xref: /freebsd/sys/kern/uipc_sockbuf.c (revision 3193579b66fd7067f898dbc54bdea81a0e6f9bd0)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 #include "opt_mac.h"
40 #include "opt_param.h"
41 
42 #include <sys/param.h>
43 #include <sys/aio.h> /* for aio_swake proto */
44 #include <sys/domain.h>
45 #include <sys/event.h>
46 #include <sys/file.h>	/* for maxfiles */
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/mac.h>
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #include <sys/mutex.h>
53 #include <sys/proc.h>
54 #include <sys/protosw.h>
55 #include <sys/resourcevar.h>
56 #include <sys/signalvar.h>
57 #include <sys/socket.h>
58 #include <sys/socketvar.h>
59 #include <sys/stat.h>
60 #include <sys/sysctl.h>
61 #include <sys/systm.h>
62 
63 int	maxsockets;
64 
65 void (*aio_swake)(struct socket *, struct sockbuf *);
66 
67 /*
68  * Primitive routines for operating on sockets and socket buffers
69  */
70 
71 u_long	sb_max = SB_MAX;
72 static	u_long sb_max_adj =
73     SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
74 
75 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
76 
77 /*
78  * Procedures to manipulate state flags of socket
79  * and do appropriate wakeups.  Normal sequence from the
80  * active (originating) side is that soisconnecting() is
81  * called during processing of connect() call,
82  * resulting in an eventual call to soisconnected() if/when the
83  * connection is established.  When the connection is torn down
84  * soisdisconnecting() is called during processing of disconnect() call,
85  * and soisdisconnected() is called when the connection to the peer
86  * is totally severed.  The semantics of these routines are such that
87  * connectionless protocols can call soisconnected() and soisdisconnected()
88  * only, bypassing the in-progress calls when setting up a ``connection''
89  * takes no time.
90  *
91  * From the passive side, a socket is created with
92  * two queues of sockets: so_incomp for connections in progress
93  * and so_comp for connections already made and awaiting user acceptance.
94  * As a protocol is preparing incoming connections, it creates a socket
95  * structure queued on so_incomp by calling sonewconn().  When the connection
96  * is established, soisconnected() is called, and transfers the
97  * socket structure to so_comp, making it available to accept().
98  *
99  * If a socket is closed with sockets on either
100  * so_incomp or so_comp, these sockets are dropped.
101  *
102  * If higher level protocols are implemented in
103  * the kernel, the wakeups done here will sometimes
104  * cause software-interrupt process scheduling.
105  */
106 
107 void
108 soisconnecting(so)
109 	register struct socket *so;
110 {
111 
112 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
113 	so->so_state |= SS_ISCONNECTING;
114 }
115 
116 void
117 soisconnected(so)
118 	struct socket *so;
119 {
120 	struct socket *head = so->so_head;
121 
122 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
123 	so->so_state |= SS_ISCONNECTED;
124 	if (head && (so->so_state & SS_INCOMP)) {
125 		if ((so->so_options & SO_ACCEPTFILTER) != 0) {
126 			so->so_upcall = head->so_accf->so_accept_filter->accf_callback;
127 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
128 			so->so_rcv.sb_flags |= SB_UPCALL;
129 			so->so_options &= ~SO_ACCEPTFILTER;
130 			so->so_upcall(so, so->so_upcallarg, M_TRYWAIT);
131 			return;
132 		}
133 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
134 		head->so_incqlen--;
135 		so->so_state &= ~SS_INCOMP;
136 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
137 		head->so_qlen++;
138 		so->so_state |= SS_COMP;
139 		sorwakeup(head);
140 		wakeup_one(&head->so_timeo);
141 	} else {
142 		wakeup(&so->so_timeo);
143 		sorwakeup(so);
144 		sowwakeup(so);
145 	}
146 }
147 
148 void
149 soisdisconnecting(so)
150 	register struct socket *so;
151 {
152 
153 	so->so_state &= ~SS_ISCONNECTING;
154 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
155 	wakeup(&so->so_timeo);
156 	sowwakeup(so);
157 	sorwakeup(so);
158 }
159 
160 void
161 soisdisconnected(so)
162 	register struct socket *so;
163 {
164 
165 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
166 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
167 	wakeup(&so->so_timeo);
168 	sbdrop(&so->so_snd, so->so_snd.sb_cc);
169 	sowwakeup(so);
170 	sorwakeup(so);
171 }
172 
173 /*
174  * When an attempt at a new connection is noted on a socket
175  * which accepts connections, sonewconn is called.  If the
176  * connection is possible (subject to space constraints, etc.)
