1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_param.h" 36 37 #include <sys/param.h> 38 #include <sys/aio.h> /* for aio_swake proto */ 39 #include <sys/kernel.h> 40 #include <sys/lock.h> 41 #include <sys/mbuf.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 #include <sys/protosw.h> 45 #include <sys/resourcevar.h> 46 #include <sys/signalvar.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/sx.h> 50 #include <sys/sysctl.h> 51 52 /* 53 * Function pointer set by the AIO routines so that the socket buffer code 54 * can call back into the AIO module if it is loaded. 55 */ 56 void (*aio_swake)(struct socket *, struct sockbuf *); 57 58 /* 59 * Primitive routines for operating on socket buffers 60 */ 61 62 u_long sb_max = SB_MAX; 63 u_long sb_max_adj = 64 SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */ 65 66 static u_long sb_efficiency = 8; /* parameter for sbreserve() */ 67 68 static void sbdrop_internal(struct sockbuf *sb, int len); 69 static void sbflush_internal(struct sockbuf *sb); 70 71 /* 72 * Socantsendmore indicates that no more data will be sent on the socket; it 73 * would normally be applied to a socket when the user informs the system 74 * that no more data is to be sent, by the protocol code (in case 75 * PRU_SHUTDOWN). Socantrcvmore indicates that no more data will be 76 * received, and will normally be applied to the socket by a protocol when it 77 * detects that the peer will send no more data. Data queued for reading in 78 * the socket may yet be read. 79 */ 80 void 81 socantsendmore_locked(struct socket *so) 82 { 83 84 SOCKBUF_LOCK_ASSERT(&so->so_snd); 85 86 so->so_snd.sb_state |= SBS_CANTSENDMORE; 87 sowwakeup_locked(so); 88 mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED); 89 } 90 91 void 92 socantsendmore(struct socket *so) 93 { 94 95 SOCKBUF_LOCK(&so->so_snd); 96 socantsendmore_locked(so); 97 mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED); 98 } 99 100 void 101 socantrcvmore_locked(struct socket *so) 102 { 103 104 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 105 106 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 107 sorwakeup_locked(so); 108 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED); 109 } 110 111 void 112 socantrcvmore(struct socket *so) 113 { 114 115 SOCKBUF_LOCK(&so->so_rcv); 116 socantrcvmore_locked(so); 117 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED); 118 } 119 120 /* 121 * Wait for data to arrive at/drain from a socket buffer. 122 */ 123 int 124 sbwait(struct sockbuf *sb) 125 { 126 127 SOCKBUF_LOCK_ASSERT(sb); 128 129 sb->sb_flags |= SB_WAIT; 130 return (msleep(&sb->sb_cc, &sb->sb_mtx, 131 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", 132 sb->sb_timeo)); 133 } 134 135 int 136 sblock(struct sockbuf *sb, int flags) 137 { 138 139 KASSERT((flags & SBL_VALID) == flags, 140 ("sblock: flags invalid (0x%x)", flags)); 141 142 if (flags & SBL_WAIT) { 143 if ((sb->sb_flags & SB_NOINTR) || 144 (flags & SBL_NOINTR)) { 145 sx_xlock(&sb->sb_sx); 146 return (0); 147 } 148 return (sx_xlock_sig(&sb->sb_sx)); 149 } else { 150 if (sx_try_xlock(&sb->sb_sx) == 0) 151 return (EWOULDBLOCK); 152 return (0); 153 } 154 } 155 156 void 157 sbunlock(struct sockbuf *sb) 158 { 159 160 sx_xunlock(&sb->sb_sx); 161 } 162 163 /* 164 * Wakeup processes waiting on a socket buffer. Do asynchronous notification 165 * via SIGIO if the socket has the SS_ASYNC flag set. 166 * 167 * Called with the socket buffer lock held; will release the lock by the end 168 * of the function. This allows the caller to acquire the socket buffer lock 169 * while testing for the need for various sorts of wakeup and hold it through 170 * to the point where it's no longer required. We currently hold the lock 171 * through calls out to other subsystems (with the exception of kqueue), and 172 * then release it to avoid lock order issues. It's not clear that's 173 * correct. 