1 /* 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 34 * $FreeBSD$ 35 */ 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/proc.h> 41 #include <sys/file.h> 42 #include <sys/buf.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/protosw.h> 46 #include <sys/stat.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/signalvar.h> 50 #include <sys/sysctl.h> 51 52 /* 53 * Primitive routines for operating on sockets and socket buffers 54 */ 55 56 u_long sb_max = SB_MAX; /* XXX should be static */ 57 SYSCTL_INT(_kern, KERN_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW, &sb_max, 0, "") 58 59 static u_long sb_efficiency = 8; /* parameter for sbreserve() */ 60 SYSCTL_INT(_kern, OID_AUTO, sockbuf_waste_factor, CTLFLAG_RW, &sb_efficiency, 61 0, ""); 62 63 /* 64 * Procedures to manipulate state flags of socket 65 * and do appropriate wakeups. Normal sequence from the 66 * active (originating) side is that soisconnecting() is 67 * called during processing of connect() call, 68 * resulting in an eventual call to soisconnected() if/when the 69 * connection is established. When the connection is torn down 70 * soisdisconnecting() is called during processing of disconnect() call, 71 * and soisdisconnected() is called when the connection to the peer 72 * is totally severed. The semantics of these routines are such that 73 * connectionless protocols can call soisconnected() and soisdisconnected() 74 * only, bypassing the in-progress calls when setting up a ``connection'' 75 * takes no time. 76 * 77 * From the passive side, a socket is created with 78 * two queues of sockets: so_q0 for connections in progress 79 * and so_q for connections already made and awaiting user acceptance. 80 * As a protocol is preparing incoming connections, it creates a socket 81 * structure queued on so_q0 by calling sonewconn(). When the connection 82 * is established, soisconnected() is called, and transfers the 83 * socket structure to so_q, making it available to accept(). 84 * 85 * If a socket is closed with sockets on either 86 * so_q0 or so_q, these sockets are dropped. 87 * 88 * If higher level protocols are implemented in 89 * the kernel, the wakeups done here will sometimes 90 * cause software-interrupt process scheduling. 91 */ 92 93 void 94 soisconnecting(so) 95 register struct socket *so; 96 { 97 98 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 99 so->so_state |= SS_ISCONNECTING; 100 } 101 102 void 103 soisconnected(so) 104 register struct socket *so; 105 { 106 register struct socket *head = so->so_head; 107 108 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 109 so->so_state |= SS_ISCONNECTED; 110 if (head && (so->so_state & SS_INCOMP)) { 111 TAILQ_REMOVE(&head->so_incomp, so, so_list); 112 head->so_incqlen--; 113 so->so_state &= ~SS_INCOMP; 114 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 115 so->so_state |= SS_COMP; 116 sorwakeup(head); 117 wakeup((caddr_t)&head->so_timeo); 118 } else { 119 wakeup((caddr_t)&so->so_timeo); 120 sorwakeup(so); 121 sowwakeup(so); 122 } 123 } 124 125 void 126 soisdisconnecting(so) 127 register struct socket *so; 128 { 129 130 so->so_state &= ~SS_ISCONNECTING; 131 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); 132 wakeup((caddr_t)&so->so_timeo); 133 sowwakeup(so); 134 sorwakeup(so); 135 } 136 137 void 138 soisdisconnected(so) 139 register struct socket *so; 140 { 141 142 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 143 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE); 144 wakeup((caddr_t)&so->so_timeo); 145 sowwakeup(so); 146 sorwakeup(so); 147 } 148 149 /* 150 * Return a random connection that hasn't been serviced yet and 151 * is eligible for discard. There is a one in qlen chance that 152 * we will return a null, saying that there are no dropable 153 * requests. In this case, the protocol specific code should drop 154 * the new request. This insures fairness. 