xref: /freebsd/sys/kern/uipc_sockbuf.c (revision 380a989b3223d455375b4fae70fd0b9bdd43bafb)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
34  *	$Id: uipc_socket2.c,v 1.42 1998/11/23 00:45:38 truckman Exp $
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/domain.h>
40 #include <sys/kernel.h>
41 #include <sys/proc.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/protosw.h>
45 #include <sys/stat.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 #include <sys/signalvar.h>
49 #include <sys/sysctl.h>
50 
51 /*
52  * Primitive routines for operating on sockets and socket buffers
53  */
54 
55 u_long	sb_max = SB_MAX;		/* XXX should be static */
56 
57 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
58 
59 /*
60  * Procedures to manipulate state flags of socket
61  * and do appropriate wakeups.  Normal sequence from the
62  * active (originating) side is that soisconnecting() is
63  * called during processing of connect() call,
64  * resulting in an eventual call to soisconnected() if/when the
65  * connection is established.  When the connection is torn down
66  * soisdisconnecting() is called during processing of disconnect() call,
67  * and soisdisconnected() is called when the connection to the peer
68  * is totally severed.  The semantics of these routines are such that
69  * connectionless protocols can call soisconnected() and soisdisconnected()
70  * only, bypassing the in-progress calls when setting up a ``connection''
71  * takes no time.
72  *
73  * From the passive side, a socket is created with
74  * two queues of sockets: so_q0 for connections in progress
75  * and so_q for connections already made and awaiting user acceptance.
76  * As a protocol is preparing incoming connections, it creates a socket
77  * structure queued on so_q0 by calling sonewconn().  When the connection
78  * is established, soisconnected() is called, and transfers the
79  * socket structure to so_q, making it available to accept().
80  *
81  * If a socket is closed with sockets on either
82  * so_q0 or so_q, these sockets are dropped.
83  *
84  * If higher level protocols are implemented in
85  * the kernel, the wakeups done here will sometimes
86  * cause software-interrupt process scheduling.
87  */
88 
89 void
90 soisconnecting(so)
91 	register struct socket *so;
92 {
93 
94 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
95 	so->so_state |= SS_ISCONNECTING;
96 }
97 
98 void
99 soisconnected(so)
100 	register struct socket *so;
101 {
102 	register struct socket *head = so->so_head;
103 
104 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
105 	so->so_state |= SS_ISCONNECTED;
106 	if (head && (so->so_state & SS_INCOMP)) {
107 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
108 		head->so_incqlen--;
109 		so->so_state &= ~SS_INCOMP;
110 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
111 		so->so_state |= SS_COMP;
112 		sorwakeup(head);
113 		wakeup_one(&head->so_timeo);
114 	} else {
115 		wakeup(&so->so_timeo);
116 		sorwakeup(so);
117 		sowwakeup(so);
118 	}
119 }
120 
121 void
122 soisdisconnecting(so)
123 	register struct socket *so;
124 {
125 
126 	so->so_state &= ~SS_ISCONNECTING;
127 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
128 	wakeup((caddr_t)&so->so_timeo);
129 	sowwakeup(so);
130 	sorwakeup(so);
131 }
132 
133 void
134 soisdisconnected(so)
135 	register struct socket *so;
136 {
137 
138 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
139 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
140 	wakeup((caddr_t)&so->so_timeo);
141 	sowwakeup(so);
142 	sorwakeup(so);
143 }
144 
145 /*
146  * Return a random connection that hasn't been serviced yet and
147  * is eligible for discard.  There is a one in qlen chance that
148  * we will return a null, saying that there are no dropable
149  * requests.  In this case, the protocol specific code should drop
150  * the new request.  This insures fairness.
151  *
152  * This may be used in conjunction with protocol specific queue
153  * congestion routines.
