1 /* 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 34 * $FreeBSD$ 35 */ 36 37 #include "opt_param.h" 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/domain.h> 41 #include <sys/file.h> /* for maxfiles */ 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/proc.h> 48 #include <sys/protosw.h> 49 #include <sys/resourcevar.h> 50 #include <sys/stat.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/signalvar.h> 54 #include <sys/sysctl.h> 55 #include <sys/aio.h> /* for aio_swake proto */ 56 #include <sys/event.h> 57 58 int maxsockets; 59 60 /* 61 * Primitive routines for operating on sockets and socket buffers 62 */ 63 64 u_long sb_max = SB_MAX; /* XXX should be static */ 65 66 static u_long sb_efficiency = 8; /* parameter for sbreserve() */ 67 68 /* 69 * Procedures to manipulate state flags of socket 70 * and do appropriate wakeups. Normal sequence from the 71 * active (originating) side is that soisconnecting() is 72 * called during processing of connect() call, 73 * resulting in an eventual call to soisconnected() if/when the 74 * connection is established. When the connection is torn down 75 * soisdisconnecting() is called during processing of disconnect() call, 76 * and soisdisconnected() is called when the connection to the peer 77 * is totally severed. The semantics of these routines are such that 78 * connectionless protocols can call soisconnected() and soisdisconnected() 79 * only, bypassing the in-progress calls when setting up a ``connection'' 80 * takes no time. 81 * 82 * From the passive side, a socket is created with 83 * two queues of sockets: so_incomp for connections in progress 84 * and so_comp for connections already made and awaiting user acceptance. 85 * As a protocol is preparing incoming connections, it creates a socket 86 * structure queued on so_incomp by calling sonewconn(). When the connection 87 * is established, soisconnected() is called, and transfers the 88 * socket structure to so_comp, making it available to accept(). 89 * 90 * If a socket is closed with sockets on either 91 * so_incomp or so_comp, these sockets are dropped. 92 * 93 * If higher level protocols are implemented in 94 * the kernel, the wakeups done here will sometimes 95 * cause software-interrupt process scheduling. 96 */ 97 98 void 99 soisconnecting(so) 100 register struct socket *so; 101 { 102 103 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 104 so->so_state |= SS_ISCONNECTING; 105 } 106 107 void 108 soisconnected(so) 109 struct socket *so; 110 { 111 struct socket *head = so->so_head; 112 113 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 114 so->so_state |= SS_ISCONNECTED; 115 if (head && (so->so_state & SS_INCOMP)) { 116 if ((so->so_options & SO_ACCEPTFILTER) != 0) { 117 so->so_upcall = head->so_accf->so_accept_filter->accf_callback; 118 so->so_upcallarg = head->so_accf->so_accept_filter_arg; 119 so->so_rcv.sb_flags |= SB_UPCALL; 120 so->so_options &= ~SO_ACCEPTFILTER; 121 so->so_upcall(so, so->so_upcallarg, 0); 122 return; 123 } 124 TAILQ_REMOVE(&head->so_incomp, so, so_list); 125 head->so_incqlen--; 126 so->so_state &= ~SS_INCOMP; 127 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 128 so->so_state |= SS_COMP; 129 sorwakeup(head); 130 wakeup_one(&head->so_timeo); 131 } else { 132 wakeup(&so->so_timeo); 133 sorwakeup(so); 134 sowwakeup(so); 135 } 136 } 137 138 void 139 soisdisconnecting(so) 140 register struct socket *so; 141 { 142 143 so->so_state &= ~SS_ISCONNECTING; 144 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); 145 wakeup((caddr_t)&so->so_timeo); 146 sowwakeup(so); 147 sorwakeup(so); 148 } 149 150 void 151 soisdisconnected(so) 152 register struct socket *so; 153 { 154 155 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 156 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED); 157 wakeup((caddr_t)&so->so_timeo); 158 sowwakeup(so); 159 sorwakeup(so); 160 } 161 162 /* 163 * Return a random connection that hasn't been serviced yet and 164 * is eligible for discard. There is a one in qlen chance that 165 * we will return a null, saying that there are no dropable 166 * requests. In this case, the protocol specific code should drop 167 * the new request. This insures fairness. 