155 * 156 * This may be used in conjunction with protocol specific queue 157 * congestion routines. 158 */ 159 struct socket * 160 sodropablereq(head) 161 register struct socket *head; 162 { 163 register struct socket *so; 164 unsigned int i, j, qlen; 165 166 static int rnd; 167 static long old_mono_secs; 168 static unsigned int cur_cnt, old_cnt; 169 170 if ((i = (mono_time.tv_sec - old_mono_secs)) != 0) { 171 old_mono_secs = mono_time.tv_sec; 172 old_cnt = cur_cnt / i; 173 cur_cnt = 0; 174 } 175 176 so = TAILQ_FIRST(&head->so_incomp); 177 if (!so) 178 return (so); 179 180 qlen = head->so_incqlen; 181 if (++cur_cnt > qlen || old_cnt > qlen) { 182 rnd = (314159 * rnd + 66329) & 0xffff; 183 j = ((qlen + 1) * rnd) >> 16; 184 185 while (j-- && so) 186 so = TAILQ_NEXT(so, so_list); 187 } 188 189 return (so); 190 } 191 192 /* 193 * When an attempt at a new connection is noted on a socket 194 * which accepts connections, sonewconn is called. If the 195 * connection is possible (subject to space constraints, etc.) 196 * then we allocate a new structure, propoerly linked into the 197 * data structure of the original socket, and return this. 198 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. 199 * 200 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h 201 * to catch calls that are missing the (new) second parameter. 202 */ 203 struct socket * 204 sonewconn1(head, connstatus) 205 register struct socket *head; 206 int connstatus; 207 { 208 register struct socket *so; 209 210 if (head->so_qlen > 3 * head->so_qlimit / 2) 211 return ((struct socket *)0); 212 MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT); 213 if (so == NULL) 214 return ((struct socket *)0); 215 bzero((caddr_t)so, sizeof(*so)); 216 so->so_head = head; 217 so->so_type = head->so_type; 218 so->so_options = head->so_options &~ SO_ACCEPTCONN; 219 so->so_linger = head->so_linger; 220 so->so_state = head->so_state | SS_NOFDREF; 221 so->so_proto = head->so_proto; 222 so->so_timeo = head->so_timeo; 223 so->so_pgid = head->so_pgid; 224 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat); 225 if (connstatus) { 226 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 227 so->so_state |= SS_COMP; 228 } else { 229 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 230 so->so_state |= SS_INCOMP; 231 head->so_incqlen++; 232 } 233 head->so_qlen++; 234 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0)) { 235 if (so->so_state & SS_COMP) { 236 TAILQ_REMOVE(&head->so_comp, so, so_list); 237 } else { 238 TAILQ_REMOVE(&head->so_incomp, so, so_list); 239 head->so_incqlen--; 240 } 241 head->so_qlen--; 242 (void) free((caddr_t)so, M_SOCKET); 243 return ((struct socket *)0); 244 } 245 if (connstatus) { 246 sorwakeup(head); 247 wakeup((caddr_t)&head->so_timeo); 248 so->so_state |= connstatus; 249 } 250 return (so); 251 } 252 253 /* 254 * Socantsendmore indicates that no more data will be sent on the 255 * socket; it would normally be applied to a socket when the user 256 * informs the system that no more data is to be sent, by the protocol 257 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 258 * will be received, and will normally be applied to the socket by a 259 * protocol when it detects that the peer will send no more data. 260 * Data queued for reading in the socket may yet be read. 261 */ 262 263 void 264 socantsendmore(so) 265 struct socket *so; 266 { 267 268 so->so_state |= SS_CANTSENDMORE; 269 sowwakeup(so); 270 } 271 272 void 273 socantrcvmore(so) 274 struct socket *so; 275 { 276 277 so->so_state |= SS_CANTRCVMORE; 278 sorwakeup(so); 279 } 280 281 /* 282 * Wait for data to arrive at/drain from a socket buffer. 