1 /* 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 34 * $FreeBSD$ 35 */ 36 37 #include "opt_param.h" 38 #include <sys/param.h> 39 #include <sys/aio.h> /* for aio_swake proto */ 40 #include <sys/domain.h> 41 #include <sys/event.h> 42 #include <sys/file.h> /* for maxfiles */ 43 #include <sys/kernel.h> 44 #include <sys/lock.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/mutex.h> 48 #include <sys/proc.h> 49 #include <sys/protosw.h> 50 #include <sys/resourcevar.h> 51 #include <sys/signalvar.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/stat.h> 55 #include <sys/sysctl.h> 56 #include <sys/systm.h> 57 58 int maxsockets; 59 60 void (*aio_swake)(struct socket *, struct sockbuf *); 61 62 /* 63 * Primitive routines for operating on sockets and socket buffers 64 */ 65 66 u_long sb_max = SB_MAX; /* XXX should be static */ 67 68 static u_long sb_efficiency = 8; /* parameter for sbreserve() */ 69 70 /* 71 * Procedures to manipulate state flags of socket 72 * and do appropriate wakeups. Normal sequence from the 73 * active (originating) side is that soisconnecting() is 74 * called during processing of connect() call, 75 * resulting in an eventual call to soisconnected() if/when the 76 * connection is established. When the connection is torn down 77 * soisdisconnecting() is called during processing of disconnect() call, 78 * and soisdisconnected() is called when the connection to the peer 79 * is totally severed. The semantics of these routines are such that 80 * connectionless protocols can call soisconnected() and soisdisconnected() 81 * only, bypassing the in-progress calls when setting up a ``connection'' 82 * takes no time. 83 * 84 * From the passive side, a socket is created with 85 * two queues of sockets: so_incomp for connections in progress 86 * and so_comp for connections already made and awaiting user acceptance. 87 * As a protocol is preparing incoming connections, it creates a socket 88 * structure queued on so_incomp by calling sonewconn(). When the connection 89 * is established, soisconnected() is called, and transfers the 90 * socket structure to so_comp, making it available to accept(). 91 * 92 * If a socket is closed with sockets on either 93 * so_incomp or so_comp, these sockets are dropped. 94 * 95 * If higher level protocols are implemented in 96 * the kernel, the wakeups done here will sometimes 97 * cause software-interrupt process scheduling. 98 */ 99 100 void 101 soisconnecting(so) 102 register struct socket *so; 103 { 104 105 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 106 so->so_state |= SS_ISCONNECTING; 107 } 108 109 void 110 soisconnected(so) 111 struct socket *so; 112 { 113 struct socket *head = so->so_head; 114 115 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 116 so->so_state |= SS_ISCONNECTED; 117 if (head && (so->so_state & SS_INCOMP)) { 118 if ((so->so_options & SO_ACCEPTFILTER) != 0) { 119 so->so_upcall = head->so_accf->so_accept_filter->accf_callback; 120 so->so_upcallarg = head->so_accf->so_accept_filter_arg; 121 so->so_rcv.sb_flags |= SB_UPCALL; 122 so->so_options &= ~SO_ACCEPTFILTER; 123 so->so_upcall(so, so->so_upcallarg, 0); 124 return; 125 } 126 TAILQ_REMOVE(&head->so_incomp, so, so_list); 127 head->so_incqlen--; 128 so->so_state &= ~SS_INCOMP; 129 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 130 head->so_qlen++; 131 so->so_state |= SS_COMP; 132 sorwakeup(head); 133 wakeup_one(&head->so_timeo); 134 } else { 135 wakeup(&so->so_timeo); 136 sorwakeup(so); 137 sowwakeup(so); 138 } 139 } 140 141 void 142 soisdisconnecting(so) 143 register struct socket *so; 144 { 145 146 so->so_state &= ~SS_ISCONNECTING; 147 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); 148 wakeup((caddr_t)&so->so_timeo); 149 sowwakeup(so); 