168 * 169 * This may be used in conjunction with protocol specific queue 170 * congestion routines. 171 */ 172 struct socket * 173 sodropablereq(head) 174 register struct socket *head; 175 { 176 register struct socket *so; 177 unsigned int i, j, qlen; 178 static int rnd; 179 static struct timeval old_runtime; 180 static unsigned int cur_cnt, old_cnt; 181 struct timeval tv; 182 183 getmicrouptime(&tv); 184 if ((i = (tv.tv_sec - old_runtime.tv_sec)) != 0) { 185 old_runtime = tv; 186 old_cnt = cur_cnt / i; 187 cur_cnt = 0; 188 } 189 190 so = TAILQ_FIRST(&head->so_incomp); 191 if (!so) 192 return (so); 193 194 qlen = head->so_incqlen; 195 if (++cur_cnt > qlen || old_cnt > qlen) { 196 rnd = (314159 * rnd + 66329) & 0xffff; 197 j = ((qlen + 1) * rnd) >> 16; 198 199 while (j-- && so) 200 so = TAILQ_NEXT(so, so_list); 201 } 202 203 return (so); 204 } 205 206 /* 207 * When an attempt at a new connection is noted on a socket 208 * which accepts connections, sonewconn is called. If the 209 * connection is possible (subject to space constraints, etc.) 210 * then we allocate a new structure, propoerly linked into the 211 * data structure of the original socket, and return this. 212 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. 213 */ 214 struct socket * 215 sonewconn(head, connstatus) 216 register struct socket *head; 217 int connstatus; 218 { 219 220 return (sonewconn3(head, connstatus, NULL)); 221 } 222 223 struct socket * 224 sonewconn3(head, connstatus, td) 225 register struct socket *head; 226 int connstatus; 227 struct thread *td; 228 { 229 register struct socket *so; 230 231 if (head->so_qlen > 3 * head->so_qlimit / 2) 232 return ((struct socket *)0); 233 so = soalloc(0); 234 if (so == NULL) 235 return ((struct socket *)0); 236 so->so_head = head; 237 so->so_type = head->so_type; 238 so->so_options = head->so_options &~ SO_ACCEPTCONN; 239 so->so_linger = head->so_linger; 240 so->so_state = head->so_state | SS_NOFDREF; 241 so->so_proto = head->so_proto; 242 so->so_timeo = head->so_timeo; 243 if (td != NULL) 244 so->so_cred = crhold(td->td_proc->p_ucred); 245 else 246 so->so_cred = crhold(head->so_cred); 247 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) || 248 (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 249 sodealloc(so); 250 return ((struct socket *)0); 251 } 252 253 if (connstatus) { 254 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 255 so->so_state |= SS_COMP; 256 } else { 257 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 258 so->so_state |= SS_INCOMP; 259 head->so_incqlen++; 260 } 261 head->so_qlen++; 262 if (connstatus) { 263 sorwakeup(head); 264 wakeup((caddr_t)&head->so_timeo); 265 so->so_state |= connstatus; 266 } 267 return (so); 268 } 269 270 /* 271 * Socantsendmore indicates that no more data will be sent on the 272 * socket; it would normally be applied to a socket when the user 273 * informs the system that no more data is to be sent, by the protocol 274 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 275 * will be received, and will normally be applied to the socket by a 276 * protocol when it detects that the peer will send no more data. 277 * Data queued for reading in the socket may yet be read. 278 */ 279 280 void 281 socantsendmore(so) 282 struct socket *so; 283 { 284 285 so->so_state |= SS_CANTSENDMORE; 286 sowwakeup(so); 287 } 288 289 void 290 socantrcvmore(so) 291 struct socket *so; 292 { 293 294 so->so_state |= SS_CANTRCVMORE; 295 sorwakeup(so); 296 } 297 298 /* 299 * Wait for data to arrive at/drain from a socket buffer. 