154  */
155 struct socket *
156 sodropablereq(head)
157 	register struct socket *head;
158 {
159 	register struct socket *so;
160 	unsigned int i, j, qlen;
161 	static int rnd;
162 	static struct timeval old_runtime;
163 	static unsigned int cur_cnt, old_cnt;
164 	struct timeval tv;
165 
166 	getmicrouptime(&tv);
167 	if ((i = (tv.tv_sec - old_runtime.tv_sec)) != 0) {
168 		old_runtime = tv;
169 		old_cnt = cur_cnt / i;
170 		cur_cnt = 0;
171 	}
172 
173 	so = TAILQ_FIRST(&head->so_incomp);
174 	if (!so)
175 		return (so);
176 
177 	qlen = head->so_incqlen;
178 	if (++cur_cnt > qlen || old_cnt > qlen) {
179 		rnd = (314159 * rnd + 66329) & 0xffff;
180 		j = ((qlen + 1) * rnd) >> 16;
181 
182 		while (j-- && so)
183 		    so = TAILQ_NEXT(so, so_list);
184 	}
185 
186 	return (so);
187 }
188 
189 /*
190  * When an attempt at a new connection is noted on a socket
191  * which accepts connections, sonewconn is called.  If the
192  * connection is possible (subject to space constraints, etc.)
193  * then we allocate a new structure, propoerly linked into the
194  * data structure of the original socket, and return this.
195  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
196  */
197 struct socket *
198 sonewconn(head, connstatus)
199 	register struct socket *head;
200 	int connstatus;
201 {
202 	register struct socket *so;
203 
204 	if (head->so_qlen > 3 * head->so_qlimit / 2)
205 		return ((struct socket *)0);
206 	so = soalloc(0);
207 	if (so == NULL)
208 		return ((struct socket *)0);
209 	so->so_head = head;
210 	so->so_type = head->so_type;
211 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
212 	so->so_linger = head->so_linger;
213 	so->so_state = head->so_state | SS_NOFDREF;
214 	so->so_proto = head->so_proto;
215 	so->so_timeo = head->so_timeo;
216 	so->so_uid = head->so_uid;
217 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
218 
219 	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
220 		sodealloc(so);
221 		return ((struct socket *)0);
222 	}
223 
224 	if (connstatus) {
225 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
226 		so->so_state |= SS_COMP;
227 	} else {
228 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
229 		so->so_state |= SS_INCOMP;
230 		head->so_incqlen++;
231 	}
232 	head->so_qlen++;
233 	if (connstatus) {
234 		sorwakeup(head);
235 		wakeup((caddr_t)&head->so_timeo);
236 		so->so_state |= connstatus;
237 	}
238 	return (so);
239 }
240 
241 /*
242  * Socantsendmore indicates that no more data will be sent on the
243  * socket; it would normally be applied to a socket when the user
244  * informs the system that no more data is to be sent, by the protocol
245  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
246  * will be received, and will normally be applied to the socket by a
247  * protocol when it detects that the peer will send no more data.
248  * Data queued for reading in the socket may yet be read.
249  */
250 
251 void
252 socantsendmore(so)
253 	struct socket *so;
254 {
255 
256 	so->so_state |= SS_CANTSENDMORE;
257 	sowwakeup(so);
258 }
259 
260 void
261 socantrcvmore(so)
262 	struct socket *so;
263 {
264 
265 	so->so_state |= SS_CANTRCVMORE;
266 	sorwakeup(so);
267 }
268 
269 /*
270  * Wait for data to arrive at/drain from a socket buffer.
271  */
272 int
273 sbwait(sb)
274 	struct sockbuf *sb;
275 {
276 
277 	sb->sb_flags |= SB_WAIT;
278 	return (tsleep((caddr_t)&sb->sb_cc,
279 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
280 	    sb->sb_timeo));
281 }
282 
283 /*
284  * Lock a sockbuf already known to be locked;
285  * return any error returned from sleep (EINTR).
286  */
287 int
288 sb_lock(sb)
289 	register struct sockbuf *sb;
290 {
291 	int error;
292 
293 	while (sb->sb_flags & SB_LOCK) {
294 		sb->sb_flags |= SB_WANT;
295 		error = tsleep((caddr_t)&sb->sb_flags,
296 		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
297 		    "sblock", 0);
298 		if (error)
299 			return (error);
300 	}
301 	sb->sb_flags |= SB_LOCK;
302 	return (0);
303 }
304 
305 /*
306  * Wakeup processes waiting on a socket buffer.
