1 /* 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 34 * $FreeBSD$ 35 */ 36 37 #include "opt_param.h" 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/domain.h> 41 #include <sys/file.h> /* for maxfiles */ 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/proc.h> 48 #include <sys/protosw.h> 49 #include <sys/resourcevar.h> 50 #include <sys/stat.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/signalvar.h> 54 #include <sys/sysctl.h> 55 #include <sys/aio.h> /* for aio_swake proto */ 56 #include <sys/event.h> 57 58 int maxsockets; 59 60 /* 61 * Primitive routines for operating on sockets and socket buffers 62 */ 63 64 u_long sb_max = SB_MAX; /* XXX should be static */ 65 66 static u_long sb_efficiency = 8; /* parameter for sbreserve() */ 67 68 /* 69 * Procedures to manipulate state flags of socket 70 * and do appropriate wakeups. Normal sequence from the 71 * active (originating) side is that soisconnecting() is 72 * called during processing of connect() call, 73 * resulting in an eventual call to soisconnected() if/when the 74 * connection is established. When the connection is torn down 75 * soisdisconnecting() is called during processing of disconnect() call, 76 * and soisdisconnected() is called when the connection to the peer 77 * is totally severed. The semantics of these routines are such that 78 * connectionless protocols can call soisconnected() and soisdisconnected() 79 * only, bypassing the in-progress calls when setting up a ``connection'' 80 * takes no time. 81 * 82 * From the passive side, a socket is created with 83 * two queues of sockets: so_incomp for connections in progress 84 * and so_comp for connections already made and awaiting user acceptance. 85 * As a protocol is preparing incoming connections, it creates a socket 86 * structure queued on so_incomp by calling sonewconn(). When the connection 87 * is established, soisconnected() is called, and transfers the 88 * socket structure to so_comp, making it available to accept(). 89 * 90 * If a socket is closed with sockets on either 91 * so_incomp or so_comp, these sockets are dropped. 92 * 93 * If higher level protocols are implemented in 94 * the kernel, the wakeups done here will sometimes 95 * cause software-interrupt process scheduling. 96 */ 97 98 void 99 soisconnecting(so) 100 register struct socket *so; 101 { 102 103 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 104 so->so_state |= SS_ISCONNECTING; 105 } 106 107 void 108 soisconnected(so) 109 struct socket *so; 110 { 111 struct socket *head = so->so_head; 112 113 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 114 so->so_state |= SS_ISCONNECTED; 115 if (head && (so->so_state & SS_INCOMP)) { 116 if ((so->so_options & SO_ACCEPTFILTER) != 0) { 117 so->so_upcall = head->so_accf->so_accept_filter->accf_callback; 118 so->so_upcallarg = head->so_accf->so_accept_filter_arg; 119 so->so_rcv.sb_flags |= SB_UPCALL; 120 so->so_options &= ~SO_ACCEPTFILTER; 121 so->so_upcall(so, so->so_upcallarg, 0); 122 return; 123 } 124 TAILQ_REMOVE(&head->so_incomp, so, so_list); 125 head->so_incqlen--; 126 so->so_state &= ~SS_INCOMP; 127 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 128 so->so_state |= SS_COMP; 129 sorwakeup(head); 130 wakeup_one(&head->so_timeo); 131 } else { 132 wakeup(&so->so_timeo); 133 sorwakeup(so); 134 sowwakeup(so); 135 } 136 } 137 138 void 139 soisdisconnecting(so) 140 register struct socket *so; 141 { 142 143 so->so_state &= ~SS_ISCONNECTING; 144 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); 145 wakeup((caddr_t)&so->so_timeo); 146 sowwakeup(so); 147 sorwakeup(so); 148 } 149 150 void 151 soisdisconnected(so) 152 register struct socket *so; 153 { 154 155 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 156 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED); 157 wakeup((caddr_t)&so->so_timeo); 158 sowwakeup(so); 159 sorwakeup(so); 160 } 161 162 /* 163 * Return a random connection that hasn't been serviced yet and 164 * is eligible for discard. There is a one in qlen chance that 165 * we will return a null, saying that there are no dropable 166 * requests. In this case, the protocol specific code should drop 167 * the new request. This insures fairness. 