150 sorwakeup(so); 151 } 152 153 void 154 soisdisconnected(so) 155 register struct socket *so; 156 { 157 158 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 159 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED); 160 wakeup((caddr_t)&so->so_timeo); 161 sowwakeup(so); 162 sorwakeup(so); 163 } 164 165 /* 166 * When an attempt at a new connection is noted on a socket 167 * which accepts connections, sonewconn is called. If the 168 * connection is possible (subject to space constraints, etc.) 169 * then we allocate a new structure, propoerly linked into the 170 * data structure of the original socket, and return this. 171 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. 172 * 173 * note: the ref count on the socket is 0 on return 174 */ 175 struct socket * 176 sonewconn(head, connstatus) 177 register struct socket *head; 178 int connstatus; 179 { 180 register struct socket *so; 181 182 if (head->so_qlen > 3 * head->so_qlimit / 2) 183 return ((struct socket *)0); 184 so = soalloc(0); 185 if (so == NULL) 186 return ((struct socket *)0); 187 if ((head->so_options & SO_ACCEPTFILTER) != 0) 188 connstatus = 0; 189 so->so_head = head; 190 so->so_type = head->so_type; 191 so->so_options = head->so_options &~ SO_ACCEPTCONN; 192 so->so_linger = head->so_linger; 193 so->so_state = head->so_state | SS_NOFDREF; 194 so->so_proto = head->so_proto; 195 so->so_timeo = head->so_timeo; 196 so->so_cred = crhold(head->so_cred); 197 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) || 198 (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 199 sotryfree(so); 200 return ((struct socket *)0); 201 } 202 203 if (connstatus) { 204 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 205 so->so_state |= SS_COMP; 206 head->so_qlen++; 207 } else { 208 if (head->so_incqlen > head->so_qlimit) { 209 struct socket *sp; 210 sp = TAILQ_FIRST(&head->so_incomp); 211 (void) soabort(sp); 212 } 213 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 214 so->so_state |= SS_INCOMP; 215 head->so_incqlen++; 216 } 217 if (connstatus) { 218 sorwakeup(head); 219 wakeup((caddr_t)&head->so_timeo); 220 so->so_state |= connstatus; 221 } 222 return (so); 223 } 224 225 /* 226 * Socantsendmore indicates that no more data will be sent on the 227 * socket; it would normally be applied to a socket when the user 228 * informs the system that no more data is to be sent, by the protocol 229 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 230 * will be received, and will normally be applied to the socket by a 231 * protocol when it detects that the peer will send no more data. 232 * Data queued for reading in the socket may yet be read. 233 */ 234 235 void 236 socantsendmore(so) 237 struct socket *so; 238 { 239 240 so->so_state |= SS_CANTSENDMORE; 241 sowwakeup(so); 242 } 243 244 void 245 socantrcvmore(so) 246 struct socket *so; 247 { 248 249 so->so_state |= SS_CANTRCVMORE; 250 sorwakeup(so); 251 } 252 253 /* 254 * Wait for data to arrive at/drain from a socket buffer. 255 */ 256 int 257 sbwait(sb) 258 struct sockbuf *sb; 259 { 260 261 sb->sb_flags |= SB_WAIT; 262 return (tsleep((caddr_t)&sb->sb_cc, 263 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", 264 sb->sb_timeo)); 265 } 266 267 /* 268 * Lock a sockbuf already known to be locked; 269 * return any error returned from sleep (EINTR). 270 */ 271 int 272 sb_lock(sb) 273 register struct sockbuf *sb; 274 { 275 int error; 276 277 while (sb->sb_flags & SB_LOCK) { 278 sb->sb_flags |= SB_WANT; 279 error = tsleep((caddr_t)&sb->sb_flags, 280 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH, 281 "sblock", 0); 282 if (error) 283 return (error); 284 } 285 sb->sb_flags |= SB_LOCK; 286 return (0); 287 } 288 289 /* 290 * Wakeup processes waiting on a socket buffer. 