174 */ 175 void 176 sowakeup(struct socket *so, struct sockbuf *sb) 177 { 178 179 SOCKBUF_LOCK_ASSERT(sb); 180 181 selwakeuppri(&sb->sb_sel, PSOCK); 182 if (!SEL_WAITING(&sb->sb_sel)) 183 sb->sb_flags &= ~SB_SEL; 184 if (sb->sb_flags & SB_WAIT) { 185 sb->sb_flags &= ~SB_WAIT; 186 wakeup(&sb->sb_cc); 187 } 188 KNOTE_LOCKED(&sb->sb_sel.si_note, 0); 189 SOCKBUF_UNLOCK(sb); 190 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL) 191 pgsigio(&so->so_sigio, SIGIO, 0); 192 if (sb->sb_flags & SB_UPCALL) 193 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT); 194 if (sb->sb_flags & SB_AIO) 195 aio_swake(so, sb); 196 mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED); 197 } 198 199 /* 200 * Socket buffer (struct sockbuf) utility routines. 201 * 202 * Each socket contains two socket buffers: one for sending data and one for 203 * receiving data. Each buffer contains a queue of mbufs, information about 204 * the number of mbufs and amount of data in the queue, and other fields 205 * allowing select() statements and notification on data availability to be 206 * implemented. 207 * 208 * Data stored in a socket buffer is maintained as a list of records. Each 209 * record is a list of mbufs chained together with the m_next field. Records 210 * are chained together with the m_nextpkt field. The upper level routine 211 * soreceive() expects the following conventions to be observed when placing 212 * information in the receive buffer: 213 * 214 * 1. If the protocol requires each message be preceded by the sender's name, 215 * then a record containing that name must be present before any 216 * associated data (mbuf's must be of type MT_SONAME). 217 * 2. If the protocol supports the exchange of ``access rights'' (really just 218 * additional data associated with the message), and there are ``rights'' 219 * to be received, then a record containing this data should be present 220 * (mbuf's must be of type MT_RIGHTS). 221 * 3. If a name or rights record exists, then it must be followed by a data 222 * record, perhaps of zero length. 223 * 224 * Before using a new socket structure it is first necessary to reserve 225 * buffer space to the socket, by calling sbreserve(). This should commit 226 * some of the available buffer space in the system buffer pool for the 227 * socket (currently, it does nothing but enforce limits). The space should 228 * be released by calling sbrelease() when the socket is destroyed. 229 */ 230 int 231 soreserve(struct socket *so, u_long sndcc, u_long rcvcc) 232 { 233 struct thread *td = curthread; 234 235 SOCKBUF_LOCK(&so->so_snd); 236 SOCKBUF_LOCK(&so->so_rcv); 237 if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0) 238 goto bad; 239 if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0) 240 goto bad2; 241 if (so->so_rcv.sb_lowat == 0) 242 so->so_rcv.sb_lowat = 1; 243 if (so->so_snd.sb_lowat == 0) 244 so->so_snd.sb_lowat = MCLBYTES; 245 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 246 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 247 SOCKBUF_UNLOCK(&so->so_rcv); 248 SOCKBUF_UNLOCK(&so->so_snd); 249 return (0); 250 bad2: 251 sbrelease_locked(&so->so_snd, so); 252 bad: 253 SOCKBUF_UNLOCK(&so->so_rcv); 254 SOCKBUF_UNLOCK(&so->so_snd); 255 return (ENOBUFS); 256 } 257 258 static int 259 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS) 260 { 261 int error = 0; 262 u_long tmp_sb_max = sb_max; 263 264 error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req); 265 if (error || !req->newptr) 266 return (error); 267 if (tmp_sb_max < MSIZE + MCLBYTES) 268 return (EINVAL); 269 sb_max = tmp_sb_max; 270 sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES); 271 return (0); 272 } 273 274 /* 275 * Allot mbufs to a sockbuf. Attempt to scale mbmax so that mbcnt doesn't 276 * become limiting if buffering efficiency is near the normal case. 277 */ 278 int 279 sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so, 280 struct thread *td) 281 { 282 rlim_t sbsize_limit; 283 284 SOCKBUF_LOCK_ASSERT(sb); 285 286 /* 287 * td will only be NULL when we're in an interrupt (e.g. in 288 * tcp_input()). 