168 * 169 * This may be used in conjunction with protocol specific queue 170 * congestion routines. 171 */ 172 struct socket * 173 sodropablereq(head) 174 register struct socket *head; 175 { 176 register struct socket *so; 177 unsigned int i, j, qlen; 178 static int rnd; 179 static struct timeval old_runtime; 180 static unsigned int cur_cnt, old_cnt; 181 struct timeval tv; 182 183 getmicrouptime(&tv); 184 if ((i = (tv.tv_sec - old_runtime.tv_sec)) != 0) { 185 old_runtime = tv; 186 old_cnt = cur_cnt / i; 187 cur_cnt = 0; 188 } 189 190 so = TAILQ_FIRST(&head->so_incomp); 191 if (!so) 192 return (so); 193 194 qlen = head->so_incqlen; 195 if (++cur_cnt > qlen || old_cnt > qlen) { 196 rnd = (314159 * rnd + 66329) & 0xffff; 197 j = ((qlen + 1) * rnd) >> 16; 198 199 while (j-- && so) 200 so = TAILQ_NEXT(so, so_list); 201 } 202 203 return (so); 204 } 205 206 /* 207 * When an attempt at a new connection is noted on a socket 208 * which accepts connections, sonewconn is called. If the 209 * connection is possible (subject to space constraints, etc.) 210 * then we allocate a new structure, propoerly linked into the 211 * data structure of the original socket, and return this. 212 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. 213 */ 214 struct socket * 215 sonewconn(head, connstatus) 216 register struct socket *head; 217 int connstatus; 218 { 219 220 return (sonewconn3(head, connstatus, NULL)); 221 } 222 223 struct socket * 224 sonewconn3(head, connstatus, p) 225 register struct socket *head; 226 int connstatus; 227 struct proc *p; 228 { 229 register struct socket *so; 230 231 if (head->so_qlen > 3 * head->so_qlimit / 2) 232 return ((struct socket *)0); 233 so = soalloc(0); 234 if (so == NULL) 235 return ((struct socket *)0); 236 so->so_head = head; 237 so->so_type = head->so_type; 238 so->so_options = head->so_options &~ SO_ACCEPTCONN; 239 so->so_linger = head->so_linger; 240 so->so_state = head->so_state | SS_NOFDREF; 241 so->so_proto = head->so_proto; 242 so->so_timeo = head->so_timeo; 243 so->so_cred = p ? p->p_ucred : head->so_cred; 244 crhold(so->so_cred); 245 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) || 246 (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 247 sodealloc(so); 248 return ((struct socket *)0); 249 } 250 251 if (connstatus) { 252 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 253 so->so_state |= SS_COMP; 254 } else { 255 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 256 so->so_state |= SS_INCOMP; 257 head->so_incqlen++; 258 } 259 head->so_qlen++; 260 if (connstatus) { 261 sorwakeup(head); 262 wakeup((caddr_t)&head->so_timeo); 263 so->so_state |= connstatus; 264 } 265 return (so); 266 } 267 268 /* 269 * Socantsendmore indicates that no more data will be sent on the 270 * socket; it would normally be applied to a socket when the user 271 * informs the system that no more data is to be sent, by the protocol 272 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 273 * will be received, and will normally be applied to the socket by a 274 * protocol when it detects that the peer will send no more data. 275 * Data queued for reading in the socket may yet be read. 276 */ 277 278 void 279 socantsendmore(so) 280 struct socket *so; 281 { 282 283 so->so_state |= SS_CANTSENDMORE; 284 sowwakeup(so); 285 } 286 287 void 288 socantrcvmore(so) 289 struct socket *so; 290 { 291 292 so->so_state |= SS_CANTRCVMORE; 293 sorwakeup(so); 294 } 295 296 /* 297 * Wait for data to arrive at/drain from a socket buffer. 