291 * Do asynchronous notification via SIGIO 292 * if the socket has the SS_ASYNC flag set. 293 */ 294 void 295 sowakeup(so, sb) 296 register struct socket *so; 297 register struct sockbuf *sb; 298 { 299 300 selwakeup(&sb->sb_sel); 301 sb->sb_flags &= ~SB_SEL; 302 if (sb->sb_flags & SB_WAIT) { 303 sb->sb_flags &= ~SB_WAIT; 304 wakeup((caddr_t)&sb->sb_cc); 305 } 306 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL) 307 pgsigio(&so->so_sigio, SIGIO, 0); 308 if (sb->sb_flags & SB_UPCALL) 309 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT); 310 if (sb->sb_flags & SB_AIO) 311 aio_swake(so, sb); 312 KNOTE(&sb->sb_sel.si_note, 0); 313 } 314 315 /* 316 * Socket buffer (struct sockbuf) utility routines. 317 * 318 * Each socket contains two socket buffers: one for sending data and 319 * one for receiving data. Each buffer contains a queue of mbufs, 320 * information about the number of mbufs and amount of data in the 321 * queue, and other fields allowing select() statements and notification 322 * on data availability to be implemented. 323 * 324 * Data stored in a socket buffer is maintained as a list of records. 325 * Each record is a list of mbufs chained together with the m_next 326 * field. Records are chained together with the m_nextpkt field. The upper 327 * level routine soreceive() expects the following conventions to be 328 * observed when placing information in the receive buffer: 329 * 330 * 1. If the protocol requires each message be preceded by the sender's 331 * name, then a record containing that name must be present before 332 * any associated data (mbuf's must be of type MT_SONAME). 333 * 2. If the protocol supports the exchange of ``access rights'' (really 334 * just additional data associated with the message), and there are 335 * ``rights'' to be received, then a record containing this data 336 * should be present (mbuf's must be of type MT_RIGHTS). 337 * 3. If a name or rights record exists, then it must be followed by 338 * a data record, perhaps of zero length. 339 * 340 * Before using a new socket structure it is first necessary to reserve 341 * buffer space to the socket, by calling sbreserve(). This should commit 342 * some of the available buffer space in the system buffer pool for the 343 * socket (currently, it does nothing but enforce limits). The space 344 * should be released by calling sbrelease() when the socket is destroyed. 345 */ 346 347 int 348 soreserve(so, sndcc, rcvcc) 349 register struct socket *so; 350 u_long sndcc, rcvcc; 351 { 352 struct thread *td = curthread; 353 354 if (sbreserve(&so->so_snd, sndcc, so, td) == 0) 355 goto bad; 356 if (sbreserve(&so->so_rcv, rcvcc, so, td) == 0) 357 goto bad2; 358 if (so->so_rcv.sb_lowat == 0) 359 so->so_rcv.sb_lowat = 1; 360 if (so->so_snd.sb_lowat == 0) 361 so->so_snd.sb_lowat = MCLBYTES; 362 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 363 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 364 return (0); 365 bad2: 366 sbrelease(&so->so_snd, so); 367 bad: 368 return (ENOBUFS); 369 } 370 371 /* 372 * Allot mbufs to a sockbuf. 373 * Attempt to scale mbmax so that mbcnt doesn't become limiting 374 * if buffering efficiency is near the normal case. 375 */ 376 int 377 sbreserve(sb, cc, so, td) 378 struct sockbuf *sb; 379 u_long cc; 380 struct socket *so; 381 struct thread *td; 382 { 383 384 /* 385 * td will only be NULL when we're in an interrupt 386 * (e.g. in tcp_input()) 387 */ 388 if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES)) 389 return (0); 390 if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc, 391 td ? td->td_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur : RLIM_INFINITY)) { 392 return (0); 393 } 394 sb->sb_mbmax = min(cc * sb_efficiency, sb_max); 395 if (sb->sb_lowat > sb->sb_hiwat) 396 sb->sb_lowat = sb->sb_hiwat; 397 return (1); 398 } 399 400 /* 401 * Free mbufs held by a socket, and reserved mbuf space. 