283 */ 284 int 285 sbwait(sb) 286 struct sockbuf *sb; 287 { 288 289 sb->sb_flags |= SB_WAIT; 290 return (tsleep((caddr_t)&sb->sb_cc, 291 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", 292 sb->sb_timeo)); 293 } 294 295 /* 296 * Lock a sockbuf already known to be locked; 297 * return any error returned from sleep (EINTR). 298 */ 299 int 300 sb_lock(sb) 301 register struct sockbuf *sb; 302 { 303 int error; 304 305 while (sb->sb_flags & SB_LOCK) { 306 sb->sb_flags |= SB_WANT; 307 error = tsleep((caddr_t)&sb->sb_flags, 308 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH, 309 "sblock", 0); 310 if (error) 311 return (error); 312 } 313 sb->sb_flags |= SB_LOCK; 314 return (0); 315 } 316 317 /* 318 * Wakeup processes waiting on a socket buffer. 319 * Do asynchronous notification via SIGIO 320 * if the socket has the SS_ASYNC flag set. 321 */ 322 void 323 sowakeup(so, sb) 324 register struct socket *so; 325 register struct sockbuf *sb; 326 { 327 struct proc *p; 328 329 selwakeup(&sb->sb_sel); 330 sb->sb_flags &= ~SB_SEL; 331 if (sb->sb_flags & SB_WAIT) { 332 sb->sb_flags &= ~SB_WAIT; 333 wakeup((caddr_t)&sb->sb_cc); 334 } 335 if (so->so_state & SS_ASYNC) { 336 if (so->so_pgid < 0) 337 gsignal(-so->so_pgid, SIGIO); 338 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0) 339 psignal(p, SIGIO); 340 } 341 } 342 343 /* 344 * Socket buffer (struct sockbuf) utility routines. 345 * 346 * Each socket contains two socket buffers: one for sending data and 347 * one for receiving data. Each buffer contains a queue of mbufs, 348 * information about the number of mbufs and amount of data in the 349 * queue, and other fields allowing select() statements and notification 350 * on data availability to be implemented. 351 * 352 * Data stored in a socket buffer is maintained as a list of records. 353 * Each record is a list of mbufs chained together with the m_next 354 * field. Records are chained together with the m_nextpkt field. The upper 355 * level routine soreceive() expects the following conventions to be 356 * observed when placing information in the receive buffer: 357 * 358 * 1. If the protocol requires each message be preceded by the sender's 359 * name, then a record containing that name must be present before 360 * any associated data (mbuf's must be of type MT_SONAME). 361 * 2. If the protocol supports the exchange of ``access rights'' (really 362 * just additional data associated with the message), and there are 363 * ``rights'' to be received, then a record containing this data 364 * should be present (mbuf's must be of type MT_RIGHTS). 365 * 3. If a name or rights record exists, then it must be followed by 366 * a data record, perhaps of zero length. 367 * 368 * Before using a new socket structure it is first necessary to reserve 369 * buffer space to the socket, by calling sbreserve(). This should commit 370 * some of the available buffer space in the system buffer pool for the 371 * socket (currently, it does nothing but enforce limits). The space 372 * should be released by calling sbrelease() when the socket is destroyed. 