177  * then we allocate a new structure, propoerly linked into the
178  * data structure of the original socket, and return this.
179  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
180  *
181  * note: the ref count on the socket is 0 on return
182  */
183 struct socket *
184 sonewconn(head, connstatus)
185 	register struct socket *head;
186 	int connstatus;
187 {
188 	register struct socket *so;
189 
190 	if (head->so_qlen > 3 * head->so_qlimit / 2)
191 		return ((struct socket *)0);
192 	so = soalloc(0);
193 	if (so == NULL)
194 		return ((struct socket *)0);
195 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
196 		connstatus = 0;
197 	so->so_head = head;
198 	so->so_type = head->so_type;
199 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
200 	so->so_linger = head->so_linger;
201 	so->so_state = head->so_state | SS_NOFDREF;
202 	so->so_proto = head->so_proto;
203 	so->so_timeo = head->so_timeo;
204 	so->so_cred = crhold(head->so_cred);
205 #ifdef MAC
206 	mac_create_socket_from_socket(head, so);
207 #endif
208 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
209 	    (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
210 		sodealloc(so);
211 		return ((struct socket *)0);
212 	}
213 
214 	if (connstatus) {
215 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
216 		so->so_state |= SS_COMP;
217 		head->so_qlen++;
218 	} else {
219 		if (head->so_incqlen > head->so_qlimit) {
220 			struct socket *sp;
221 			sp = TAILQ_FIRST(&head->so_incomp);
222 			(void) soabort(sp);
223 		}
224 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
225 		so->so_state |= SS_INCOMP;
226 		head->so_incqlen++;
227 	}
228 	if (connstatus) {
229 		sorwakeup(head);
230 		wakeup(&head->so_timeo);
231 		so->so_state |= connstatus;
232 	}
233 	return (so);
234 }
235 
236 /*
237  * Socantsendmore indicates that no more data will be sent on the
238  * socket; it would normally be applied to a socket when the user
239  * informs the system that no more data is to be sent, by the protocol
240  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
241  * will be received, and will normally be applied to the socket by a
242  * protocol when it detects that the peer will send no more data.
243  * Data queued for reading in the socket may yet be read.
244  */
245 
246 void
247 socantsendmore(so)
248 	struct socket *so;
249 {
250 
251 	so->so_state |= SS_CANTSENDMORE;
252 	sowwakeup(so);
253 }
254 
255 void
256 socantrcvmore(so)
257 	struct socket *so;
258 {
259 
260 	so->so_state |= SS_CANTRCVMORE;
261 	sorwakeup(so);
262 }
263 
264 /*
265  * Wait for data to arrive at/drain from a socket buffer.
266  */
267 int
268 sbwait(sb)
269 	struct sockbuf *sb;
270 {
271 
272 	sb->sb_flags |= SB_WAIT;
273 	return (tsleep(&sb->sb_cc,
274 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
275 	    sb->sb_timeo));
276 }
277 
278 /*
279  * Lock a sockbuf already known to be locked;
280  * return any error returned from sleep (EINTR).
281  */
282 int
283 sb_lock(sb)
284 	register struct sockbuf *sb;
285 {
286 	int error;
287 
288 	while (sb->sb_flags & SB_LOCK) {
289 		sb->sb_flags |= SB_WANT;
290 		error = tsleep(&sb->sb_flags,
291 		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
292 		    "sblock", 0);
293 		if (error)
294 			return (error);
295 	}
296 	sb->sb_flags |= SB_LOCK;
297 	return (0);
298 }
299 
300 /*
301  * Wakeup processes waiting on a socket buffer.
302  * Do asynchronous notification via SIGIO
303  * if the socket has the SS_ASYNC flag set.
304  */
305 void
306 sowakeup(so, sb)
307 	register struct socket *so;
308 	register struct sockbuf *sb;
309 {
310 
311 	selwakeuppri(&sb->sb_sel, PSOCK);
312 	sb->sb_flags &= ~SB_SEL;
313 	if (sb->sb_flags & SB_WAIT) {
314 		sb->sb_flags &= ~SB_WAIT;
315 		wakeup(&sb->sb_cc);
316 	}
317 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
318 		pgsigio(&so->so_sigio, SIGIO, 0);
319 	if (sb->sb_flags & SB_UPCALL)
320 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
321 	if (sb->sb_flags & SB_AIO)
322 		aio_swake(so, sb);
323 	KNOTE(&sb->sb_sel.si_note, 0);
324 }
325 
326 /*
327  * Socket buffer (struct sockbuf) utility routines.