402 */ 403 void 404 sbrelease(sb, so) 405 struct sockbuf *sb; 406 struct socket *so; 407 { 408 409 sbflush(sb); 410 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0, 411 RLIM_INFINITY); 412 sb->sb_mbmax = 0; 413 } 414 415 /* 416 * Routines to add and remove 417 * data from an mbuf queue. 418 * 419 * The routines sbappend() or sbappendrecord() are normally called to 420 * append new mbufs to a socket buffer, after checking that adequate 421 * space is available, comparing the function sbspace() with the amount 422 * of data to be added. sbappendrecord() differs from sbappend() in 423 * that data supplied is treated as the beginning of a new record. 424 * To place a sender's address, optional access rights, and data in a 425 * socket receive buffer, sbappendaddr() should be used. To place 426 * access rights and data in a socket receive buffer, sbappendrights() 427 * should be used. In either case, the new data begins a new record. 428 * Note that unlike sbappend() and sbappendrecord(), these routines check 429 * for the caller that there will be enough space to store the data. 430 * Each fails if there is not enough space, or if it cannot find mbufs 431 * to store additional information in. 432 * 433 * Reliable protocols may use the socket send buffer to hold data 434 * awaiting acknowledgement. Data is normally copied from a socket 435 * send buffer in a protocol with m_copy for output to a peer, 436 * and then removing the data from the socket buffer with sbdrop() 437 * or sbdroprecord() when the data is acknowledged by the peer. 438 */ 439 440 /* 441 * Append mbuf chain m to the last record in the 442 * socket buffer sb. The additional space associated 443 * the mbuf chain is recorded in sb. Empty mbufs are 444 * discarded and mbufs are compacted where possible. 445 */ 446 void 447 sbappend(sb, m) 448 struct sockbuf *sb; 449 struct mbuf *m; 450 { 451 register struct mbuf *n; 452 453 if (m == 0) 454 return; 455 n = sb->sb_mb; 456 if (n) { 457 while (n->m_nextpkt) 458 n = n->m_nextpkt; 459 do { 460 if (n->m_flags & M_EOR) { 461 sbappendrecord(sb, m); /* XXXXXX!!!! */ 462 return; 463 } 464 } while (n->m_next && (n = n->m_next)); 465 } 466 sbcompress(sb, m, n); 467 } 468 469 #ifdef SOCKBUF_DEBUG 470 void 471 sbcheck(sb) 472 register struct sockbuf *sb; 473 { 474 register struct mbuf *m; 475 register struct mbuf *n = 0; 476 register u_long len = 0, mbcnt = 0; 477 478 for (m = sb->sb_mb; m; m = n) { 479 n = m->m_nextpkt; 480 for (; m; m = m->m_next) { 481 len += m->m_len; 482 mbcnt += MSIZE; 483 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ 484 mbcnt += m->m_ext.ext_size; 485 } 486 } 487 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 488 printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc, 489 mbcnt, sb->sb_mbcnt); 490 panic("sbcheck"); 491 } 492 } 493 #endif 494 495 /* 496 * As above, except the mbuf chain 497 * begins a new record. 498 */ 499 void 500 sbappendrecord(sb, m0) 501 register struct sockbuf *sb; 502 register struct mbuf *m0; 503 { 504 register struct mbuf *m; 505 506 if (m0 == 0) 507 return; 508 m = sb->sb_mb; 509 if (m) 510 while (m->m_nextpkt) 511 m = m->m_nextpkt; 512 /* 513 * Put the first mbuf on the queue. 514 * Note this permits zero length records. 