307  * Do asynchronous notification via SIGIO
308  * if the socket has the SS_ASYNC flag set.
309  */
310 void
311 sowakeup(so, sb)
312 	register struct socket *so;
313 	register struct sockbuf *sb;
314 {
315 	selwakeup(&sb->sb_sel);
316 	sb->sb_flags &= ~SB_SEL;
317 	if (sb->sb_flags & SB_WAIT) {
318 		sb->sb_flags &= ~SB_WAIT;
319 		wakeup((caddr_t)&sb->sb_cc);
320 	}
321 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
322 		pgsigio(so->so_sigio, SIGIO, 0);
323 	if (sb->sb_flags & SB_UPCALL)
324 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
325 }
326 
327 /*
328  * Socket buffer (struct sockbuf) utility routines.
329  *
330  * Each socket contains two socket buffers: one for sending data and
331  * one for receiving data.  Each buffer contains a queue of mbufs,
332  * information about the number of mbufs and amount of data in the
333  * queue, and other fields allowing select() statements and notification
334  * on data availability to be implemented.
335  *
336  * Data stored in a socket buffer is maintained as a list of records.
337  * Each record is a list of mbufs chained together with the m_next
338  * field.  Records are chained together with the m_nextpkt field. The upper
339  * level routine soreceive() expects the following conventions to be
340  * observed when placing information in the receive buffer:
341  *
342  * 1. If the protocol requires each message be preceded by the sender's
343  *    name, then a record containing that name must be present before
344  *    any associated data (mbuf's must be of type MT_SONAME).
345  * 2. If the protocol supports the exchange of ``access rights'' (really
346  *    just additional data associated with the message), and there are
347  *    ``rights'' to be received, then a record containing this data
348  *    should be present (mbuf's must be of type MT_RIGHTS).
349  * 3. If a name or rights record exists, then it must be followed by
350  *    a data record, perhaps of zero length.
351  *
352  * Before using a new socket structure it is first necessary to reserve
353  * buffer space to the socket, by calling sbreserve().  This should commit
354  * some of the available buffer space in the system buffer pool for the
355  * socket (currently, it does nothing but enforce limits).  The space
356  * should be released by calling sbrelease() when the socket is destroyed.
357  */
358 
359 int
360 soreserve(so, sndcc, rcvcc)
361 	register struct socket *so;
362 	u_long sndcc, rcvcc;
363 {
364 
365 	if (sbreserve(&so->so_snd, sndcc) == 0)
366 		goto bad;
367 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
368 		goto bad2;
369 	if (so->so_rcv.sb_lowat == 0)
370 		so->so_rcv.sb_lowat = 1;
371 	if (so->so_snd.sb_lowat == 0)
372 		so->so_snd.sb_lowat = MCLBYTES;
373 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
374 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
375 	return (0);
376 bad2:
377 	sbrelease(&so->so_snd);
378 bad:
379 	return (ENOBUFS);
380 }
381 
382 /*
383  * Allot mbufs to a sockbuf.
384  * Attempt to scale mbmax so that mbcnt doesn't become limiting
385  * if buffering efficiency is near the normal case.
386  */
387 int
388 sbreserve(sb, cc)
389 	struct sockbuf *sb;
390 	u_long cc;
391 {
392 	if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES))
393 		return (0);
394 	sb->sb_hiwat = cc;
395 	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
396 	if (sb->sb_lowat > sb->sb_hiwat)
397 		sb->sb_lowat = sb->sb_hiwat;
398 	return (1);
399 }
400 
401 /*
402  * Free mbufs held by a socket, and reserved mbuf space.
403  */
404 void
405 sbrelease(sb)
406 	struct sockbuf *sb;
407 {
408 
409 	sbflush(sb);
410 	sb->sb_hiwat = sb->sb_mbmax = 0;
411 }
412 
413 /*
414  * Routines to add and remove
415  * data from an mbuf queue.