328  *
329  * Each socket contains two socket buffers: one for sending data and
330  * one for receiving data.  Each buffer contains a queue of mbufs,
331  * information about the number of mbufs and amount of data in the
332  * queue, and other fields allowing select() statements and notification
333  * on data availability to be implemented.
334  *
335  * Data stored in a socket buffer is maintained as a list of records.
336  * Each record is a list of mbufs chained together with the m_next
337  * field.  Records are chained together with the m_nextpkt field. The upper
338  * level routine soreceive() expects the following conventions to be
339  * observed when placing information in the receive buffer:
340  *
341  * 1. If the protocol requires each message be preceded by the sender's
342  *    name, then a record containing that name must be present before
343  *    any associated data (mbuf's must be of type MT_SONAME).
344  * 2. If the protocol supports the exchange of ``access rights'' (really
345  *    just additional data associated with the message), and there are
346  *    ``rights'' to be received, then a record containing this data
347  *    should be present (mbuf's must be of type MT_RIGHTS).
348  * 3. If a name or rights record exists, then it must be followed by
349  *    a data record, perhaps of zero length.
350  *
351  * Before using a new socket structure it is first necessary to reserve
352  * buffer space to the socket, by calling sbreserve().  This should commit
353  * some of the available buffer space in the system buffer pool for the
354  * socket (currently, it does nothing but enforce limits).  The space
355  * should be released by calling sbrelease() when the socket is destroyed.
356  */
357 
358 int
359 soreserve(so, sndcc, rcvcc)
360 	register struct socket *so;
361 	u_long sndcc, rcvcc;
362 {
363 	struct thread *td = curthread;
364 
365 	if (sbreserve(&so->so_snd, sndcc, so, td) == 0)
366 		goto bad;
367 	if (sbreserve(&so->so_rcv, rcvcc, so, td) == 0)
368 		goto bad2;
369 	if (so->so_rcv.sb_lowat == 0)
370 		so->so_rcv.sb_lowat = 1;
371 	if (so->so_snd.sb_lowat == 0)
372 		so->so_snd.sb_lowat = MCLBYTES;
373 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
374 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
375 	return (0);
376 bad2:
377 	sbrelease(&so->so_snd, so);
378 bad:
379 	return (ENOBUFS);
380 }
381 
382 static int
383 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
384 {
385 	int error = 0;
386 	u_long old_sb_max = sb_max;
387 
388 	error = SYSCTL_OUT(req, arg1, sizeof(u_long));
389 	if (error || !req->newptr)
390 		return (error);
391 	error = SYSCTL_IN(req, arg1, sizeof(u_long));
392 	if (error)
393 		return (error);
394 	if (sb_max < MSIZE + MCLBYTES) {
395 		sb_max = old_sb_max;
396 		return (EINVAL);
397 	}
398 	sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
399 	return (0);
400 }
401 
402 /*
403  * Allot mbufs to a sockbuf.
404  * Attempt to scale mbmax so that mbcnt doesn't become limiting
405  * if buffering efficiency is near the normal case.
406  */
407 int
408 sbreserve(sb, cc, so, td)
409 	struct sockbuf *sb;
410 	u_long cc;
411 	struct socket *so;
412 	struct thread *td;
413 {
414 
415 	/*
416 	 * td will only be NULL when we're in an interrupt
417 	 * (e.g. in tcp_input())
418 	 */
419 	if (cc > sb_max_adj)
420 		return (0);
421 	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
422 	    td ? td->td_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur : RLIM_INFINITY)) {
423 		return (0);
424 	}
425 	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
426 	if (sb->sb_lowat > sb->sb_hiwat)
427 		sb->sb_lowat = sb->sb_hiwat;
428 	return (1);
429 }
430 
431 /*
432  * Free mbufs held by a socket, and reserved mbuf space.
433  */
434 void
435 sbrelease(sb, so)
436 	struct sockbuf *sb;
437 	struct socket *so;
438 {
439 
440 	sbflush(sb);
441 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
442 	    RLIM_INFINITY);
443 	sb->sb_mbmax = 0;
444 }
445 
446 /*
447  * Routines to add and remove
448  * data from an mbuf queue.