515 */ 516 sballoc(sb, m0); 517 if (m) 518 m->m_nextpkt = m0; 519 else 520 sb->sb_mb = m0; 521 m = m0->m_next; 522 m0->m_next = 0; 523 if (m && (m0->m_flags & M_EOR)) { 524 m0->m_flags &= ~M_EOR; 525 m->m_flags |= M_EOR; 526 } 527 sbcompress(sb, m, m0); 528 } 529 530 /* 531 * As above except that OOB data 532 * is inserted at the beginning of the sockbuf, 533 * but after any other OOB data. 534 */ 535 void 536 sbinsertoob(sb, m0) 537 register struct sockbuf *sb; 538 register struct mbuf *m0; 539 { 540 register struct mbuf *m; 541 register struct mbuf **mp; 542 543 if (m0 == 0) 544 return; 545 for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) { 546 m = *mp; 547 again: 548 switch (m->m_type) { 549 550 case MT_OOBDATA: 551 continue; /* WANT next train */ 552 553 case MT_CONTROL: 554 m = m->m_next; 555 if (m) 556 goto again; /* inspect THIS train further */ 557 } 558 break; 559 } 560 /* 561 * Put the first mbuf on the queue. 562 * Note this permits zero length records. 563 */ 564 sballoc(sb, m0); 565 m0->m_nextpkt = *mp; 566 *mp = m0; 567 m = m0->m_next; 568 m0->m_next = 0; 569 if (m && (m0->m_flags & M_EOR)) { 570 m0->m_flags &= ~M_EOR; 571 m->m_flags |= M_EOR; 572 } 573 sbcompress(sb, m, m0); 574 } 575 576 /* 577 * Append address and data, and optionally, control (ancillary) data 578 * to the receive queue of a socket. If present, 579 * m0 must include a packet header with total length. 580 * Returns 0 if no space in sockbuf or insufficient mbufs. 581 */ 582 int 583 sbappendaddr(sb, asa, m0, control) 584 register struct sockbuf *sb; 585 struct sockaddr *asa; 586 struct mbuf *m0, *control; 587 { 588 register struct mbuf *m, *n; 589 int space = asa->sa_len; 590 591 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 592 panic("sbappendaddr"); 593 if (m0) 594 space += m0->m_pkthdr.len; 595 for (n = control; n; n = n->m_next) { 596 space += n->m_len; 597 if (n->m_next == 0) /* keep pointer to last control buf */ 598 break; 599 } 600 if (space > sbspace(sb)) 601 return (0); 602 if (asa->sa_len > MLEN) 603 return (0); 604 MGET(m, M_DONTWAIT, MT_SONAME); 605 if (m == 0) 606 return (0); 607 m->m_len = asa->sa_len; 608 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len); 609 if (n) 610 n->m_next = m0; /* concatenate data to control */ 611 else 612 control = m0; 613 m->m_next = control; 614 for (n = m; n; n = n->m_next) 615 sballoc(sb, n); 616 n = sb->sb_mb; 617 if (n) { 618 while (n->m_nextpkt) 619 n = n->m_nextpkt; 620 n->m_nextpkt = m; 621 } else 622 sb->sb_mb = m; 623 return (1); 624 } 625 626 int 627 sbappendcontrol(sb, m0, control) 628 struct sockbuf *sb; 629 struct mbuf *control, *m0; 630 { 631 register struct mbuf *m, *n; 632 int space = 0; 633 634 if (control == 0) 635 panic("sbappendcontrol"); 636 for (m = control; ; m = m->m_next) { 637 space += m->m_len; 638 if (m->m_next == 0) 639 break; 640 } 641 n = m; /* save pointer to last control buffer */ 642 for (m = m0; m; m = m->m_next) 643 space += m->m_len; 644 if (space > sbspace(sb)) 645 return (0); 646 n->m_next = m0; /* concatenate data to control */ 647 for (m = control; m; m = m->m_next) 648 sballoc(sb, m); 649 n = sb->sb_mb; 650 if (n) { 651 while (n->m_nextpkt) 652 n = n->m_nextpkt; 653 n->m_nextpkt = control; 654 } else 655 sb->sb_mb = control; 656 return (1); 657 } 658 659 /* 660 * Compress mbuf chain m into the socket 661 * buffer sb following mbuf n. If n 662 * is null, the buffer is presumed empty. 663 */ 664 void 665 sbcompress(sb, m, n) 666 register struct sockbuf *sb; 667 register struct mbuf *m, *n; 668 { 669 register int eor = 0; 670 register struct mbuf *o; 671 672 while (m) { 673 eor |= m->m_flags & M_EOR; 674 if (m->m_len == 0 && 675 (eor == 0 || 676 (((o = m->m_next) || (o = n)) && 677 o->m_type == m->m_type))) { 678 m = m_free(m); 679 continue; 680 } 681 if (n && (n->m_flags & M_EOR) == 0 && 682 M_WRITABLE(n) && 683 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ 684 m->m_len <= M_TRAILINGSPACE(n) && 685 n->m_type == m->m_type) { 686 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, 687 (unsigned)m->m_len); 688 n->m_len += m->m_len; 689 sb->sb_cc += m->m_len; 690 m = m_free(m); 691 continue; 692 } 693 if (n) 694 n->m_next = m; 695 else 696 sb->sb_mb = m; 697 sballoc(sb, m); 698 n = m; 699 m->m_flags &= ~M_EOR; 700 m = m->m_next; 701 n->m_next = 0; 702 } 703 if (eor) { 704 if (n) 705 n->m_flags |= eor; 706 else 707 printf("semi-panic: sbcompress\n"); 708 } 709 } 710 711 /* 712 * Free all mbufs in a sockbuf. 