416  *
417  * The routines sbappend() or sbappendrecord() are normally called to
418  * append new mbufs to a socket buffer, after checking that adequate
419  * space is available, comparing the function sbspace() with the amount
420  * of data to be added.  sbappendrecord() differs from sbappend() in
421  * that data supplied is treated as the beginning of a new record.
422  * To place a sender's address, optional access rights, and data in a
423  * socket receive buffer, sbappendaddr() should be used.  To place
424  * access rights and data in a socket receive buffer, sbappendrights()
425  * should be used.  In either case, the new data begins a new record.
426  * Note that unlike sbappend() and sbappendrecord(), these routines check
427  * for the caller that there will be enough space to store the data.
428  * Each fails if there is not enough space, or if it cannot find mbufs
429  * to store additional information in.
430  *
431  * Reliable protocols may use the socket send buffer to hold data
432  * awaiting acknowledgement.  Data is normally copied from a socket
433  * send buffer in a protocol with m_copy for output to a peer,
434  * and then removing the data from the socket buffer with sbdrop()
435  * or sbdroprecord() when the data is acknowledged by the peer.
436  */
437 
438 /*
439  * Append mbuf chain m to the last record in the
440  * socket buffer sb.  The additional space associated
441  * the mbuf chain is recorded in sb.  Empty mbufs are
442  * discarded and mbufs are compacted where possible.
443  */
444 void
445 sbappend(sb, m)
446 	struct sockbuf *sb;
447 	struct mbuf *m;
448 {
449 	register struct mbuf *n;
450 
451 	if (m == 0)
452 		return;
453 	n = sb->sb_mb;
454 	if (n) {
455 		while (n->m_nextpkt)
456 			n = n->m_nextpkt;
457 		do {
458 			if (n->m_flags & M_EOR) {
459 				sbappendrecord(sb, m); /* XXXXXX!!!! */
460 				return;
461 			}
462 		} while (n->m_next && (n = n->m_next));
463 	}
464 	sbcompress(sb, m, n);
465 }
466 
467 #ifdef SOCKBUF_DEBUG
468 void
469 sbcheck(sb)
470 	register struct sockbuf *sb;
471 {
472 	register struct mbuf *m;
473 	register struct mbuf *n = 0;
474 	register u_long len = 0, mbcnt = 0;
475 
476 	for (m = sb->sb_mb; m; m = n) {
477 	    n = m->m_nextpkt;
478 	    for (; m; m = m->m_next) {
479 		len += m->m_len;
480 		mbcnt += MSIZE;
481 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
482 			mbcnt += m->m_ext.ext_size;
483 	    }
484 	}
485 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
486 		printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
487 		    mbcnt, sb->sb_mbcnt);
488 		panic("sbcheck");
489 	}
490 }
491 #endif
492 
493 /*
494  * As above, except the mbuf chain
495  * begins a new record.
496  */
497 void
498 sbappendrecord(sb, m0)
499 	register struct sockbuf *sb;
500 	register struct mbuf *m0;
501 {
502 	register struct mbuf *m;
503 
504 	if (m0 == 0)
505 		return;
506 	m = sb->sb_mb;
507 	if (m)
508 		while (m->m_nextpkt)
509 			m = m->m_nextpkt;
510 	/*
511 	 * Put the first mbuf on the queue.
512 	 * Note this permits zero length records.
513 	 */
514 	sballoc(sb, m0);
515 	if (m)
516 		m->m_nextpkt = m0;
517 	else
518 		sb->sb_mb = m0;
519 	m = m0->m_next;
520 	m0->m_next = 0;
521 	if (m && (m0->m_flags & M_EOR)) {
522 		m0->m_flags &= ~M_EOR;
523 		m->m_flags |= M_EOR;
524 	}
525 	sbcompress(sb, m, m0);
526 }
527 
528 /*
529  * As above except that OOB data
530  * is inserted at the beginning of the sockbuf,
531  * but after any other OOB data.