298 */ 299 int 300 sbwait(sb) 301 struct sockbuf *sb; 302 { 303 304 sb->sb_flags |= SB_WAIT; 305 return (tsleep((caddr_t)&sb->sb_cc, 306 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", 307 sb->sb_timeo)); 308 } 309 310 /* 311 * Lock a sockbuf already known to be locked; 312 * return any error returned from sleep (EINTR). 313 */ 314 int 315 sb_lock(sb) 316 register struct sockbuf *sb; 317 { 318 int error; 319 320 while (sb->sb_flags & SB_LOCK) { 321 sb->sb_flags |= SB_WANT; 322 error = tsleep((caddr_t)&sb->sb_flags, 323 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH, 324 "sblock", 0); 325 if (error) 326 return (error); 327 } 328 sb->sb_flags |= SB_LOCK; 329 return (0); 330 } 331 332 /* 333 * Wakeup processes waiting on a socket buffer. 334 * Do asynchronous notification via SIGIO 335 * if the socket has the SS_ASYNC flag set. 336 */ 337 void 338 sowakeup(so, sb) 339 register struct socket *so; 340 register struct sockbuf *sb; 341 { 342 selwakeup(&sb->sb_sel); 343 sb->sb_flags &= ~SB_SEL; 344 if (sb->sb_flags & SB_WAIT) { 345 sb->sb_flags &= ~SB_WAIT; 346 wakeup((caddr_t)&sb->sb_cc); 347 } 348 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL) 349 pgsigio(so->so_sigio, SIGIO, 0); 350 if (sb->sb_flags & SB_UPCALL) 351 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT); 352 if (sb->sb_flags & SB_AIO) 353 aio_swake(so, sb); 354 KNOTE(&sb->sb_sel.si_note, 0); 355 } 356 357 /* 358 * Socket buffer (struct sockbuf) utility routines. 359 * 360 * Each socket contains two socket buffers: one for sending data and 361 * one for receiving data. Each buffer contains a queue of mbufs, 362 * information about the number of mbufs and amount of data in the 363 * queue, and other fields allowing select() statements and notification 364 * on data availability to be implemented. 365 * 366 * Data stored in a socket buffer is maintained as a list of records. 367 * Each record is a list of mbufs chained together with the m_next 368 * field. Records are chained together with the m_nextpkt field. The upper 369 * level routine soreceive() expects the following conventions to be 370 * observed when placing information in the receive buffer: 371 * 372 * 1. If the protocol requires each message be preceded by the sender's 373 * name, then a record containing that name must be present before 374 * any associated data (mbuf's must be of type MT_SONAME). 375 * 2. If the protocol supports the exchange of ``access rights'' (really 376 * just additional data associated with the message), and there are 377 * ``rights'' to be received, then a record containing this data 378 * should be present (mbuf's must be of type MT_RIGHTS). 379 * 3. If a name or rights record exists, then it must be followed by 380 * a data record, perhaps of zero length. 381 * 382 * Before using a new socket structure it is first necessary to reserve 383 * buffer space to the socket, by calling sbreserve(). This should commit 384 * some of the available buffer space in the system buffer pool for the 385 * socket (currently, it does nothing but enforce limits). The space 386 * should be released by calling sbrelease() when the socket is destroyed. 387 */ 388 389 int 390 soreserve(so, sndcc, rcvcc) 391 register struct socket *so; 392 u_long sndcc, rcvcc; 393 { 394 struct proc *p = curproc; 395 396 if (sbreserve(&so->so_snd, sndcc, so, p) == 0) 397 goto bad; 398 if (sbreserve(&so->so_rcv, rcvcc, so, p) == 0) 399 goto bad2; 400 if (so->so_rcv.sb_lowat == 0) 401 so->so_rcv.sb_lowat = 1; 402 if (so->so_snd.sb_lowat == 0) 403 so->so_snd.sb_lowat = MCLBYTES; 404 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 405 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 406 return (0); 407 bad2: 408 sbrelease(&so->so_snd, so); 409 bad: 410 return (ENOBUFS); 411 } 412 413 /* 414 * Allot mbufs to a sockbuf. 