289 * 290 * XXXRW: This comment needs updating, as might the code. 291 */ 292 if (cc > sb_max_adj) 293 return (0); 294 if (td != NULL) { 295 PROC_LOCK(td->td_proc); 296 sbsize_limit = lim_cur(td->td_proc, RLIMIT_SBSIZE); 297 PROC_UNLOCK(td->td_proc); 298 } else 299 sbsize_limit = RLIM_INFINITY; 300 if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc, 301 sbsize_limit)) 302 return (0); 303 sb->sb_mbmax = min(cc * sb_efficiency, sb_max); 304 if (sb->sb_lowat > sb->sb_hiwat) 305 sb->sb_lowat = sb->sb_hiwat; 306 return (1); 307 } 308 309 int 310 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so, 311 struct thread *td) 312 { 313 int error; 314 315 SOCKBUF_LOCK(sb); 316 error = sbreserve_locked(sb, cc, so, td); 317 SOCKBUF_UNLOCK(sb); 318 return (error); 319 } 320 321 /* 322 * Free mbufs held by a socket, and reserved mbuf space. 323 */ 324 void 325 sbrelease_internal(struct sockbuf *sb, struct socket *so) 326 { 327 328 sbflush_internal(sb); 329 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0, 330 RLIM_INFINITY); 331 sb->sb_mbmax = 0; 332 } 333 334 void 335 sbrelease_locked(struct sockbuf *sb, struct socket *so) 336 { 337 338 SOCKBUF_LOCK_ASSERT(sb); 339 340 sbrelease_internal(sb, so); 341 } 342 343 void 344 sbrelease(struct sockbuf *sb, struct socket *so) 345 { 346 347 SOCKBUF_LOCK(sb); 348 sbrelease_locked(sb, so); 349 SOCKBUF_UNLOCK(sb); 350 } 351 352 void 353 sbdestroy(struct sockbuf *sb, struct socket *so) 354 { 355 356 sbrelease_internal(sb, so); 357 } 358 359 /* 360 * Routines to add and remove data from an mbuf queue. 361 * 362 * The routines sbappend() or sbappendrecord() are normally called to append 363 * new mbufs to a socket buffer, after checking that adequate space is 364 * available, comparing the function sbspace() with the amount of data to be 365 * added. sbappendrecord() differs from sbappend() in that data supplied is 366 * treated as the beginning of a new record. To place a sender's address, 367 * optional access rights, and data in a socket receive buffer, 368 * sbappendaddr() should be used. To place access rights and data in a 369 * socket receive buffer, sbappendrights() should be used. In either case, 370 * the new data begins a new record. Note that unlike sbappend() and 371 * sbappendrecord(), these routines check for the caller that there will be 372 * enough space to store the data. Each fails if there is not enough space, 373 * or if it cannot find mbufs to store additional information in. 374 * 375 * Reliable protocols may use the socket send buffer to hold data awaiting 376 * acknowledgement. Data is normally copied from a socket send buffer in a 377 * protocol with m_copy for output to a peer, and then removing the data from 378 * the socket buffer with sbdrop() or sbdroprecord() when the data is 379 * acknowledged by the peer. 380 */ 381 #ifdef SOCKBUF_DEBUG 382 void 383 sblastrecordchk(struct sockbuf *sb, const char *file, int line) 384 { 385 struct mbuf *m = sb->sb_mb; 386 387 SOCKBUF_LOCK_ASSERT(sb); 388 389 while (m && m->m_nextpkt) 390 m = m->m_nextpkt; 391 392 if (m != sb->sb_lastrecord) { 393 printf("%s: sb_mb %p sb_lastrecord %p last %p\n", 394 __func__, sb->sb_mb, sb->sb_lastrecord, m); 395 printf("packet chain:\n"); 396 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) 397 printf("\t%p\n", m); 398 panic("%s from %s:%u", __func__, file, line); 399 } 400 } 401 402 void 403 sblastmbufchk(struct sockbuf *sb, const char *file, int line) 404 { 405 struct mbuf *m = sb->sb_mb; 406 struct mbuf *n; 407 408 SOCKBUF_LOCK_ASSERT(sb); 409 410 while (m && m->m_nextpkt) 411 m = m->m_nextpkt; 412 413 while (m && m->m_next) 414 m = m->m_next; 415 416 if (m != sb->sb_mbtail) { 417 printf("%s: sb_mb %p sb_mbtail %p last %p\n", 418 __func__, sb->sb_mb, sb->sb_mbtail, m); 419 printf("packet tree:\n"); 420 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) { 421 printf("\t"); 422 for (n = m; n != NULL; n = n->m_next) 423 printf("%p ", n); 424 printf("\n"); 425 } 426 panic("%s from %s:%u", __func__, file, line); 427 } 428 } 429 #endif /* SOCKBUF_DEBUG */ 430 431 #define SBLINKRECORD(sb, m0) do { \ 432 SOCKBUF_LOCK_ASSERT(sb); \ 433 if ((sb)->sb_lastrecord != NULL) \ 434 (sb)->sb_lastrecord->m_nextpkt = (m0); \ 435 else \ 436 (sb)->sb_mb = (m0); \ 437 (sb)->sb_lastrecord = (m0); \ 438 } while (/*CONSTCOND*/0) 439 440 /* 441 * Append mbuf chain m to the last record in the socket buffer sb. The 442 * additional space associated the mbuf chain is recorded in sb. Empty mbufs 443 * are discarded and mbufs are compacted where possible. 444 */ 445 void 446 sbappend_locked(struct sockbuf *sb, struct mbuf *m) 447 { 448 struct mbuf *n; 449 450 SOCKBUF_LOCK_ASSERT(sb); 451 452 if (m == 0) 453 return; 454 455 SBLASTRECORDCHK(sb); 456 n = sb->sb_mb; 457 if (n) { 458 while (n->m_nextpkt) 459 n = n->m_nextpkt; 460 do { 461 if (n->m_flags & M_EOR) { 462 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */ 463 return; 464 } 465 } while (n->m_next && (n = n->m_next)); 466 } else { 467 /* 468 * XXX Would like to simply use sb_mbtail here, but 469 * XXX I need to verify that I won't miss an EOR that 470 * XXX way. 471 */ 472 if ((n = sb->sb_lastrecord) != NULL) { 473 do { 474 if (n->m_flags & M_EOR) { 475 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */ 476 return; 477 } 478 } while (n->m_next && (n = n->m_next)); 479 } else { 480 /* 481 * If this is the first record in the socket buffer, 482 * it's also the last record. 483 */ 484 sb->sb_lastrecord = m; 485 } 486 } 487 sbcompress(sb, m, n); 488 SBLASTRECORDCHK(sb); 489 } 490 491 /* 492 * Append mbuf chain m to the last record in the socket buffer sb. The 493 * additional space associated the mbuf chain is recorded in sb. Empty mbufs 494 * are discarded and mbufs are compacted where possible. 495 */ 496 void 497 sbappend(struct sockbuf *sb, struct mbuf *m) 498 { 499 500 SOCKBUF_LOCK(sb); 501 sbappend_locked(sb, m); 502 SOCKBUF_UNLOCK(sb); 503 } 504 505 /* 506 * This version of sbappend() should only be used when the caller absolutely 507 * knows that there will never be more than one record in the socket buffer, 508 * that is, a stream protocol (such as TCP). 509 */ 510 void 511 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m) 512 { 513 SOCKBUF_LOCK_ASSERT(sb); 514 515 KASSERT(m->m_nextpkt == NULL,("sbappendstream 0")); 516 KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1")); 517 518 SBLASTMBUFCHK(sb); 519 520 sbcompress(sb, m, sb->sb_mbtail); 521 522 sb->sb_lastrecord = sb->sb_mb; 523 SBLASTRECORDCHK(sb); 524 } 525 526 /* 527 * This version of sbappend() should only be used when the caller absolutely 528 * knows that there will never be more than one record in the socket buffer, 529 * that is, a stream protocol (such as TCP). 530 */ 531 void 532 sbappendstream(struct sockbuf *sb, struct mbuf *m) 533 { 534 535 SOCKBUF_LOCK(sb); 536 sbappendstream_locked(sb, m); 537 SOCKBUF_UNLOCK(sb); 538 } 539 540 #ifdef SOCKBUF_DEBUG 541 void 542 sbcheck(struct sockbuf *sb) 543 { 544 struct mbuf *m; 545 struct mbuf *n = 0; 546 u_long len = 0, mbcnt = 0; 547 548 SOCKBUF_LOCK_ASSERT(sb); 549 550 for (m = sb->sb_mb; m; m = n) { 551 n = m->m_nextpkt; 552 for (; m; m = m->m_next) { 553 len += m->m_len; 554 mbcnt += MSIZE; 555 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ 556 mbcnt += m->m_ext.ext_size; 557 } 558 } 559 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 560 printf("cc %ld != %u || mbcnt %ld != %u\n", len, sb->sb_cc, 561 mbcnt, sb->sb_mbcnt); 562 panic("sbcheck"); 563 } 564 } 565 #endif 566 567 /* 568 * As above, except the mbuf chain begins a new record. 