532  */
533 void
534 sbinsertoob(sb, m0)
535 	register struct sockbuf *sb;
536 	register struct mbuf *m0;
537 {
538 	register struct mbuf *m;
539 	register struct mbuf **mp;
540 
541 	if (m0 == 0)
542 		return;
543 	for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
544 	    m = *mp;
545 	    again:
546 		switch (m->m_type) {
547 
548 		case MT_OOBDATA:
549 			continue;		/* WANT next train */
550 
551 		case MT_CONTROL:
552 			m = m->m_next;
553 			if (m)
554 				goto again;	/* inspect THIS train further */
555 		}
556 		break;
557 	}
558 	/*
559 	 * Put the first mbuf on the queue.
560 	 * Note this permits zero length records.
561 	 */
562 	sballoc(sb, m0);
563 	m0->m_nextpkt = *mp;
564 	*mp = m0;
565 	m = m0->m_next;
566 	m0->m_next = 0;
567 	if (m && (m0->m_flags & M_EOR)) {
568 		m0->m_flags &= ~M_EOR;
569 		m->m_flags |= M_EOR;
570 	}
571 	sbcompress(sb, m, m0);
572 }
573 
574 /*
575  * Append address and data, and optionally, control (ancillary) data
576  * to the receive queue of a socket.  If present,
577  * m0 must include a packet header with total length.
578  * Returns 0 if no space in sockbuf or insufficient mbufs.
579  */
580 int
581 sbappendaddr(sb, asa, m0, control)
582 	register struct sockbuf *sb;
583 	struct sockaddr *asa;
584 	struct mbuf *m0, *control;
585 {
586 	register struct mbuf *m, *n;
587 	int space = asa->sa_len;
588 
589 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
590 panic("sbappendaddr");
591 	if (m0)
592 		space += m0->m_pkthdr.len;
593 	for (n = control; n; n = n->m_next) {
594 		space += n->m_len;
595 		if (n->m_next == 0)	/* keep pointer to last control buf */
596 			break;
597 	}
598 	if (space > sbspace(sb))
599 		return (0);
600 	if (asa->sa_len > MLEN)
601 		return (0);
602 	MGET(m, M_DONTWAIT, MT_SONAME);
603 	if (m == 0)
604 		return (0);
605 	m->m_len = asa->sa_len;
606 	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
607 	if (n)
608 		n->m_next = m0;		/* concatenate data to control */
609 	else
610 		control = m0;
611 	m->m_next = control;
612 	for (n = m; n; n = n->m_next)
613 		sballoc(sb, n);
614 	n = sb->sb_mb;
615 	if (n) {
616 		while (n->m_nextpkt)
617 			n = n->m_nextpkt;
618 		n->m_nextpkt = m;
619 	} else
620 		sb->sb_mb = m;
621 	return (1);
622 }
623 
624 int
625 sbappendcontrol(sb, m0, control)
626 	struct sockbuf *sb;
627 	struct mbuf *control, *m0;
628 {
629 	register struct mbuf *m, *n;
630 	int space = 0;
631 
632 	if (control == 0)
633 		panic("sbappendcontrol");
634 	for (m = control; ; m = m->m_next) {
635 		space += m->m_len;
636 		if (m->m_next == 0)
637 			break;
638 	}
639 	n = m;			/* save pointer to last control buffer */
640 	for (m = m0; m; m = m->m_next)
641 		space += m->m_len;
642 	if (space > sbspace(sb))
643 		return (0);
644 	n->m_next = m0;			/* concatenate data to control */
645 	for (m = control; m; m = m->m_next)
646 		sballoc(sb, m);
647 	n = sb->sb_mb;
648 	if (n) {
649 		while (n->m_nextpkt)
650 			n = n->m_nextpkt;
651 		n->m_nextpkt = control;
652 	} else
653 		sb->sb_mb = control;
654 	return (1);
655 }
656 
657 /*
658  * Compress mbuf chain m into the socket
659  * buffer sb following mbuf n.  If n
660  * is null, the buffer is presumed empty.