415 * Attempt to scale mbmax so that mbcnt doesn't become limiting 416 * if buffering efficiency is near the normal case. 417 */ 418 int 419 sbreserve(sb, cc, so, p) 420 struct sockbuf *sb; 421 u_long cc; 422 struct socket *so; 423 struct proc *p; 424 { 425 426 /* 427 * p will only be NULL when we're in an interrupt 428 * (e.g. in tcp_input()) 429 */ 430 if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES)) 431 return (0); 432 if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc, 433 p ? p->p_rlimit[RLIMIT_SBSIZE].rlim_cur : RLIM_INFINITY)) { 434 return (0); 435 } 436 sb->sb_mbmax = min(cc * sb_efficiency, sb_max); 437 if (sb->sb_lowat > sb->sb_hiwat) 438 sb->sb_lowat = sb->sb_hiwat; 439 return (1); 440 } 441 442 /* 443 * Free mbufs held by a socket, and reserved mbuf space. 444 */ 445 void 446 sbrelease(sb, so) 447 struct sockbuf *sb; 448 struct socket *so; 449 { 450 451 sbflush(sb); 452 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0, 453 RLIM_INFINITY); 454 sb->sb_mbmax = 0; 455 } 456 457 /* 458 * Routines to add and remove 459 * data from an mbuf queue. 460 * 461 * The routines sbappend() or sbappendrecord() are normally called to 462 * append new mbufs to a socket buffer, after checking that adequate 463 * space is available, comparing the function sbspace() with the amount 464 * of data to be added. sbappendrecord() differs from sbappend() in 465 * that data supplied is treated as the beginning of a new record. 466 * To place a sender's address, optional access rights, and data in a 467 * socket receive buffer, sbappendaddr() should be used. To place 468 * access rights and data in a socket receive buffer, sbappendrights() 469 * should be used. In either case, the new data begins a new record. 470 * Note that unlike sbappend() and sbappendrecord(), these routines check 471 * for the caller that there will be enough space to store the data. 472 * Each fails if there is not enough space, or if it cannot find mbufs 473 * to store additional information in. 474 * 475 * Reliable protocols may use the socket send buffer to hold data 476 * awaiting acknowledgement. Data is normally copied from a socket 477 * send buffer in a protocol with m_copy for output to a peer, 478 * and then removing the data from the socket buffer with sbdrop() 479 * or sbdroprecord() when the data is acknowledged by the peer. 480 */ 481 482 /* 483 * Append mbuf chain m to the last record in the 484 * socket buffer sb. The additional space associated 485 * the mbuf chain is recorded in sb. Empty mbufs are 486 * discarded and mbufs are compacted where possible. 487 */ 488 void 489 sbappend(sb, m) 490 struct sockbuf *sb; 491 struct mbuf *m; 492 { 493 register struct mbuf *n; 494 495 if (m == 0) 496 return; 497 n = sb->sb_mb; 498 if (n) { 499 while (n->m_nextpkt) 500 n = n->m_nextpkt; 501 do { 502 if (n->m_flags & M_EOR) { 503 sbappendrecord(sb, m); /* XXXXXX!!!! */ 504 return; 505 } 506 } while (n->m_next && (n = n->m_next)); 507 } 508 sbcompress(sb, m, n); 509 } 510 511 #ifdef SOCKBUF_DEBUG 512 void 513 sbcheck(sb) 514 register struct sockbuf *sb; 515 { 516 register struct mbuf *m; 517 register struct mbuf *n = 0; 518 register u_long len = 0, mbcnt = 0; 519 520 for (m = sb->sb_mb; m; m = n) { 521 n = m->m_nextpkt; 522 for (; m; m = m->m_next) { 523 len += m->m_len; 524 mbcnt += MSIZE; 525 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ 526 mbcnt += m->m_ext.ext_size; 527 } 528 } 529 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 530 printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc, 531 mbcnt, sb->sb_mbcnt); 532 panic("sbcheck"); 533 } 534 } 535 #endif 536 537 /* 538 * As above, except the mbuf chain 539 * begins a new record. 