713 * Check that all resources are reclaimed. 714 */ 715 void 716 sbflush(sb) 717 register struct sockbuf *sb; 718 { 719 720 if (sb->sb_flags & SB_LOCK) 721 panic("sbflush: locked"); 722 while (sb->sb_mbcnt) { 723 /* 724 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty: 725 * we would loop forever. Panic instead. 726 */ 727 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len)) 728 break; 729 sbdrop(sb, (int)sb->sb_cc); 730 } 731 if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt) 732 panic("sbflush: cc %ld || mb %p || mbcnt %ld", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt); 733 } 734 735 /* 736 * Drop data from (the front of) a sockbuf. 737 */ 738 void 739 sbdrop(sb, len) 740 register struct sockbuf *sb; 741 register int len; 742 { 743 register struct mbuf *m; 744 struct mbuf *next; 745 746 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 747 while (len > 0) { 748 if (m == 0) { 749 if (next == 0) 750 panic("sbdrop"); 751 m = next; 752 next = m->m_nextpkt; 753 continue; 754 } 755 if (m->m_len > len) { 756 m->m_len -= len; 757 m->m_data += len; 758 sb->sb_cc -= len; 759 break; 760 } 761 len -= m->m_len; 762 sbfree(sb, m); 763 m = m_free(m); 764 } 765 while (m && m->m_len == 0) { 766 sbfree(sb, m); 767 m = m_free(m); 768 } 769 if (m) { 770 sb->sb_mb = m; 771 m->m_nextpkt = next; 772 } else 773 sb->sb_mb = next; 774 } 775 776 /* 777 * Drop a record off the front of a sockbuf 778 * and move the next record to the front. 779 */ 780 void 781 sbdroprecord(sb) 782 register struct sockbuf *sb; 783 { 784 register struct mbuf *m; 785 786 m = sb->sb_mb; 787 if (m) { 788 sb->sb_mb = m->m_nextpkt; 789 do { 790 sbfree(sb, m); 791 m = m_free(m); 792 } while (m); 793 } 794 } 795 796 /* 797 * Create a "control" mbuf containing the specified data 798 * with the specified type for presentation on a socket buffer. 799 */ 800 struct mbuf * 801 sbcreatecontrol(p, size, type, level) 802 caddr_t p; 803 register int size; 804 int type, level; 805 { 806 register struct cmsghdr *cp; 807 struct mbuf *m; 808 809 if (CMSG_SPACE((u_int)size) > MCLBYTES) 810 return ((struct mbuf *) NULL); 811 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) 812 return ((struct mbuf *) NULL); 813 if (CMSG_SPACE((u_int)size) > MLEN) { 814 MCLGET(m, M_DONTWAIT); 815 if ((m->m_flags & M_EXT) == 0) { 816 m_free(m); 817 return ((struct mbuf *) NULL); 818 } 819 } 820 cp = mtod(m, struct cmsghdr *); 821 m->m_len = 0; 822 KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m), 823 ("sbcreatecontrol: short mbuf")); 824 if (p != NULL) 825 (void)memcpy(CMSG_DATA(cp), p, size); 826 m->m_len = CMSG_SPACE(size); 827 cp->cmsg_len = CMSG_LEN(size); 828 cp->cmsg_level = level; 829 cp->cmsg_type = type; 830 return (m); 831 } 832 833 /* 834 * Some routines that return EOPNOTSUPP for entry points that are not 835 * supported by a protocol. Fill in as needed. 836 */ 837 int 838 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 839 { 840 return EOPNOTSUPP; 841 } 842 843 int 844 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 845 { 846 return EOPNOTSUPP; 847 } 848 849 int 850 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 851 { 852 return EOPNOTSUPP; 853 } 854 855 int 856 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 857 struct ifnet *ifp, struct thread *td) 858 { 859 return EOPNOTSUPP; 860 } 861 862 int 863 pru_listen_notsupp(struct socket *so, struct thread *td) 864 { 865 return EOPNOTSUPP; 866 } 867 868 int 869 pru_rcvd_notsupp(struct socket *so, int flags) 870 { 871 return EOPNOTSUPP; 872 } 873 874 int 875 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 876 { 877 return EOPNOTSUPP; 878 } 879 880 /* 881 * This isn't really a ``null'' operation, but it's the default one 882 * and doesn't do anything destructive. 