449  *
450  * The routines sbappend() or sbappendrecord() are normally called to
451  * append new mbufs to a socket buffer, after checking that adequate
452  * space is available, comparing the function sbspace() with the amount
453  * of data to be added.  sbappendrecord() differs from sbappend() in
454  * that data supplied is treated as the beginning of a new record.
455  * To place a sender's address, optional access rights, and data in a
456  * socket receive buffer, sbappendaddr() should be used.  To place
457  * access rights and data in a socket receive buffer, sbappendrights()
458  * should be used.  In either case, the new data begins a new record.
459  * Note that unlike sbappend() and sbappendrecord(), these routines check
460  * for the caller that there will be enough space to store the data.
461  * Each fails if there is not enough space, or if it cannot find mbufs
462  * to store additional information in.
463  *
464  * Reliable protocols may use the socket send buffer to hold data
465  * awaiting acknowledgement.  Data is normally copied from a socket
466  * send buffer in a protocol with m_copy for output to a peer,
467  * and then removing the data from the socket buffer with sbdrop()
468  * or sbdroprecord() when the data is acknowledged by the peer.
469  */
470 
471 #ifdef SOCKBUF_DEBUG
472 void
473 sblastrecordchk(struct sockbuf *sb, const char *file, int line)
474 {
475 	struct mbuf *m = sb->sb_mb;
476 
477 	while (m && m->m_nextpkt)
478 		m = m->m_nextpkt;
479 
480 	if (m != sb->sb_lastrecord) {
481 		printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
482 			__func__, sb->sb_mb, sb->sb_lastrecord, m);
483 		printf("packet chain:\n");
484 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
485 			printf("\t%p\n", m);
486 		panic("%s from %s:%u", __func__, file, line);
487 	}
488 }
489 
490 void
491 sblastmbufchk(struct sockbuf *sb, const char *file, int line)
492 {
493 	struct mbuf *m = sb->sb_mb;
494 	struct mbuf *n;
495 
496 	while (m && m->m_nextpkt)
497 		m = m->m_nextpkt;
498 
499 	while (m && m->m_next)
500 		m = m->m_next;
501 
502 	if (m != sb->sb_mbtail) {
503 		printf("%s: sb_mb %p sb_mbtail %p last %p\n",
504 			__func__, sb->sb_mb, sb->sb_mbtail, m);
505 		printf("packet tree:\n");
506 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
507 			printf("\t");
508 			for (n = m; n != NULL; n = n->m_next)
509 				printf("%p ", n);
510 			printf("\n");
511 		}
512 		panic("%s from %s:%u", __func__, file, line);
513 	}
514 }
515 #endif /* SOCKBUF_DEBUG */
516 
517 #define SBLINKRECORD(sb, m0) do {					\
518 	if ((sb)->sb_lastrecord != NULL)				\
519 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
520 	else								\
521 		(sb)->sb_mb = (m0);					\
522 	(sb)->sb_lastrecord = (m0);					\
523 } while (/*CONSTCOND*/0)
524 
525 /*
526  * Append mbuf chain m to the last record in the
527  * socket buffer sb.  The additional space associated
528  * the mbuf chain is recorded in sb.  Empty mbufs are
529  * discarded and mbufs are compacted where possible.
530  */
531 void
532 sbappend(sb, m)
533 	struct sockbuf *sb;
534 	struct mbuf *m;
535 {
536 	register struct mbuf *n;
537 
538 	if (m == 0)
539 		return;
540 	SBLASTRECORDCHK(sb);
541 	n = sb->sb_mb;
542 	if (n) {
543 		while (n->m_nextpkt)
544 			n = n->m_nextpkt;
545 		do {
546 			if (n->m_flags & M_EOR) {
547 				sbappendrecord(sb, m); /* XXXXXX!!!! */
548 				return;
549 			}
550 		} while (n->m_next && (n = n->m_next));
551 	} else {
552 		/*
553 		 * XXX Would like to simply use sb_mbtail here, but
554 		 * XXX I need to verify that I won't miss an EOR that
555 		 * XXX way.
556 		 */
557 		if ((n = sb->sb_lastrecord) != NULL) {
558 			do {
559 				if (n->m_flags & M_EOR) {
560 					sbappendrecord(sb, m); /* XXXXXX!!!! */
561 					return;
562 				}
563 			} while (n->m_next && (n = n->m_next));
564 		} else {
565 			/*
566 			 * If this is the first record in the socket buffer,
567 			 * it's also the last record.