540 */ 541 void 542 sbappendrecord(sb, m0) 543 register struct sockbuf *sb; 544 register struct mbuf *m0; 545 { 546 register struct mbuf *m; 547 548 if (m0 == 0) 549 return; 550 m = sb->sb_mb; 551 if (m) 552 while (m->m_nextpkt) 553 m = m->m_nextpkt; 554 /* 555 * Put the first mbuf on the queue. 556 * Note this permits zero length records. 557 */ 558 sballoc(sb, m0); 559 if (m) 560 m->m_nextpkt = m0; 561 else 562 sb->sb_mb = m0; 563 m = m0->m_next; 564 m0->m_next = 0; 565 if (m && (m0->m_flags & M_EOR)) { 566 m0->m_flags &= ~M_EOR; 567 m->m_flags |= M_EOR; 568 } 569 sbcompress(sb, m, m0); 570 } 571 572 /* 573 * As above except that OOB data 574 * is inserted at the beginning of the sockbuf, 575 * but after any other OOB data. 576 */ 577 void 578 sbinsertoob(sb, m0) 579 register struct sockbuf *sb; 580 register struct mbuf *m0; 581 { 582 register struct mbuf *m; 583 register struct mbuf **mp; 584 585 if (m0 == 0) 586 return; 587 for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) { 588 m = *mp; 589 again: 590 switch (m->m_type) { 591 592 case MT_OOBDATA: 593 continue; /* WANT next train */ 594 595 case MT_CONTROL: 596 m = m->m_next; 597 if (m) 598 goto again; /* inspect THIS train further */ 599 } 600 break; 601 } 602 /* 603 * Put the first mbuf on the queue. 604 * Note this permits zero length records. 605 */ 606 sballoc(sb, m0); 607 m0->m_nextpkt = *mp; 608 *mp = m0; 609 m = m0->m_next; 610 m0->m_next = 0; 611 if (m && (m0->m_flags & M_EOR)) { 612 m0->m_flags &= ~M_EOR; 613 m->m_flags |= M_EOR; 614 } 615 sbcompress(sb, m, m0); 616 } 617 618 /* 619 * Append address and data, and optionally, control (ancillary) data 620 * to the receive queue of a socket. If present, 621 * m0 must include a packet header with total length. 622 * Returns 0 if no space in sockbuf or insufficient mbufs. 623 */ 624 int 625 sbappendaddr(sb, asa, m0, control) 626 register struct sockbuf *sb; 627 struct sockaddr *asa; 628 struct mbuf *m0, *control; 629 { 630 register struct mbuf *m, *n; 631 int space = asa->sa_len; 632 633 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 634 panic("sbappendaddr"); 635 if (m0) 636 space += m0->m_pkthdr.len; 637 for (n = control; n; n = n->m_next) { 638 space += n->m_len; 639 if (n->m_next == 0) /* keep pointer to last control buf */ 640 break; 641 } 642 if (space > sbspace(sb)) 643 return (0); 644 if (asa->sa_len > MLEN) 645 return (0); 646 MGET(m, M_DONTWAIT, MT_SONAME); 647 if (m == 0) 648 return (0); 649 m->m_len = asa->sa_len; 650 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len); 651 if (n) 652 n->m_next = m0; /* concatenate data to control */ 653 else 654 control = m0; 655 m->m_next = control; 656 for (n = m; n; n = n->m_next) 657 sballoc(sb, n); 658 n = sb->sb_mb; 659 if (n) { 660 while (n->m_nextpkt) 661 n = n->m_nextpkt; 662 n->m_nextpkt = m; 663 } else 664 sb->sb_mb = m; 665 return (1); 666 } 667 668 int 669 sbappendcontrol(sb, m0, control) 670 struct sockbuf *sb; 671 struct mbuf *control, *m0; 672 { 673 register struct mbuf *m, *n; 674 int space = 0; 675 676 if (control == 0) 677 panic("sbappendcontrol"); 678 for (m = control; ; m = m->m_next) { 679 space += m->m_len; 680 if (m->m_next == 0) 681 break; 682 } 683 n = m; /* save pointer to last control buffer */ 684 for (m = m0; m; m = m->m_next) 685 space += m->m_len; 686 if (space > sbspace(sb)) 687 return (0); 688 n->m_next = m0; /* concatenate data to control */ 689 for (m = control; m; m = m->m_next) 690 sballoc(sb, m); 691 n = sb->sb_mb; 692 if (n) { 693 while (n->m_nextpkt) 694 n = n->m_nextpkt; 695 n->m_nextpkt = control; 696 } else 697 sb->sb_mb = control; 698 return (1); 699 } 700 701 /* 702 * Compress mbuf chain m into the socket 703 * buffer sb following mbuf n. If n 704 * is null, the buffer is presumed empty. 