883 */ 884 int 885 pru_sense_null(struct socket *so, struct stat *sb) 886 { 887 sb->st_blksize = so->so_snd.sb_hiwat; 888 return 0; 889 } 890 891 /* 892 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 893 */ 894 struct sockaddr * 895 dup_sockaddr(sa, canwait) 896 struct sockaddr *sa; 897 int canwait; 898 { 899 struct sockaddr *sa2; 900 901 MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME, 902 canwait ? M_WAITOK : M_NOWAIT); 903 if (sa2) 904 bcopy(sa, sa2, sa->sa_len); 905 return sa2; 906 } 907 908 /* 909 * Create an external-format (``xsocket'') structure using the information 910 * in the kernel-format socket structure pointed to by so. This is done 911 * to reduce the spew of irrelevant information over this interface, 912 * to isolate user code from changes in the kernel structure, and 913 * potentially to provide information-hiding if we decide that 914 * some of this information should be hidden from users. 915 */ 916 void 917 sotoxsocket(struct socket *so, struct xsocket *xso) 918 { 919 xso->xso_len = sizeof *xso; 920 xso->xso_so = so; 921 xso->so_type = so->so_type; 922 xso->so_options = so->so_options; 923 xso->so_linger = so->so_linger; 924 xso->so_state = so->so_state; 925 xso->so_pcb = so->so_pcb; 926 xso->xso_protocol = so->so_proto->pr_protocol; 927 xso->xso_family = so->so_proto->pr_domain->dom_family; 928 xso->so_qlen = so->so_qlen; 929 xso->so_incqlen = so->so_incqlen; 930 xso->so_qlimit = so->so_qlimit; 931 xso->so_timeo = so->so_timeo; 932 xso->so_error = so->so_error; 933 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 934 xso->so_oobmark = so->so_oobmark; 935 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 936 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 937 xso->so_uid = so->so_cred->cr_uid; 938 } 939 940 /* 941 * This does the same for sockbufs. Note that the xsockbuf structure, 942 * since it is always embedded in a socket, does not include a self 943 * pointer nor a length. We make this entry point public in case 944 * some other mechanism needs it. 945 */ 946 void 947 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb) 948 { 949 xsb->sb_cc = sb->sb_cc; 950 xsb->sb_hiwat = sb->sb_hiwat; 951 xsb->sb_mbcnt = sb->sb_mbcnt; 952 xsb->sb_mbmax = sb->sb_mbmax; 953 xsb->sb_lowat = sb->sb_lowat; 954 xsb->sb_flags = sb->sb_flags; 955 xsb->sb_timeo = sb->sb_timeo; 956 } 957 958 /* 959 * Here is the definition of some of the basic objects in the kern.ipc 960 * branch of the MIB. 961 */ 962 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 963 964 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */ 965 static int dummy; 966 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, ""); 967 968 SYSCTL_INT(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW, 969 &sb_max, 0, "Maximum socket buffer size"); 970 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD, 971 &maxsockets, 0, "Maximum number of sockets avaliable"); 972 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW, 973 &sb_efficiency, 0, ""); 974 975 /* 976 * Initialise maxsockets 977 */ 978 static void init_maxsockets(void *ignored) 979 { 980 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 981 maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters)); 982 } 983 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 984