300 */ 301 int 302 sbwait(sb) 303 struct sockbuf *sb; 304 { 305 306 sb->sb_flags |= SB_WAIT; 307 return (tsleep((caddr_t)&sb->sb_cc, 308 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", 309 sb->sb_timeo)); 310 } 311 312 /* 313 * Lock a sockbuf already known to be locked; 314 * return any error returned from sleep (EINTR). 315 */ 316 int 317 sb_lock(sb) 318 register struct sockbuf *sb; 319 { 320 int error; 321 322 while (sb->sb_flags & SB_LOCK) { 323 sb->sb_flags |= SB_WANT; 324 error = tsleep((caddr_t)&sb->sb_flags, 325 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH, 326 "sblock", 0); 327 if (error) 328 return (error); 329 } 330 sb->sb_flags |= SB_LOCK; 331 return (0); 332 } 333 334 /* 335 * Wakeup processes waiting on a socket buffer. 336 * Do asynchronous notification via SIGIO 337 * if the socket has the SS_ASYNC flag set. 338 */ 339 void 340 sowakeup(so, sb) 341 register struct socket *so; 342 register struct sockbuf *sb; 343 { 344 selwakeup(&sb->sb_sel); 345 sb->sb_flags &= ~SB_SEL; 346 if (sb->sb_flags & SB_WAIT) { 347 sb->sb_flags &= ~SB_WAIT; 348 wakeup((caddr_t)&sb->sb_cc); 349 } 350 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL) 351 pgsigio(so->so_sigio, SIGIO, 0); 352 if (sb->sb_flags & SB_UPCALL) 353 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT); 354 if (sb->sb_flags & SB_AIO) 355 aio_swake(so, sb); 356 KNOTE(&sb->sb_sel.si_note, 0); 357 } 358 359 /* 360 * Socket buffer (struct sockbuf) utility routines. 361 * 362 * Each socket contains two socket buffers: one for sending data and 363 * one for receiving data. Each buffer contains a queue of mbufs, 364 * information about the number of mbufs and amount of data in the 365 * queue, and other fields allowing select() statements and notification 366 * on data availability to be implemented. 367 * 368 * Data stored in a socket buffer is maintained as a list of records. 369 * Each record is a list of mbufs chained together with the m_next 370 * field. Records are chained together with the m_nextpkt field. The upper 371 * level routine soreceive() expects the following conventions to be 372 * observed when placing information in the receive buffer: 373 * 374 * 1. If the protocol requires each message be preceded by the sender's 375 * name, then a record containing that name must be present before 376 * any associated data (mbuf's must be of type MT_SONAME). 377 * 2. If the protocol supports the exchange of ``access rights'' (really 378 * just additional data associated with the message), and there are 379 * ``rights'' to be received, then a record containing this data 380 * should be present (mbuf's must be of type MT_RIGHTS). 381 * 3. If a name or rights record exists, then it must be followed by 382 * a data record, perhaps of zero length. 383 * 384 * Before using a new socket structure it is first necessary to reserve 385 * buffer space to the socket, by calling sbreserve(). This should commit 386 * some of the available buffer space in the system buffer pool for the 387 * socket (currently, it does nothing but enforce limits). The space 388 * should be released by calling sbrelease() when the socket is destroyed. 389 */ 390 391 int 392 soreserve(so, sndcc, rcvcc) 393 register struct socket *so; 394 u_long sndcc, rcvcc; 395 { 396 struct thread *td = curthread; 397 398 if (sbreserve(&so->so_snd, sndcc, so, td) == 0) 399 goto bad; 400 if (sbreserve(&so->so_rcv, rcvcc, so, td) == 0) 401 goto bad2; 402 if (so->so_rcv.sb_lowat == 0) 403 so->so_rcv.sb_lowat = 1; 404 if (so->so_snd.sb_lowat == 0) 405 so->so_snd.sb_lowat = MCLBYTES; 406 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 407 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 408 return (0); 409 bad2: 410 sbrelease(&so->so_snd, so); 411 bad: 412 return (ENOBUFS); 413 } 414 415 /* 416 * Allot mbufs to a sockbuf. 