568 			 */
569 			sb->sb_lastrecord = m;
570 		}
571 	}
572 	sbcompress(sb, m, n);
573 	SBLASTRECORDCHK(sb);
574 }
575 
576 /*
577  * This version of sbappend() should only be used when the caller
578  * absolutely knows that there will never be more than one record
579  * in the socket buffer, that is, a stream protocol (such as TCP).
580  */
581 void
582 sbappendstream(struct sockbuf *sb, struct mbuf *m)
583 {
584 
585 	KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
586 	KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
587 
588 	SBLASTMBUFCHK(sb);
589 
590 #ifdef MBUFTRACE
591 	m_claim(m, sb->sb_mowner);
592 #endif
593 
594 	sbcompress(sb, m, sb->sb_mbtail);
595 
596 	sb->sb_lastrecord = sb->sb_mb;
597 	SBLASTRECORDCHK(sb);
598 }
599 
600 #ifdef SOCKBUF_DEBUG
601 void
602 sbcheck(sb)
603 	struct sockbuf *sb;
604 {
605 	struct mbuf *m;
606 	struct mbuf *n = 0;
607 	u_long len = 0, mbcnt = 0;
608 
609 	for (m = sb->sb_mb; m; m = n) {
610 	    n = m->m_nextpkt;
611 	    for (; m; m = m->m_next) {
612 		len += m->m_len;
613 		mbcnt += MSIZE;
614 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
615 			mbcnt += m->m_ext.ext_size;
616 	    }
617 	}
618 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
619 		printf("cc %ld != %u || mbcnt %ld != %u\n", len, sb->sb_cc,
620 		    mbcnt, sb->sb_mbcnt);
621 		panic("sbcheck");
622 	}
623 }
624 #endif
625 
626 /*
627  * As above, except the mbuf chain
628  * begins a new record.
629  */
630 void
631 sbappendrecord(sb, m0)
632 	register struct sockbuf *sb;
633 	register struct mbuf *m0;
634 {
635 	register struct mbuf *m;
636 
637 	if (m0 == 0)
638 		return;
639 	m = sb->sb_mb;
640 	if (m)
641 		while (m->m_nextpkt)
642 			m = m->m_nextpkt;
643 	/*
644 	 * Put the first mbuf on the queue.
645 	 * Note this permits zero length records.
646 	 */
647 	sballoc(sb, m0);
648 	SBLASTRECORDCHK(sb);
649 	SBLINKRECORD(sb, m0);
650 	if (m)
651 		m->m_nextpkt = m0;
652 	else
653 		sb->sb_mb = m0;
654 	m = m0->m_next;
655 	m0->m_next = 0;
656 	if (m && (m0->m_flags & M_EOR)) {
657 		m0->m_flags &= ~M_EOR;
658 		m->m_flags |= M_EOR;
659 	}
660 	sbcompress(sb, m, m0);
661 }
662 
663 /*
664  * As above except that OOB data
665  * is inserted at the beginning of the sockbuf,
666  * but after any other OOB data.
667  */
668 void
669 sbinsertoob(sb, m0)
670 	register struct sockbuf *sb;
671 	register struct mbuf *m0;
672 {
673 	register struct mbuf *m;
674 	register struct mbuf **mp;
675 
676 	if (m0 == 0)
677 		return;
678 	for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
679 	    m = *mp;
680 	    again:
681 		switch (m->m_type) {
682 
683 		case MT_OOBDATA:
684 			continue;		/* WANT next train */
685 
686 		case MT_CONTROL:
687 			m = m->m_next;
688 			if (m)
689 				goto again;	/* inspect THIS train further */
690 		}
691 		break;
692 	}
693 	/*
694 	 * Put the first mbuf on the queue.
695 	 * Note this permits zero length records.
696 	 */
697 	sballoc(sb, m0);
698 	m0->m_nextpkt = *mp;
699 	*mp = m0;
700 	m = m0->m_next;
701 	m0->m_next = 0;
702 	if (m && (m0->m_flags & M_EOR)) {
703 		m0->m_flags &= ~M_EOR;
704 		m->m_flags |= M_EOR;
705 	}
706 	sbcompress(sb, m, m0);
707 }
708 
709 /*
710  * Append address and data, and optionally, control (ancillary) data
711  * to the receive queue of a socket.  If present,
712  * m0 must include a packet header with total length.
713  * Returns 0 if no space in sockbuf or insufficient mbufs.