661  */
662 void
663 sbcompress(sb, m, n)
664 	register struct sockbuf *sb;
665 	register struct mbuf *m, *n;
666 {
667 	register int eor = 0;
668 	register struct mbuf *o;
669 
670 	while (m) {
671 		eor |= m->m_flags & M_EOR;
672 		if (m->m_len == 0 &&
673 		    (eor == 0 ||
674 		     (((o = m->m_next) || (o = n)) &&
675 		      o->m_type == m->m_type))) {
676 			m = m_free(m);
677 			continue;
678 		}
679 		if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
680 		    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
681 		    n->m_type == m->m_type) {
682 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
683 			    (unsigned)m->m_len);
684 			n->m_len += m->m_len;
685 			sb->sb_cc += m->m_len;
686 			m = m_free(m);
687 			continue;
688 		}
689 		if (n)
690 			n->m_next = m;
691 		else
692 			sb->sb_mb = m;
693 		sballoc(sb, m);
694 		n = m;
695 		m->m_flags &= ~M_EOR;
696 		m = m->m_next;
697 		n->m_next = 0;
698 	}
699 	if (eor) {
700 		if (n)
701 			n->m_flags |= eor;
702 		else
703 			printf("semi-panic: sbcompress\n");
704 	}
705 }
706 
707 /*
708  * Free all mbufs in a sockbuf.
709  * Check that all resources are reclaimed.
710  */
711 void
712 sbflush(sb)
713 	register struct sockbuf *sb;
714 {
715 
716 	if (sb->sb_flags & SB_LOCK)
717 		panic("sbflush: locked");
718 	while (sb->sb_mbcnt && sb->sb_cc)
719 		sbdrop(sb, (int)sb->sb_cc);
720 	if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt)
721 		panic("sbflush: cc %ld || mb %p || mbcnt %ld", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt);
722 }
723 
724 /*
725  * Drop data from (the front of) a sockbuf.
726  */
727 void
728 sbdrop(sb, len)
729 	register struct sockbuf *sb;
730 	register int len;
731 {
732 	register struct mbuf *m, *mn;
733 	struct mbuf *next;
734 
735 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
736 	while (len > 0) {
737 		if (m == 0) {
738 			if (next == 0)
739 				panic("sbdrop");
740 			m = next;
741 			next = m->m_nextpkt;
742 			continue;
743 		}
744 		if (m->m_len > len) {
745 			m->m_len -= len;
746 			m->m_data += len;
747 			sb->sb_cc -= len;
748 			break;
749 		}
750 		len -= m->m_len;
751 		sbfree(sb, m);
752 		MFREE(m, mn);
753 		m = mn;
754 	}
755 	while (m && m->m_len == 0) {
756 		sbfree(sb, m);
757 		MFREE(m, mn);
758 		m = mn;
759 	}
760 	if (m) {
761 		sb->sb_mb = m;
762 		m->m_nextpkt = next;
763 	} else
764 		sb->sb_mb = next;
765 }
766 
767 /*
768  * Drop a record off the front of a sockbuf
769  * and move the next record to the front.
770  */
771 void
772 sbdroprecord(sb)
773 	register struct sockbuf *sb;
774 {
775 	register struct mbuf *m, *mn;
776 
777 	m = sb->sb_mb;
778 	if (m) {
779 		sb->sb_mb = m->m_nextpkt;
780 		do {
781 			sbfree(sb, m);
782 			MFREE(m, mn);
783 			m = mn;
784 		} while (m);
785 	}
786 }
787 
788 /*
789  * Create a "control" mbuf containing the specified data
790  * with the specified type for presentation on a socket buffer.
791  */
792 struct mbuf *
793 sbcreatecontrol(p, size, type, level)
794 	caddr_t p;
795 	register int size;
796 	int type, level;
797 {
798 	register struct cmsghdr *cp;
799 	struct mbuf *m;
800 
801 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
802 		return ((struct mbuf *) NULL);
803 	cp = mtod(m, struct cmsghdr *);
804 	/* XXX check size? */
805 	(void)memcpy(CMSG_DATA(cp), p, size);
806 	size += sizeof(*cp);
807 	m->m_len = size;
808 	cp->cmsg_len = size;
809 	cp->cmsg_level = level;
810 	cp->cmsg_type = type;
811 	return (m);
812 }
813 
814 /*
815  * Some routines that return EOPNOTSUPP for entry points that are not
816  * supported by a protocol.  Fill in as needed.