417 * Attempt to scale mbmax so that mbcnt doesn't become limiting 418 * if buffering efficiency is near the normal case. 419 */ 420 int 421 sbreserve(sb, cc, so, td) 422 struct sockbuf *sb; 423 u_long cc; 424 struct socket *so; 425 struct thread *td; 426 { 427 428 /* 429 * td will only be NULL when we're in an interrupt 430 * (e.g. in tcp_input()) 431 */ 432 if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES)) 433 return (0); 434 if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc, 435 td ? td->td_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur : RLIM_INFINITY)) { 436 return (0); 437 } 438 sb->sb_mbmax = min(cc * sb_efficiency, sb_max); 439 if (sb->sb_lowat > sb->sb_hiwat) 440 sb->sb_lowat = sb->sb_hiwat; 441 return (1); 442 } 443 444 /* 445 * Free mbufs held by a socket, and reserved mbuf space. 446 */ 447 void 448 sbrelease(sb, so) 449 struct sockbuf *sb; 450 struct socket *so; 451 { 452 453 sbflush(sb); 454 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0, 455 RLIM_INFINITY); 456 sb->sb_mbmax = 0; 457 } 458 459 /* 460 * Routines to add and remove 461 * data from an mbuf queue. 462 * 463 * The routines sbappend() or sbappendrecord() are normally called to 464 * append new mbufs to a socket buffer, after checking that adequate 465 * space is available, comparing the function sbspace() with the amount 466 * of data to be added. sbappendrecord() differs from sbappend() in 467 * that data supplied is treated as the beginning of a new record. 468 * To place a sender's address, optional access rights, and data in a 469 * socket receive buffer, sbappendaddr() should be used. To place 470 * access rights and data in a socket receive buffer, sbappendrights() 471 * should be used. In either case, the new data begins a new record. 472 * Note that unlike sbappend() and sbappendrecord(), these routines check 473 * for the caller that there will be enough space to store the data. 474 * Each fails if there is not enough space, or if it cannot find mbufs 475 * to store additional information in. 476 * 477 * Reliable protocols may use the socket send buffer to hold data 478 * awaiting acknowledgement. Data is normally copied from a socket 479 * send buffer in a protocol with m_copy for output to a peer, 480 * and then removing the data from the socket buffer with sbdrop() 481 * or sbdroprecord() when the data is acknowledged by the peer. 482 */ 483 484 /* 485 * Append mbuf chain m to the last record in the 486 * socket buffer sb. The additional space associated 487 * the mbuf chain is recorded in sb. Empty mbufs are 488 * discarded and mbufs are compacted where possible. 489 */ 490 void 491 sbappend(sb, m) 492 struct sockbuf *sb; 493 struct mbuf *m; 494 { 495 register struct mbuf *n; 496 497 if (m == 0) 498 return; 499 n = sb->sb_mb; 500 if (n) { 501 while (n->m_nextpkt) 502 n = n->m_nextpkt; 503 do { 504 if (n->m_flags & M_EOR) { 505 sbappendrecord(sb, m); /* XXXXXX!!!! */ 506 return; 507 } 508 } while (n->m_next && (n = n->m_next)); 509 } 510 sbcompress(sb, m, n); 511 } 512 513 #ifdef SOCKBUF_DEBUG 514 void 515 sbcheck(sb) 516 register struct sockbuf *sb; 517 { 518 register struct mbuf *m; 519 register struct mbuf *n = 0; 520 register u_long len = 0, mbcnt = 0; 521 522 for (m = sb->sb_mb; m; m = n) { 523 n = m->m_nextpkt; 524 for (; m; m = m->m_next) { 525 len += m->m_len; 526 mbcnt += MSIZE; 527 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ 528 mbcnt += m->m_ext.ext_size; 529 } 530 } 531 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 532 printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc, 533 mbcnt, sb->sb_mbcnt); 534 panic("sbcheck"); 535 } 536 } 537 #endif 538 539 /* 540 * As above, except the mbuf chain 541 * begins a new record. 542 */ 543 void 544 sbappendrecord(sb, m0) 545 register struct sockbuf *sb; 546 register struct mbuf *m0; 547 { 548 register struct mbuf *m; 549 550 if (m0 == 0) 551 return; 552 m = sb->sb_mb; 553 if (m) 554 while (m->m_nextpkt) 555 m = m->m_nextpkt; 556 /* 557 * Put the first mbuf on the queue. 