714  */
715 int
716 sbappendaddr(sb, asa, m0, control)
717 	struct sockbuf *sb;
718 	struct sockaddr *asa;
719 	struct mbuf *m0, *control;
720 {
721 	struct mbuf *m, *n, *nlast;
722 	int space = asa->sa_len;
723 
724 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
725 		panic("sbappendaddr");
726 	if (m0)
727 		space += m0->m_pkthdr.len;
728 	space += m_length(control, &n);
729 	if (space > sbspace(sb))
730 		return (0);
731 #if MSIZE <= 256
732 	if (asa->sa_len > MLEN)
733 		return (0);
734 #endif
735 	MGET(m, M_DONTWAIT, MT_SONAME);
736 	if (m == 0)
737 		return (0);
738 	m->m_len = asa->sa_len;
739 	bcopy(asa, mtod(m, caddr_t), asa->sa_len);
740 	if (n)
741 		n->m_next = m0;		/* concatenate data to control */
742 	else
743 		control = m0;
744 	m->m_next = control;
745 	for (n = m; n->m_next != NULL; n = n->m_next)
746 		sballoc(sb, n);
747 	sballoc(sb, n);
748 	nlast = n;
749 	SBLINKRECORD(sb, m);
750 
751 	sb->sb_mbtail = nlast;
752 	SBLASTMBUFCHK(sb);
753 
754 	SBLASTRECORDCHK(sb);
755 	return (1);
756 }
757 
758 int
759 sbappendcontrol(sb, m0, control)
760 	struct sockbuf *sb;
761 	struct mbuf *control, *m0;
762 {
763 	struct mbuf *m, *n, *mlast;
764 	int space;
765 
766 	if (control == 0)
767 		panic("sbappendcontrol");
768 	space = m_length(control, &n) + m_length(m0, NULL);
769 	if (space > sbspace(sb))
770 		return (0);
771 	n->m_next = m0;			/* concatenate data to control */
772 
773 	SBLASTRECORDCHK(sb);
774 
775 	for (m = control; m->m_next; m = m->m_next)
776 		sballoc(sb, m);
777 	sballoc(sb, m);
778 	mlast = m;
779 	SBLINKRECORD(sb, control);
780 
781 	sb->sb_mbtail = mlast;
782 	SBLASTMBUFCHK(sb);
783 
784 	SBLASTRECORDCHK(sb);
785 	return (1);
786 }
787 
788 /*
789  * Compress mbuf chain m into the socket
790  * buffer sb following mbuf n.  If n
791  * is null, the buffer is presumed empty.
792  */
793 void
794 sbcompress(sb, m, n)
795 	register struct sockbuf *sb;
796 	register struct mbuf *m, *n;
797 {
798 	register int eor = 0;
799 	register struct mbuf *o;
800 
801 	while (m) {
802 		eor |= m->m_flags & M_EOR;
803 		if (m->m_len == 0 &&
804 		    (eor == 0 ||
805 		     (((o = m->m_next) || (o = n)) &&
806 		      o->m_type == m->m_type))) {
807 			if (sb->sb_lastrecord == m)
808 				sb->sb_lastrecord = m->m_next;
809 			m = m_free(m);
810 			continue;
811 		}
812 		if (n && (n->m_flags & M_EOR) == 0 &&
813 		    M_WRITABLE(n) &&
814 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
815 		    m->m_len <= M_TRAILINGSPACE(n) &&
816 		    n->m_type == m->m_type) {
817 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
818 			    (unsigned)m->m_len);
819 			n->m_len += m->m_len;
820 			sb->sb_cc += m->m_len;
821 			if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
822 			    m->m_type != MT_OOBDATA)
823 				/* XXX: Probably don't need.*/
824 				sb->sb_ctl += m->m_len;
825 			m = m_free(m);
826 			continue;
827 		}
828 		if (n)
829 			n->m_next = m;
830 		else
831 			sb->sb_mb = m;
832 		sb->sb_mbtail = m;
833 		sballoc(sb, m);
834 		n = m;
835 		m->m_flags &= ~M_EOR;
836 		m = m->m_next;
837 		n->m_next = 0;
838 	}
839 	if (eor) {
840 		if (n)
841 			n->m_flags |= eor;
842 		else
843 			printf("semi-panic: sbcompress\n");
844 	}
845 	SBLASTMBUFCHK(sb);
846 }
847 
848 /*
849  * Free all mbufs in a sockbuf.
850  * Check that all resources are reclaimed.