817  */
818 int
819 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
820 {
821 	return EOPNOTSUPP;
822 }
823 
824 int
825 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p)
826 {
827 	return EOPNOTSUPP;
828 }
829 
830 int
831 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
832 {
833 	return EOPNOTSUPP;
834 }
835 
836 int
837 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
838 		    struct ifnet *ifp, struct proc *p)
839 {
840 	return EOPNOTSUPP;
841 }
842 
843 int
844 pru_listen_notsupp(struct socket *so, struct proc *p)
845 {
846 	return EOPNOTSUPP;
847 }
848 
849 int
850 pru_rcvd_notsupp(struct socket *so, int flags)
851 {
852 	return EOPNOTSUPP;
853 }
854 
855 int
856 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
857 {
858 	return EOPNOTSUPP;
859 }
860 
861 /*
862  * This isn't really a ``null'' operation, but it's the default one
863  * and doesn't do anything destructive.
864  */
865 int
866 pru_sense_null(struct socket *so, struct stat *sb)
867 {
868 	sb->st_blksize = so->so_snd.sb_hiwat;
869 	return 0;
870 }
871 
872 /*
873  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
874  */
875 struct sockaddr *
876 dup_sockaddr(sa, canwait)
877 	struct sockaddr *sa;
878 	int canwait;
879 {
880 	struct sockaddr *sa2;
881 
882 	MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
883 	       canwait ? M_WAITOK : M_NOWAIT);
884 	if (sa2)
885 		bcopy(sa, sa2, sa->sa_len);
886 	return sa2;
887 }
888 
889 /*
890  * Create an external-format (``xsocket'') structure using the information
891  * in the kernel-format socket structure pointed to by so.  This is done
892  * to reduce the spew of irrelevant information over this interface,
893  * to isolate user code from changes in the kernel structure, and
894  * potentially to provide information-hiding if we decide that
895  * some of this information should be hidden from users.
896  */
897 void
898 sotoxsocket(struct socket *so, struct xsocket *xso)
899 {
900 	xso->xso_len = sizeof *xso;
901 	xso->xso_so = so;
902 	xso->so_type = so->so_type;
903 	xso->so_options = so->so_options;
904 	xso->so_linger = so->so_linger;
905 	xso->so_state = so->so_state;
906 	xso->so_pcb = so->so_pcb;
907 	xso->xso_protocol = so->so_proto->pr_protocol;
908 	xso->xso_family = so->so_proto->pr_domain->dom_family;
909 	xso->so_qlen = so->so_qlen;
910 	xso->so_incqlen = so->so_incqlen;
911 	xso->so_qlimit = so->so_qlimit;
912 	xso->so_timeo = so->so_timeo;
913 	xso->so_error = so->so_error;
914 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
915 	xso->so_oobmark = so->so_oobmark;
916 	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
917 	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
918 	xso->so_uid = so->so_uid;
919 }
920 
921 /*
922  * This does the same for sockbufs.  Note that the xsockbuf structure,
923  * since it is always embedded in a socket, does not include a self
924  * pointer nor a length.  We make this entry point public in case
925  * some other mechanism needs it.
926  */
927 void
928 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
929 {
930 	xsb->sb_cc = sb->sb_cc;
931 	xsb->sb_hiwat = sb->sb_hiwat;
932 	xsb->sb_mbcnt = sb->sb_mbcnt;
933 	xsb->sb_mbmax = sb->sb_mbmax;
934 	xsb->sb_lowat = sb->sb_lowat;
935 	xsb->sb_flags = sb->sb_flags;
936 	xsb->sb_timeo = sb->sb_timeo;
937 }
938 
939 /*
940  * Here is the definition of some of the basic objects in the kern.ipc
941  * branch of the MIB.
942  */
943 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
944 
945 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
946 static int dummy;
947 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
948 
949 SYSCTL_INT(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW, &sb_max, 0, "");
950 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD, &maxsockets, 0, "");
951 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
952 	   &sb_efficiency, 0, "");
953 SYSCTL_INT(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters, CTLFLAG_RD, &nmbclusters, 0, "");
954 
955