558 * Note this permits zero length records. 559 */ 560 sballoc(sb, m0); 561 if (m) 562 m->m_nextpkt = m0; 563 else 564 sb->sb_mb = m0; 565 m = m0->m_next; 566 m0->m_next = 0; 567 if (m && (m0->m_flags & M_EOR)) { 568 m0->m_flags &= ~M_EOR; 569 m->m_flags |= M_EOR; 570 } 571 sbcompress(sb, m, m0); 572 } 573 574 /* 575 * As above except that OOB data 576 * is inserted at the beginning of the sockbuf, 577 * but after any other OOB data. 578 */ 579 void 580 sbinsertoob(sb, m0) 581 register struct sockbuf *sb; 582 register struct mbuf *m0; 583 { 584 register struct mbuf *m; 585 register struct mbuf **mp; 586 587 if (m0 == 0) 588 return; 589 for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) { 590 m = *mp; 591 again: 592 switch (m->m_type) { 593 594 case MT_OOBDATA: 595 continue; /* WANT next train */ 596 597 case MT_CONTROL: 598 m = m->m_next; 599 if (m) 600 goto again; /* inspect THIS train further */ 601 } 602 break; 603 } 604 /* 605 * Put the first mbuf on the queue. 606 * Note this permits zero length records. 607 */ 608 sballoc(sb, m0); 609 m0->m_nextpkt = *mp; 610 *mp = m0; 611 m = m0->m_next; 612 m0->m_next = 0; 613 if (m && (m0->m_flags & M_EOR)) { 614 m0->m_flags &= ~M_EOR; 615 m->m_flags |= M_EOR; 616 } 617 sbcompress(sb, m, m0); 618 } 619 620 /* 621 * Append address and data, and optionally, control (ancillary) data 622 * to the receive queue of a socket. If present, 623 * m0 must include a packet header with total length. 624 * Returns 0 if no space in sockbuf or insufficient mbufs. 625 */ 626 int 627 sbappendaddr(sb, asa, m0, control) 628 register struct sockbuf *sb; 629 struct sockaddr *asa; 630 struct mbuf *m0, *control; 631 { 632 register struct mbuf *m, *n; 633 int space = asa->sa_len; 634 635 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 636 panic("sbappendaddr"); 637 if (m0) 638 space += m0->m_pkthdr.len; 639 for (n = control; n; n = n->m_next) { 640 space += n->m_len; 641 if (n->m_next == 0) /* keep pointer to last control buf */ 642 break; 643 } 644 if (space > sbspace(sb)) 645 return (0); 646 if (asa->sa_len > MLEN) 647 return (0); 648 MGET(m, M_DONTWAIT, MT_SONAME); 649 if (m == 0) 650 return (0); 651 m->m_len = asa->sa_len; 652 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len); 653 if (n) 654 n->m_next = m0; /* concatenate data to control */ 655 else 656 control = m0; 657 m->m_next = control; 658 for (n = m; n; n = n->m_next) 659 sballoc(sb, n); 660 n = sb->sb_mb; 661 if (n) { 662 while (n->m_nextpkt) 663 n = n->m_nextpkt; 664 n->m_nextpkt = m; 665 } else 666 sb->sb_mb = m; 667 return (1); 668 } 669 670 int 671 sbappendcontrol(sb, m0, control) 672 struct sockbuf *sb; 673 struct mbuf *control, *m0; 674 { 675 register struct mbuf *m, *n; 676 int space = 0; 677 678 if (control == 0) 679 panic("sbappendcontrol"); 680 for (m = control; ; m = m->m_next) { 681 space += m->m_len; 682 if (m->m_next == 0) 683 break; 684 } 685 n = m; /* save pointer to last control buffer */ 686 for (m = m0; m; m = m->m_next) 687 space += m->m_len; 688 if (space > sbspace(sb)) 689 return (0); 690 n->m_next = m0; /* concatenate data to control */ 691 for (m = control; m; m = m->m_next) 692 sballoc(sb, m); 693 n = sb->sb_mb; 694 if (n) { 695 while (n->m_nextpkt) 696 n = n->m_nextpkt; 697 n->m_nextpkt = control; 698 } else 699 sb->sb_mb = control; 700 return (1); 701 } 702 703 /* 704 * Compress mbuf chain m into the socket 705 * buffer sb following mbuf n. If n 706 * is null, the buffer is presumed empty. 