851  */
852 void
853 sbflush(sb)
854 	register struct sockbuf *sb;
855 {
856 
857 	if (sb->sb_flags & SB_LOCK)
858 		panic("sbflush: locked");
859 	while (sb->sb_mbcnt) {
860 		/*
861 		 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
862 		 * we would loop forever. Panic instead.
863 		 */
864 		if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
865 			break;
866 		sbdrop(sb, (int)sb->sb_cc);
867 	}
868 	if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt)
869 		panic("sbflush: cc %u || mb %p || mbcnt %u", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt);
870 }
871 
872 /*
873  * Drop data from (the front of) a sockbuf.
874  */
875 void
876 sbdrop(sb, len)
877 	register struct sockbuf *sb;
878 	register int len;
879 {
880 	register struct mbuf *m;
881 	struct mbuf *next;
882 
883 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
884 	while (len > 0) {
885 		if (m == 0) {
886 			if (next == 0)
887 				panic("sbdrop");
888 			m = next;
889 			next = m->m_nextpkt;
890 			continue;
891 		}
892 		if (m->m_len > len) {
893 			m->m_len -= len;
894 			m->m_data += len;
895 			sb->sb_cc -= len;
896 			if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
897 			    m->m_type != MT_OOBDATA)
898 				sb->sb_ctl -= len;
899 			break;
900 		}
901 		len -= m->m_len;
902 		sbfree(sb, m);
903 		m = m_free(m);
904 	}
905 	while (m && m->m_len == 0) {
906 		sbfree(sb, m);
907 		m = m_free(m);
908 	}
909 	if (m) {
910 		sb->sb_mb = m;
911 		m->m_nextpkt = next;
912 	} else
913 		sb->sb_mb = next;
914 	/*
915 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
916 	 * makes sure sb_lastrecord is up-to-date if we dropped
917 	 * part of the last record.
918 	 */
919 	m = sb->sb_mb;
920 	if (m == NULL) {
921 		sb->sb_mbtail = NULL;
922 		sb->sb_lastrecord = NULL;
923 	} else if (m->m_nextpkt == NULL) {
924 		sb->sb_lastrecord = m;
925 	}
926 }
927 
928 /*
929  * Drop a record off the front of a sockbuf
930  * and move the next record to the front.
931  */
932 void
933 sbdroprecord(sb)
934 	register struct sockbuf *sb;
935 {
936 	register struct mbuf *m;
937 
938 	m = sb->sb_mb;
939 	if (m) {
940 		sb->sb_mb = m->m_nextpkt;
941 		do {
942 			sbfree(sb, m);
943 			m = m_free(m);
944 		} while (m);
945 	}
946 	SB_EMPTY_FIXUP(sb);
947 }
948 
949 /*
950  * Create a "control" mbuf containing the specified data
951  * with the specified type for presentation on a socket buffer.
952  */
953 struct mbuf *
954 sbcreatecontrol(p, size, type, level)
955 	caddr_t p;
956 	register int size;
957 	int type, level;
958 {
959 	register struct cmsghdr *cp;
960 	struct mbuf *m;
961 
962 	if (CMSG_SPACE((u_int)size) > MCLBYTES)
963 		return ((struct mbuf *) NULL);
964 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
965 		return ((struct mbuf *) NULL);
966 	if (CMSG_SPACE((u_int)size) > MLEN) {
967 		MCLGET(m, M_DONTWAIT);
968 		if ((m->m_flags & M_EXT) == 0) {
969 			m_free(m);
970 			return ((struct mbuf *) NULL);
971 		}
972 	}
973 	cp = mtod(m, struct cmsghdr *);
974 	m->m_len = 0;
975 	KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
976 	    ("sbcreatecontrol: short mbuf"));
977 	if (p != NULL)
978 		(void)memcpy(CMSG_DATA(cp), p, size);
979 	m->m_len = CMSG_SPACE(size);
980 	cp->cmsg_len = CMSG_LEN(size);
981 	cp->cmsg_level = level;
982 	cp->cmsg_type = type;
983 	return (m);
984 }
985 
986 /*
987  * Some routines that return EOPNOTSUPP for entry points that are not
988  * supported by a protocol.  Fill in as needed.