705 */ 706 void 707 sbcompress(sb, m, n) 708 register struct sockbuf *sb; 709 register struct mbuf *m, *n; 710 { 711 register int eor = 0; 712 register struct mbuf *o; 713 714 while (m) { 715 eor |= m->m_flags & M_EOR; 716 if (m->m_len == 0 && 717 (eor == 0 || 718 (((o = m->m_next) || (o = n)) && 719 o->m_type == m->m_type))) { 720 m = m_free(m); 721 continue; 722 } 723 if (n && (n->m_flags & M_EOR) == 0 && 724 M_WRITABLE(n) && 725 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ 726 m->m_len <= M_TRAILINGSPACE(n) && 727 n->m_type == m->m_type) { 728 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, 729 (unsigned)m->m_len); 730 n->m_len += m->m_len; 731 sb->sb_cc += m->m_len; 732 m = m_free(m); 733 continue; 734 } 735 if (n) 736 n->m_next = m; 737 else 738 sb->sb_mb = m; 739 sballoc(sb, m); 740 n = m; 741 m->m_flags &= ~M_EOR; 742 m = m->m_next; 743 n->m_next = 0; 744 } 745 if (eor) { 746 if (n) 747 n->m_flags |= eor; 748 else 749 printf("semi-panic: sbcompress\n"); 750 } 751 } 752 753 /* 754 * Free all mbufs in a sockbuf. 755 * Check that all resources are reclaimed. 756 */ 757 void 758 sbflush(sb) 759 register struct sockbuf *sb; 760 { 761 762 if (sb->sb_flags & SB_LOCK) 763 panic("sbflush: locked"); 764 while (sb->sb_mbcnt) { 765 /* 766 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty: 767 * we would loop forever. Panic instead. 768 */ 769 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len)) 770 break; 771 sbdrop(sb, (int)sb->sb_cc); 772 } 773 if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt) 774 panic("sbflush: cc %ld || mb %p || mbcnt %ld", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt); 775 } 776 777 /* 778 * Drop data from (the front of) a sockbuf. 779 */ 780 void 781 sbdrop(sb, len) 782 register struct sockbuf *sb; 783 register int len; 784 { 785 register struct mbuf *m, *mn; 786 struct mbuf *next; 787 788 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 789 while (len > 0) { 790 if (m == 0) { 791 if (next == 0) 792 panic("sbdrop"); 793 m = next; 794 next = m->m_nextpkt; 795 continue; 796 } 797 if (m->m_len > len) { 798 m->m_len -= len; 799 m->m_data += len; 800 sb->sb_cc -= len; 801 break; 802 } 803 len -= m->m_len; 804 sbfree(sb, m); 805 MFREE(m, mn); 806 m = mn; 807 } 808 while (m && m->m_len == 0) { 809 sbfree(sb, m); 810 MFREE(m, mn); 811 m = mn; 812 } 813 if (m) { 814 sb->sb_mb = m; 815 m->m_nextpkt = next; 816 } else 817 sb->sb_mb = next; 818 } 819 820 /* 821 * Drop a record off the front of a sockbuf 822 * and move the next record to the front. 823 */ 824 void 825 sbdroprecord(sb) 826 register struct sockbuf *sb; 827 { 828 register struct mbuf *m, *mn; 829 830 m = sb->sb_mb; 831 if (m) { 832 sb->sb_mb = m->m_nextpkt; 833 do { 834 sbfree(sb, m); 835 MFREE(m, mn); 836 m = mn; 837 } while (m); 838 } 839 } 840 841 /* 842 * Create a "control" mbuf containing the specified data 843 * with the specified type for presentation on a socket buffer. 844 */ 845 struct mbuf * 846 sbcreatecontrol(p, size, type, level) 847 caddr_t p; 848 register int size; 849 int type, level; 850 { 851 register struct cmsghdr *cp; 852 struct mbuf *m; 853 854 if (CMSG_SPACE((u_int)size) > MLEN) 855 return ((struct mbuf *) NULL); 856 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) 857 return ((struct mbuf *) NULL); 858 cp = mtod(m, struct cmsghdr *); 859 /* XXX check size? */ 860 (void)memcpy(CMSG_DATA(cp), p, size); 861 m->m_len = CMSG_SPACE(size); 862 cp->cmsg_len = CMSG_LEN(size); 863 cp->cmsg_level = level; 864 cp->cmsg_type = type; 865 return (m); 866 } 867 868 /* 869 * Some routines that return EOPNOTSUPP for entry points that are not 870 * supported by a protocol. Fill in as needed. 