707 */ 708 void 709 sbcompress(sb, m, n) 710 register struct sockbuf *sb; 711 register struct mbuf *m, *n; 712 { 713 register int eor = 0; 714 register struct mbuf *o; 715 716 while (m) { 717 eor |= m->m_flags & M_EOR; 718 if (m->m_len == 0 && 719 (eor == 0 || 720 (((o = m->m_next) || (o = n)) && 721 o->m_type == m->m_type))) { 722 m = m_free(m); 723 continue; 724 } 725 if (n && (n->m_flags & M_EOR) == 0 && 726 M_WRITABLE(n) && 727 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ 728 m->m_len <= M_TRAILINGSPACE(n) && 729 n->m_type == m->m_type) { 730 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, 731 (unsigned)m->m_len); 732 n->m_len += m->m_len; 733 sb->sb_cc += m->m_len; 734 m = m_free(m); 735 continue; 736 } 737 if (n) 738 n->m_next = m; 739 else 740 sb->sb_mb = m; 741 sballoc(sb, m); 742 n = m; 743 m->m_flags &= ~M_EOR; 744 m = m->m_next; 745 n->m_next = 0; 746 } 747 if (eor) { 748 if (n) 749 n->m_flags |= eor; 750 else 751 printf("semi-panic: sbcompress\n"); 752 } 753 } 754 755 /* 756 * Free all mbufs in a sockbuf. 757 * Check that all resources are reclaimed. 758 */ 759 void 760 sbflush(sb) 761 register struct sockbuf *sb; 762 { 763 764 if (sb->sb_flags & SB_LOCK) 765 panic("sbflush: locked"); 766 while (sb->sb_mbcnt) { 767 /* 768 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty: 769 * we would loop forever. Panic instead. 770 */ 771 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len)) 772 break; 773 sbdrop(sb, (int)sb->sb_cc); 774 } 775 if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt) 776 panic("sbflush: cc %ld || mb %p || mbcnt %ld", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt); 777 } 778 779 /* 780 * Drop data from (the front of) a sockbuf. 781 */ 782 void 783 sbdrop(sb, len) 784 register struct sockbuf *sb; 785 register int len; 786 { 787 register struct mbuf *m, *mn; 788 struct mbuf *next; 789 790 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 791 while (len > 0) { 792 if (m == 0) { 793 if (next == 0) 794 panic("sbdrop"); 795 m = next; 796 next = m->m_nextpkt; 797 continue; 798 } 799 if (m->m_len > len) { 800 m->m_len -= len; 801 m->m_data += len; 802 sb->sb_cc -= len; 803 break; 804 } 805 len -= m->m_len; 806 sbfree(sb, m); 807 MFREE(m, mn); 808 m = mn; 809 } 810 while (m && m->m_len == 0) { 811 sbfree(sb, m); 812 MFREE(m, mn); 813 m = mn; 814 } 815 if (m) { 816 sb->sb_mb = m; 817 m->m_nextpkt = next; 818 } else 819 sb->sb_mb = next; 820 } 821 822 /* 823 * Drop a record off the front of a sockbuf 824 * and move the next record to the front. 825 */ 826 void 827 sbdroprecord(sb) 828 register struct sockbuf *sb; 829 { 830 register struct mbuf *m, *mn; 831 832 m = sb->sb_mb; 833 if (m) { 834 sb->sb_mb = m->m_nextpkt; 835 do { 836 sbfree(sb, m); 837 MFREE(m, mn); 838 m = mn; 839 } while (m); 840 } 841 } 842 843 /* 844 * Create a "control" mbuf containing the specified data 845 * with the specified type for presentation on a socket buffer. 846 */ 847 struct mbuf * 848 sbcreatecontrol(p, size, type, level) 849 caddr_t p; 850 register int size; 851 int type, level; 852 { 853 register struct cmsghdr *cp; 854 struct mbuf *m; 855 856 if (CMSG_SPACE((u_int)size) > MCLBYTES) 857 return ((struct mbuf *) NULL); 858 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) 859 return ((struct mbuf *) NULL); 860 if (CMSG_SPACE((u_int)size) > MLEN) { 861 MCLGET(m, M_DONTWAIT); 862 if ((m->m_flags & M_EXT) == 0) { 863 m_free(m); 864 return ((struct mbuf *) NULL); 865 } 866 } 867 cp = mtod(m, struct cmsghdr *); 868 m->m_len = 0; 869 KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m), 870 ("sbcreatecontrol: short mbuf")); 871 if (p != NULL) 872 (void)memcpy(CMSG_DATA(cp), p, size); 873 m->m_len = CMSG_SPACE(size); 874 cp->cmsg_len = CMSG_LEN(size); 875 cp->cmsg_level = level; 876 cp->cmsg_type = type; 877 return (m); 878 } 879 880 /* 881 * Some routines that return EOPNOTSUPP for entry points that are not 882 * supported by a protocol. Fill in as needed. 