373 */ 374 375 int 376 soreserve(so, sndcc, rcvcc) 377 register struct socket *so; 378 u_long sndcc, rcvcc; 379 { 380 381 if (sbreserve(&so->so_snd, sndcc) == 0) 382 goto bad; 383 if (sbreserve(&so->so_rcv, rcvcc) == 0) 384 goto bad2; 385 if (so->so_rcv.sb_lowat == 0) 386 so->so_rcv.sb_lowat = 1; 387 if (so->so_snd.sb_lowat == 0) 388 so->so_snd.sb_lowat = MCLBYTES; 389 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 390 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 391 return (0); 392 bad2: 393 sbrelease(&so->so_snd); 394 bad: 395 return (ENOBUFS); 396 } 397 398 /* 399 * Allot mbufs to a sockbuf. 400 * Attempt to scale mbmax so that mbcnt doesn't become limiting 401 * if buffering efficiency is near the normal case. 402 */ 403 int 404 sbreserve(sb, cc) 405 struct sockbuf *sb; 406 u_long cc; 407 { 408 if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES)) 409 return (0); 410 sb->sb_hiwat = cc; 411 sb->sb_mbmax = min(cc * sb_efficiency, sb_max); 412 if (sb->sb_lowat > sb->sb_hiwat) 413 sb->sb_lowat = sb->sb_hiwat; 414 return (1); 415 } 416 417 /* 418 * Free mbufs held by a socket, and reserved mbuf space. 419 */ 420 void 421 sbrelease(sb) 422 struct sockbuf *sb; 423 { 424 425 sbflush(sb); 426 sb->sb_hiwat = sb->sb_mbmax = 0; 427 } 428 429 /* 430 * Routines to add and remove 431 * data from an mbuf queue. 432 * 433 * The routines sbappend() or sbappendrecord() are normally called to 434 * append new mbufs to a socket buffer, after checking that adequate 435 * space is available, comparing the function sbspace() with the amount 436 * of data to be added. sbappendrecord() differs from sbappend() in 437 * that data supplied is treated as the beginning of a new record. 438 * To place a sender's address, optional access rights, and data in a 439 * socket receive buffer, sbappendaddr() should be used. To place 440 * access rights and data in a socket receive buffer, sbappendrights() 441 * should be used. In either case, the new data begins a new record. 442 * Note that unlike sbappend() and sbappendrecord(), these routines check 443 * for the caller that there will be enough space to store the data. 444 * Each fails if there is not enough space, or if it cannot find mbufs 445 * to store additional information in. 446 * 447 * Reliable protocols may use the socket send buffer to hold data 448 * awaiting acknowledgement. Data is normally copied from a socket 449 * send buffer in a protocol with m_copy for output to a peer, 450 * and then removing the data from the socket buffer with sbdrop() 451 * or sbdroprecord() when the data is acknowledged by the peer. 452 */ 453 454 /* 455 * Append mbuf chain m to the last record in the 456 * socket buffer sb. The additional space associated 457 * the mbuf chain is recorded in sb. Empty mbufs are 458 * discarded and mbufs are compacted where possible. 459 */ 460 void 461 sbappend(sb, m) 462 struct sockbuf *sb; 463 struct mbuf *m; 464 { 465 register struct mbuf *n; 466 467 if (m == 0) 468 return; 469 n = sb->sb_mb; 470 if (n) { 471 while (n->m_nextpkt) 472 n = n->m_nextpkt; 473 do { 474 if (n->m_flags & M_EOR) { 475 sbappendrecord(sb, m); /* XXXXXX!!!! */ 476 return; 477 } 478 } while (n->m_next && (n = n->m_next)); 479 } 480 sbcompress(sb, m, n); 481 } 482 483 #ifdef SOCKBUF_DEBUG 484 void 485 sbcheck(sb) 486 register struct sockbuf *sb; 487 { 488 register struct mbuf *m; 489 register int len = 0, mbcnt = 0; 490 491 for (m = sb->sb_mb; m; m = m->m_next) { 492 len += m->m_len; 493 mbcnt += MSIZE; 494 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ 495 mbcnt += m->m_ext.ext_size; 496 if (m->m_nextpkt) 497 panic("sbcheck nextpkt"); 498 } 499 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 500 printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc, 501 mbcnt, sb->sb_mbcnt); 502 panic("sbcheck"); 503 } 504 } 505 #endif 506 507 /* 508 * As above, except the mbuf chain 509 * begins a new record. 