989  */
990 int
991 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
992 {
993 	return EOPNOTSUPP;
994 }
995 
996 int
997 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
998 {
999 	return EOPNOTSUPP;
1000 }
1001 
1002 int
1003 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
1004 {
1005 	return EOPNOTSUPP;
1006 }
1007 
1008 int
1009 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
1010 		    struct ifnet *ifp, struct thread *td)
1011 {
1012 	return EOPNOTSUPP;
1013 }
1014 
1015 int
1016 pru_listen_notsupp(struct socket *so, struct thread *td)
1017 {
1018 	return EOPNOTSUPP;
1019 }
1020 
1021 int
1022 pru_rcvd_notsupp(struct socket *so, int flags)
1023 {
1024 	return EOPNOTSUPP;
1025 }
1026 
1027 int
1028 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
1029 {
1030 	return EOPNOTSUPP;
1031 }
1032 
1033 /*
1034  * This isn't really a ``null'' operation, but it's the default one
1035  * and doesn't do anything destructive.
1036  */
1037 int
1038 pru_sense_null(struct socket *so, struct stat *sb)
1039 {
1040 	sb->st_blksize = so->so_snd.sb_hiwat;
1041 	return 0;
1042 }
1043 
1044 /*
1045  * For protocol types that don't keep cached copies of labels in their
1046  * pcbs, provide a null sosetlabel that does a NOOP.
1047  */
1048 void
1049 pru_sosetlabel_null(struct socket *so)
1050 {
1051 
1052 }
1053 
1054 /*
1055  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
1056  */
1057 struct sockaddr *
1058 dup_sockaddr(sa, canwait)
1059 	struct sockaddr *sa;
1060 	int canwait;
1061 {
1062 	struct sockaddr *sa2;
1063 
1064 	MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
1065 	       canwait ? M_WAITOK : M_NOWAIT);
1066 	if (sa2)
1067 		bcopy(sa, sa2, sa->sa_len);
1068 	return sa2;
1069 }
1070 
1071 /*
1072  * Create an external-format (``xsocket'') structure using the information
1073  * in the kernel-format socket structure pointed to by so.  This is done
1074  * to reduce the spew of irrelevant information over this interface,
1075  * to isolate user code from changes in the kernel structure, and
1076  * potentially to provide information-hiding if we decide that
1077  * some of this information should be hidden from users.
1078  */
1079 void
1080 sotoxsocket(struct socket *so, struct xsocket *xso)
1081 {
1082 	xso->xso_len = sizeof *xso;
1083 	xso->xso_so = so;
1084 	xso->so_type = so->so_type;
1085 	xso->so_options = so->so_options;
1086 	xso->so_linger = so->so_linger;
1087 	xso->so_state = so->so_state;
1088 	xso->so_pcb = so->so_pcb;
1089 	xso->xso_protocol = so->so_proto->pr_protocol;
1090 	xso->xso_family = so->so_proto->pr_domain->dom_family;
1091 	xso->so_qlen = so->so_qlen;
1092 	xso->so_incqlen = so->so_incqlen;
1093 	xso->so_qlimit = so->so_qlimit;
1094 	xso->so_timeo = so->so_timeo;
1095 	xso->so_error = so->so_error;
1096 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
1097 	xso->so_oobmark = so->so_oobmark;
1098 	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
1099 	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
1100 	xso->so_uid = so->so_cred->cr_uid;
1101 }
1102 
1103 /*
1104  * This does the same for sockbufs.  Note that the xsockbuf structure,
1105  * since it is always embedded in a socket, does not include a self
1106  * pointer nor a length.  We make this entry point public in case
1107  * some other mechanism needs it.
1108  */
1109 void
1110 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1111 {
1112 	xsb->sb_cc = sb->sb_cc;
1113 	xsb->sb_hiwat = sb->sb_hiwat;
1114 	xsb->sb_mbcnt = sb->sb_mbcnt;
1115 	xsb->sb_mbmax = sb->sb_mbmax;
1116 	xsb->sb_lowat = sb->sb_lowat;
1117 	xsb->sb_flags = sb->sb_flags;
1118 	xsb->sb_timeo = sb->sb_timeo;
1119 }
1120 
1121 /*
1122  * Here is the definition of some of the basic objects in the kern.ipc
1123  * branch of the MIB.
1124  */
1125 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
1126 
1127 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1128 static int dummy;
1129 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
1130 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_ULONG|CTLFLAG_RW,
1131     &sb_max, 0, sysctl_handle_sb_max, "LU", "Maximum socket buffer size");
1132 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RDTUN,
1133     &maxsockets, 0, "Maximum number of sockets avaliable");
1134 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1135     &sb_efficiency, 0, "");
1136 
1137 /*
1138  * Initialise maxsockets
1139  */
1140 static void init_maxsockets(void *ignored)
1141 {
1142 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
1143 	maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
1144 }
1145 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
1146