883 */ 884 int 885 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 886 { 887 return EOPNOTSUPP; 888 } 889 890 int 891 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 892 { 893 return EOPNOTSUPP; 894 } 895 896 int 897 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 898 { 899 return EOPNOTSUPP; 900 } 901 902 int 903 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 904 struct ifnet *ifp, struct thread *td) 905 { 906 return EOPNOTSUPP; 907 } 908 909 int 910 pru_listen_notsupp(struct socket *so, struct thread *td) 911 { 912 return EOPNOTSUPP; 913 } 914 915 int 916 pru_rcvd_notsupp(struct socket *so, int flags) 917 { 918 return EOPNOTSUPP; 919 } 920 921 int 922 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 923 { 924 return EOPNOTSUPP; 925 } 926 927 /* 928 * This isn't really a ``null'' operation, but it's the default one 929 * and doesn't do anything destructive. 930 */ 931 int 932 pru_sense_null(struct socket *so, struct stat *sb) 933 { 934 sb->st_blksize = so->so_snd.sb_hiwat; 935 return 0; 936 } 937 938 /* 939 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 940 */ 941 struct sockaddr * 942 dup_sockaddr(sa, canwait) 943 struct sockaddr *sa; 944 int canwait; 945 { 946 struct sockaddr *sa2; 947 948 MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME, 949 canwait ? M_WAITOK : M_NOWAIT); 950 if (sa2) 951 bcopy(sa, sa2, sa->sa_len); 952 return sa2; 953 } 954 955 /* 956 * Create an external-format (``xsocket'') structure using the information 957 * in the kernel-format socket structure pointed to by so. This is done 958 * to reduce the spew of irrelevant information over this interface, 959 * to isolate user code from changes in the kernel structure, and 960 * potentially to provide information-hiding if we decide that 961 * some of this information should be hidden from users. 962 */ 963 void 964 sotoxsocket(struct socket *so, struct xsocket *xso) 965 { 966 xso->xso_len = sizeof *xso; 967 xso->xso_so = so; 968 xso->so_type = so->so_type; 969 xso->so_options = so->so_options; 970 xso->so_linger = so->so_linger; 971 xso->so_state = so->so_state; 972 xso->so_pcb = so->so_pcb; 973 xso->xso_protocol = so->so_proto->pr_protocol; 974 xso->xso_family = so->so_proto->pr_domain->dom_family; 975 xso->so_qlen = so->so_qlen; 976 xso->so_incqlen = so->so_incqlen; 977 xso->so_qlimit = so->so_qlimit; 978 xso->so_timeo = so->so_timeo; 979 xso->so_error = so->so_error; 980 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 981 xso->so_oobmark = so->so_oobmark; 982 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 983 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 984 xso->so_uid = so->so_cred->cr_uid; 985 } 986 987 /* 988 * This does the same for sockbufs. Note that the xsockbuf structure, 989 * since it is always embedded in a socket, does not include a self 990 * pointer nor a length. We make this entry point public in case 991 * some other mechanism needs it. 992 */ 993 void 994 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb) 995 { 996 xsb->sb_cc = sb->sb_cc; 997 xsb->sb_hiwat = sb->sb_hiwat; 998 xsb->sb_mbcnt = sb->sb_mbcnt; 999 xsb->sb_mbmax = sb->sb_mbmax; 1000 xsb->sb_lowat = sb->sb_lowat; 1001 xsb->sb_flags = sb->sb_flags; 1002 xsb->sb_timeo = sb->sb_timeo; 1003 } 1004 1005 /* 1006 * Here is the definition of some of the basic objects in the kern.ipc 1007 * branch of the MIB. 1008 */ 1009 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 1010 1011 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */ 1012 static int dummy; 1013 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, ""); 1014 1015 SYSCTL_INT(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW, 1016 &sb_max, 0, "Maximum socket buffer size"); 1017 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD, 1018 &maxsockets, 0, "Maximum number of sockets avaliable"); 1019 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW, 1020 &sb_efficiency, 0, ""); 1021 1022 /* 1023 * Initialise maxsockets 1024 */ 1025 static void init_maxsockets(void *ignored) 1026 { 1027 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 1028 maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters)); 1029 } 1030 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 1031