510 */ 511 void 512 sbappendrecord(sb, m0) 513 register struct sockbuf *sb; 514 register struct mbuf *m0; 515 { 516 register struct mbuf *m; 517 518 if (m0 == 0) 519 return; 520 m = sb->sb_mb; 521 if (m) 522 while (m->m_nextpkt) 523 m = m->m_nextpkt; 524 /* 525 * Put the first mbuf on the queue. 526 * Note this permits zero length records. 527 */ 528 sballoc(sb, m0); 529 if (m) 530 m->m_nextpkt = m0; 531 else 532 sb->sb_mb = m0; 533 m = m0->m_next; 534 m0->m_next = 0; 535 if (m && (m0->m_flags & M_EOR)) { 536 m0->m_flags &= ~M_EOR; 537 m->m_flags |= M_EOR; 538 } 539 sbcompress(sb, m, m0); 540 } 541 542 /* 543 * As above except that OOB data 544 * is inserted at the beginning of the sockbuf, 545 * but after any other OOB data. 546 */ 547 void 548 sbinsertoob(sb, m0) 549 register struct sockbuf *sb; 550 register struct mbuf *m0; 551 { 552 register struct mbuf *m; 553 register struct mbuf **mp; 554 555 if (m0 == 0) 556 return; 557 for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) { 558 m = *mp; 559 again: 560 switch (m->m_type) { 561 562 case MT_OOBDATA: 563 continue; /* WANT next train */ 564 565 case MT_CONTROL: 566 m = m->m_next; 567 if (m) 568 goto again; /* inspect THIS train further */ 569 } 570 break; 571 } 572 /* 573 * Put the first mbuf on the queue. 574 * Note this permits zero length records. 575 */ 576 sballoc(sb, m0); 577 m0->m_nextpkt = *mp; 578 *mp = m0; 579 m = m0->m_next; 580 m0->m_next = 0; 581 if (m && (m0->m_flags & M_EOR)) { 582 m0->m_flags &= ~M_EOR; 583 m->m_flags |= M_EOR; 584 } 585 sbcompress(sb, m, m0); 586 } 587 588 /* 589 * Append address and data, and optionally, control (ancillary) data 590 * to the receive queue of a socket. If present, 591 * m0 must include a packet header with total length. 592 * Returns 0 if no space in sockbuf or insufficient mbufs. 593 */ 594 int 595 sbappendaddr(sb, asa, m0, control) 596 register struct sockbuf *sb; 597 struct sockaddr *asa; 598 struct mbuf *m0, *control; 599 { 600 register struct mbuf *m, *n; 601 int space = asa->sa_len; 602 603 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 604 panic("sbappendaddr"); 605 if (m0) 606 space += m0->m_pkthdr.len; 607 for (n = control; n; n = n->m_next) { 608 space += n->m_len; 609 if (n->m_next == 0) /* keep pointer to last control buf */ 610 break; 611 } 612 if (space > sbspace(sb)) 613 return (0); 614 if (asa->sa_len > MLEN) 615 return (0); 616 MGET(m, M_DONTWAIT, MT_SONAME); 617 if (m == 0) 618 return (0); 619 m->m_len = asa->sa_len; 620 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len); 621 if (n) 622 n->m_next = m0; /* concatenate data to control */ 623 else 624 control = m0; 625 m->m_next = control; 626 for (n = m; n; n = n->m_next) 627 sballoc(sb, n); 628 n = sb->sb_mb; 629 if (n) { 630 while (n->m_nextpkt) 631 n = n->m_nextpkt; 632 n->m_nextpkt = m; 633 } else 634 sb->sb_mb = m; 635 return (1); 636 } 637 638 int 639 sbappendcontrol(sb, m0, control) 640 struct sockbuf *sb; 641 struct mbuf *control, *m0; 642 { 643 register struct mbuf *m, *n; 644 int space = 0; 645 646 if (control == 0) 647 panic("sbappendcontrol"); 648 for (m = control; ; m = m->m_next) { 649 space += m->m_len; 650 if (m->m_next == 0) 651 break; 652 } 653 n = m; /* save pointer to last control buffer */ 654 for (m = m0; m; m = m->m_next) 655 space += m->m_len; 656 if (space > sbspace(sb)) 657 return (0); 658 n->m_next = m0; /* concatenate data to control */ 659 for (m = control; m; m = m->m_next) 660 sballoc(sb, m); 661 n = sb->sb_mb; 662 if (n) { 663 while (n->m_nextpkt) 664 n = n->m_nextpkt; 665 n->m_nextpkt = control; 666 } else 667 sb->sb_mb = control; 668 return (1); 669 } 670 671 /* 672 * Compress mbuf chain m into the socket 673 * buffer sb following mbuf n. If n 674 * is null, the buffer is presumed empty. 