871 */ 872 int 873 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 874 { 875 return EOPNOTSUPP; 876 } 877 878 int 879 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p) 880 { 881 return EOPNOTSUPP; 882 } 883 884 int 885 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 886 { 887 return EOPNOTSUPP; 888 } 889 890 int 891 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 892 struct ifnet *ifp, struct proc *p) 893 { 894 return EOPNOTSUPP; 895 } 896 897 int 898 pru_listen_notsupp(struct socket *so, struct proc *p) 899 { 900 return EOPNOTSUPP; 901 } 902 903 int 904 pru_rcvd_notsupp(struct socket *so, int flags) 905 { 906 return EOPNOTSUPP; 907 } 908 909 int 910 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 911 { 912 return EOPNOTSUPP; 913 } 914 915 /* 916 * This isn't really a ``null'' operation, but it's the default one 917 * and doesn't do anything destructive. 918 */ 919 int 920 pru_sense_null(struct socket *so, struct stat *sb) 921 { 922 sb->st_blksize = so->so_snd.sb_hiwat; 923 return 0; 924 } 925 926 /* 927 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 928 */ 929 struct sockaddr * 930 dup_sockaddr(sa, canwait) 931 struct sockaddr *sa; 932 int canwait; 933 { 934 struct sockaddr *sa2; 935 936 MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME, 937 canwait ? M_WAITOK : M_NOWAIT); 938 if (sa2) 939 bcopy(sa, sa2, sa->sa_len); 940 return sa2; 941 } 942 943 /* 944 * Create an external-format (``xsocket'') structure using the information 945 * in the kernel-format socket structure pointed to by so. This is done 946 * to reduce the spew of irrelevant information over this interface, 947 * to isolate user code from changes in the kernel structure, and 948 * potentially to provide information-hiding if we decide that 949 * some of this information should be hidden from users. 950 */ 951 void 952 sotoxsocket(struct socket *so, struct xsocket *xso) 953 { 954 xso->xso_len = sizeof *xso; 955 xso->xso_so = so; 956 xso->so_type = so->so_type; 957 xso->so_options = so->so_options; 958 xso->so_linger = so->so_linger; 959 xso->so_state = so->so_state; 960 xso->so_pcb = so->so_pcb; 961 xso->xso_protocol = so->so_proto->pr_protocol; 962 xso->xso_family = so->so_proto->pr_domain->dom_family; 963 xso->so_qlen = so->so_qlen; 964 xso->so_incqlen = so->so_incqlen; 965 xso->so_qlimit = so->so_qlimit; 966 xso->so_timeo = so->so_timeo; 967 xso->so_error = so->so_error; 968 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 969 xso->so_oobmark = so->so_oobmark; 970 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 971 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 972 xso->so_uid = so->so_cred->cr_uid; 973 } 974 975 /* 976 * This does the same for sockbufs. Note that the xsockbuf structure, 977 * since it is always embedded in a socket, does not include a self 978 * pointer nor a length. We make this entry point public in case 979 * some other mechanism needs it. 980 */ 981 void 982 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb) 983 { 984 xsb->sb_cc = sb->sb_cc; 985 xsb->sb_hiwat = sb->sb_hiwat; 986 xsb->sb_mbcnt = sb->sb_mbcnt; 987 xsb->sb_mbmax = sb->sb_mbmax; 988 xsb->sb_lowat = sb->sb_lowat; 989 xsb->sb_flags = sb->sb_flags; 990 xsb->sb_timeo = sb->sb_timeo; 991 } 992 993 /* 994 * Here is the definition of some of the basic objects in the kern.ipc 995 * branch of the MIB. 996 */ 997 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 998 999 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */ 1000 static int dummy; 1001 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, ""); 1002 1003 SYSCTL_INT(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW, 1004 &sb_max, 0, "Maximum socket buffer size"); 1005 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD, 1006 &maxsockets, 0, "Maximum number of sockets avaliable"); 1007 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW, 1008 &sb_efficiency, 0, ""); 1009 1010 /* 1011 * Initialise maxsockets 1012 */ 1013 static void init_maxsockets(void *ignored) 1014 { 1015 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 1016 maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters)); 1017 } 1018 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 1019