbuf *mfree;
1368 
1369 	SOCKBUF_LOCK(sb);
1370 	mfree = sbcut_internal(sb, len);
1371 	SOCKBUF_UNLOCK(sb);
1372 
1373 	m_freem(mfree);
1374 }
1375 
1376 struct mbuf *
1377 sbsndptr_noadv(struct sockbuf *sb, uint32_t off, uint32_t *moff)
1378 {
1379 	struct mbuf *m;
1380 
1381 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1382 	if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1383 		*moff = off;
1384 		if (sb->sb_sndptr == NULL) {
1385 			sb->sb_sndptr = sb->sb_mb;
1386 			sb->sb_sndptroff = 0;
1387 		}
1388 		return (sb->sb_mb);
1389 	} else {
1390 		m = sb->sb_sndptr;
1391 		off -= sb->sb_sndptroff;
1392 	}
1393 	*moff = off;
1394 	return (m);
1395 }
1396 
1397 void
1398 sbsndptr_adv(struct sockbuf *sb, struct mbuf *mb, uint32_t len)
1399 {
1400 	/*
1401 	 * A small copy was done, advance forward the sb_sbsndptr to cover
1402 	 * it.
1403 	 */
1404 	struct mbuf *m;
1405 
1406 	if (mb != sb->sb_sndptr) {
1407 		/* Did not copyout at the same mbuf */
1408 		return;
1409 	}
1410 	m = mb;
1411 	while (m && (len > 0)) {
1412 		if (len >= m->m_len) {
1413 			len -= m->m_len;
1414 			if (m->m_next) {
1415 				sb->sb_sndptroff += m->m_len;
1416 				sb->sb_sndptr = m->m_next;
1417 			}
1418 			m = m->m_next;
1419 		} else {
1420 			len = 0;
1421 		}
1422 	}
1423 }
1424 
1425 /*
1426  * Return the first mbuf and the mbuf data offset for the provided
1427  * send offset without changing the "sb_sndptroff" field.
1428  */
1429 struct mbuf *
1430 sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff)
1431 {
1432 	struct mbuf *m;
1433 
1434 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1435 
1436 	/*
1437 	 * If the "off" is below the stored offset, which happens on
1438 	 * retransmits, just use "sb_mb":
1439 	 */
1440 	if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1441 		m = sb->sb_mb;
1442 	} else {
1443 		m = sb->sb_sndptr;
1444 		off -= sb->sb_sndptroff;
1445 	}
1446 	while (off > 0 && m != NULL) {
1447 		if (off < m->m_len)
1448 			break;
1449 		off -= m->m_len;
1450 		m = m->m_next;
1451 	}
1452 	*moff = off;
1453 	return (m);
1454 }
1455 
1456 /*
1457  * Drop a record off the front of a sockbuf and move the next record to the
1458  * front.
1459  */
1460 void
1461 sbdroprecord_locked(struct sockbuf *sb)
1462 {
1463 	struct mbuf *m;
1464 
1465 	SOCKBUF_LOCK_ASSERT(sb);
1466 
1467 	m = sb->sb_mb;
1468 	if (m) {
1469 		sb->sb_mb = m->m_nextpkt;
1470 		do {
1471 			sbfree(sb, m);
1472 			m = m_free(m);
1473 		} while (m);
1474 	}
1475 	SB_EMPTY_FIXUP(sb);
1476 }
1477 
1478 /*
1479  * Drop a record off the front of a sockbuf and move the next record to the
1480  * front.
1481  */
1482 void
1483 sbdroprecord(struct sockbuf *sb)
1484 {
1485 
1486 	SOCKBUF_LOCK(sb);
1487 	sbdroprecord_locked(sb);
1488 	SOCKBUF_UNLOCK(sb);
1489 }
1490 
1491 /*
1492  * Create a "control" mbuf containing the specified data with the specified
1493  * type for presentation on a socket buffer.
1494  */
1495 struct mbuf *
1496 sbcreatecontrol(caddr_t p, int size, int type, int level)
1497 {
1498 	struct cmsghdr *cp;
1499 	struct mbuf *m;
1500 
1501 	if (CMSG_SPACE((u_int)size) > MCLBYTES)
1502 		return ((struct mbuf *) NULL);
1503 	if (CMSG_SPACE((u_int)size) > MLEN)
1504 		m = m_getcl(M_NOWAIT, MT_CONTROL, 0);
1505 	else
1506 		m = m_get(M_NOWAIT, MT_CONTROL);
1507 	if (m == NULL)
1508 		return ((struct mbuf *) NULL);
1509 	cp = mtod(m, struct cmsghdr *);
1510 	m->m_len = 0;
1511 	KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
1512 	    ("sbcreatecontrol: short mbuf"));
1513 	/*
1514 	 * Don't leave the padding between the msg header and the
1515 	 * cmsg data and the padding after the cmsg data un-initialized.
1516 	 */
1517 	bzero(cp, CMSG_SPACE((u_int)size));
1518 	if (p != NULL)
1519 		(void)memcpy(CMSG_DATA(cp), p, size);
1520 	m->m_len = CMSG_SPACE(size);
1521 	cp->cmsg_len = CMSG_LEN(size);
1522 	cp->cmsg_level = level;
1523 	cp->cmsg_type = type;
1524 	return (m);
1525 }
1526 
1527 /*
1528  * This does the same for socket buffers that sotoxsocket does for sockets:
1529  * generate an user-format data structure describing the socket buffer.  Note
1530  * that the xsockbuf structure, since it is always embedded in a socket, does
1531  * not include a self pointer nor a length.  We make this entry point public
1532  * in case some other mechanism needs it.
1533  */
1534 void
1535 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1536 {
1537 
1538 	xsb->sb_cc = sb->sb_ccc;
1539 	xsb->sb_hiwat = sb->sb_hiwat;
1540 	xsb->sb_mbcnt = sb->sb_mbcnt;
1541 	xsb->sb_mcnt = sb->sb_mcnt;
1542 	xsb->sb_ccnt = sb->sb_ccnt;
1543 	xsb->sb_mbmax = sb->sb_mbmax;
1544 	xsb->sb_lowat = sb->sb_lowat;
1545 	xsb->sb_flags = sb->sb_flags;
1546 	xsb->sb_timeo = sb->sb_timeo;
1547 }
1548 
1549 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1550 static int dummy;
1551 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW | CTLFLAG_SKIP, &dummy, 0, "");
1552 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf,
1553     CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sb_max, 0,
1554     sysctl_handle_sb_max, "LU",
1555     "Maximum socket buffer size");
1556 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1557     &sb_efficiency, 0, "Socket buffer size waste factor");
1558