675 */ 676 void 677 sbcompress(sb, m, n) 678 register struct sockbuf *sb; 679 register struct mbuf *m, *n; 680 { 681 register int eor = 0; 682 register struct mbuf *o; 683 684 while (m) { 685 eor |= m->m_flags & M_EOR; 686 if (m->m_len == 0 && 687 (eor == 0 || 688 (((o = m->m_next) || (o = n)) && 689 o->m_type == m->m_type))) { 690 m = m_free(m); 691 continue; 692 } 693 if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 && 694 (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] && 695 n->m_type == m->m_type) { 696 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, 697 (unsigned)m->m_len); 698 n->m_len += m->m_len; 699 sb->sb_cc += m->m_len; 700 m = m_free(m); 701 continue; 702 } 703 if (n) 704 n->m_next = m; 705 else 706 sb->sb_mb = m; 707 sballoc(sb, m); 708 n = m; 709 m->m_flags &= ~M_EOR; 710 m = m->m_next; 711 n->m_next = 0; 712 } 713 if (eor) { 714 if (n) 715 n->m_flags |= eor; 716 else 717 printf("semi-panic: sbcompress\n"); 718 } 719 } 720 721 /* 722 * Free all mbufs in a sockbuf. 723 * Check that all resources are reclaimed. 724 */ 725 void 726 sbflush(sb) 727 register struct sockbuf *sb; 728 { 729 730 if (sb->sb_flags & SB_LOCK) 731 panic("sbflush"); 732 while (sb->sb_mbcnt) 733 sbdrop(sb, (int)sb->sb_cc); 734 if (sb->sb_cc || sb->sb_mb) 735 panic("sbflush 2"); 736 } 737 738 /* 739 * Drop data from (the front of) a sockbuf. 740 */ 741 void 742 sbdrop(sb, len) 743 register struct sockbuf *sb; 744 register int len; 745 { 746 register struct mbuf *m, *mn; 747 struct mbuf *next; 748 749 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 750 while (len > 0) { 751 if (m == 0) { 752 if (next == 0) 753 panic("sbdrop"); 754 m = next; 755 next = m->m_nextpkt; 756 continue; 757 } 758 if (m->m_len > len) { 759 m->m_len -= len; 760 m->m_data += len; 761 sb->sb_cc -= len; 762 break; 763 } 764 len -= m->m_len; 765 sbfree(sb, m); 766 MFREE(m, mn); 767 m = mn; 768 } 769 while (m && m->m_len == 0) { 770 sbfree(sb, m); 771 MFREE(m, mn); 772 m = mn; 773 } 774 if (m) { 775 sb->sb_mb = m; 776 m->m_nextpkt = next; 777 } else 778 sb->sb_mb = next; 779 } 780 781 /* 782 * Drop a record off the front of a sockbuf 783 * and move the next record to the front. 784 */ 785 void 786 sbdroprecord(sb) 787 register struct sockbuf *sb; 788 { 789 register struct mbuf *m, *mn; 790 791 m = sb->sb_mb; 792 if (m) { 793 sb->sb_mb = m->m_nextpkt; 794 do { 795 sbfree(sb, m); 796 MFREE(m, mn); 797 m = mn; 798 } while (m); 799 } 800 } 801 802 /* 803 * Create a "control" mbuf containing the specified data 804 * with the specified type for presentation on a socket buffer. 805 */ 806 struct mbuf * 807 sbcreatecontrol(p, size, type, level) 808 caddr_t p; 809 register int size; 810 int type, level; 811 { 812 register struct cmsghdr *cp; 813 struct mbuf *m; 814 815 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) 816 return ((struct mbuf *) NULL); 817 cp = mtod(m, struct cmsghdr *); 818 /* XXX check size? */ 819 (void)memcpy(CMSG_DATA(cp), p, size); 820 size += sizeof(*cp); 821 m->m_len = size; 822 cp->cmsg_len = size; 823 cp->cmsg_level = level; 824 cp->cmsg_type = type; 825 return (m); 826 } 827 828 #ifdef PRU_OLDSTYLE 829 /* 830 * The following routines mediate between the old-style `pr_usrreq' 831 * protocol implementations and the new-style `struct pr_usrreqs' 832 * calling convention. 833 */ 834 835 /* syntactic sugar */ 836 #define nomb (struct mbuf *)0 837 838 static int 839 old_abort(struct socket *so) 840 { 841 return so->so_proto->pr_ousrreq(so, PRU_ABORT, nomb, nomb, nomb); 842 } 843 844 static int 845 old_accept(struct socket *so, struct mbuf *nam) 846 { 847 return so->so_proto->pr_ousrreq(so, PRU_ACCEPT, nomb, nam, nomb); 848 } 849 850 static int 851 old_attach(struct socket *so, int proto) 852 { 853 return so->so_proto->pr_ousrreq(so, PRU_ATTACH, nomb, 854 (struct mbuf *)proto, /* XXX */ 855 nomb); 856 } 857 858 static int 859 old_bind(struct socket *so, struct mbuf *nam) 860 { 861 return so->so_proto->pr_ousrreq(so, PRU_BIND, nomb, nam, nomb); 862 } 863 864 static int 865 old_connect(struct socket *so, struct mbuf *nam) 866 { 867 return so->so_proto->pr_ousrreq(so, PRU_CONNECT, nomb, nam, nomb); 868 } 869 870 static int 871 old_connect2(struct socket *so1, struct socket *so2) 872 { 873 return so1->so_proto->pr_ousrreq(so1, PRU_CONNECT2, nomb, 874 (struct mbuf *)so2, nomb); 875 } 876 877 static int 878 old_control(struct socket *so, int cmd, caddr_t data, struct ifnet *ifp) 879 { 880 return so->so_proto->pr_ousrreq(so, PRU_CONTROL, (struct mbuf *)cmd, 881 (struct mbuf *)data, 882 (struct mbuf *)ifp); 883 } 884 885 static int 886 old_detach(struct socket *so) 887 { 888 return so->so_proto->pr_ousrreq(so, PRU_DETACH, nomb, nomb, nomb); 889 } 890 891 static int 892 old_disconnect(struct socket *so) 893 { 894 return so->so_proto->pr_ousrreq(so, PRU_DISCONNECT, nomb, nomb, nomb); 895 } 896 897 static int 898 old_listen(struct socket *so) 899 { 900 return so->so_proto->pr_ousrreq(so, PRU_LISTEN, nomb, nomb, nomb); 901 } 902 903 static int 904 old_peeraddr(struct socket *so, struct mbuf *nam) 905 { 906 return so->so_proto->pr_ousrreq(so, PRU_PEERADDR, nomb, nam, nomb); 907 } 908 909 static int 910 old_rcvd(struct socket *so, int flags) 911 { 912 return so->so_proto->pr_ousrreq(so, PRU_RCVD, nomb, 913 (struct mbuf *)flags, /* XXX */ 914 nomb); 915 } 916 917 static int 918 old_rcvoob(struct socket *so, struct mbuf *m, int flags) 919 { 920 return so->so_proto->pr_ousrreq(so, PRU_RCVOOB, m, 921 (struct mbuf *)flags, /* XXX */ 922 nomb); 923 } 924 925 static int 926 old_send(struct socket *so, int flags, struct mbuf *m, struct mbuf *addr, 927 struct mbuf *control) 928 { 929 int req; 930 931 if (flags & PRUS_OOB) { 932 req = PRU_SENDOOB; 933 } else if(flags & PRUS_EOF) { 934 req = PRU_SEND_EOF; 935 } else { 936 req = PRU_SEND; 937 } 938 return so->so_proto->pr_ousrreq(so, req, m, addr, control); 939 } 940 941 static int 942 old_sense(struct socket *so, struct stat *sb) 943 { 944 return so->so_proto->pr_ousrreq(so, PRU_SENSE, (struct mbuf *)sb, 945 nomb, nomb); 946 } 947 948 static int 949 old_shutdown(struct socket *so) 950 { 951 return so->so_proto->pr_ousrreq(so, PRU_SHUTDOWN, nomb, nomb, nomb); 952 } 953 954 static int 955 old_sockaddr(struct socket *so, struct mbuf *nam) 956 { 957 return so->so_proto->pr_ousrreq(so, PRU_SOCKADDR, nomb, nam, nomb); 958 } 959 960 struct pr_usrreqs pru_oldstyle = { 961 old_abort, old_accept, old_attach, old_bind, old_connect, 962 old_connect2, old_control, old_detach, old_disconnect, 963 old_listen, old_peeraddr, old_rcvd, old_rcvoob, old_send, 964 old_sense, old_shutdown, old_sockaddr 965 }; 966 967 #endif /* PRU_OLDSTYLE */ 968 969 /* 970 * Some routines that return EOPNOTSUPP for entry points that are not 971 * supported by a protocol. Fill in as needed. 972 */ 973 int 974 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 975 { 976 return EOPNOTSUPP; 977 } 978