569 */ 570 void 571 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0) 572 { 573 struct mbuf *m; 574 575 SOCKBUF_LOCK_ASSERT(sb); 576 577 if (m0 == 0) 578 return; 579 m = sb->sb_mb; 580 if (m) 581 while (m->m_nextpkt) 582 m = m->m_nextpkt; 583 /* 584 * Put the first mbuf on the queue. Note this permits zero length 585 * records. 586 */ 587 sballoc(sb, m0); 588 SBLASTRECORDCHK(sb); 589 SBLINKRECORD(sb, m0); 590 if (m) 591 m->m_nextpkt = m0; 592 else 593 sb->sb_mb = m0; 594 m = m0->m_next; 595 m0->m_next = 0; 596 if (m && (m0->m_flags & M_EOR)) { 597 m0->m_flags &= ~M_EOR; 598 m->m_flags |= M_EOR; 599 } 600 sbcompress(sb, m, m0); 601 } 602 603 /* 604 * As above, except the mbuf chain begins a new record. 605 */ 606 void 607 sbappendrecord(struct sockbuf *sb, struct mbuf *m0) 608 { 609 610 SOCKBUF_LOCK(sb); 611 sbappendrecord_locked(sb, m0); 612 SOCKBUF_UNLOCK(sb); 613 } 614 615 /* 616 * Append address and data, and optionally, control (ancillary) data to the 617 * receive queue of a socket. If present, m0 must include a packet header 618 * with total length. Returns 0 if no space in sockbuf or insufficient 619 * mbufs. 620 */ 621 int 622 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa, 623 struct mbuf *m0, struct mbuf *control) 624 { 625 struct mbuf *m, *n, *nlast; 626 int space = asa->sa_len; 627 628 SOCKBUF_LOCK_ASSERT(sb); 629 630 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 631 panic("sbappendaddr_locked"); 632 if (m0) 633 space += m0->m_pkthdr.len; 634 space += m_length(control, &n); 635 636 if (space > sbspace(sb)) 637 return (0); 638 #if MSIZE <= 256 639 if (asa->sa_len > MLEN) 640 return (0); 641 #endif 642 MGET(m, M_DONTWAIT, MT_SONAME); 643 if (m == 0) 644 return (0); 645 m->m_len = asa->sa_len; 646 bcopy(asa, mtod(m, caddr_t), asa->sa_len); 647 if (n) 648 n->m_next = m0; /* concatenate data to control */ 649 else 650 control = m0; 651 m->m_next = control; 652 for (n = m; n->m_next != NULL; n = n->m_next) 653 sballoc(sb, n); 654 sballoc(sb, n); 655 nlast = n; 656 SBLINKRECORD(sb, m); 657 658 sb->sb_mbtail = nlast; 659 SBLASTMBUFCHK(sb); 660 661 SBLASTRECORDCHK(sb); 662 return (1); 663 } 664 665 /* 666 * Append address and data, and optionally, control (ancillary) data to the 667 * receive queue of a socket. If present, m0 must include a packet header 668 * with total length. Returns 0 if no space in sockbuf or insufficient 669 * mbufs. 670 */ 671 int 672 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, 673 struct mbuf *m0, struct mbuf *control) 674 { 675 int retval; 676 677 SOCKBUF_LOCK(sb); 678 retval = sbappendaddr_locked(sb, asa, m0, control); 679 SOCKBUF_UNLOCK(sb); 680 return (retval); 681 } 682 683 int 684 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0, 685 struct mbuf *control) 686 { 687 struct mbuf *m, *n, *mlast; 688 int space; 689 690 SOCKBUF_LOCK_ASSERT(sb); 691 692 if (control == 0) 693 panic("sbappendcontrol_locked"); 694 space = m_length(control, &n) + m_length(m0, NULL); 695 696 if (space > sbspace(sb)) 697 return (0); 698 n->m_next = m0; /* concatenate data to control */ 699 700 SBLASTRECORDCHK(sb); 701 702 for (m = control; m->m_next; m = m->m_next) 703 sballoc(sb, m); 704 sballoc(sb, m); 705 mlast = m; 706 SBLINKRECORD(sb, control); 707 708 sb->sb_mbtail = mlast; 709 SBLASTMBUFCHK(sb); 710 711 SBLASTRECORDCHK(sb); 712 return (1); 713 } 714 715 int 716 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control) 717 { 718 int retval; 719 720 SOCKBUF_LOCK(sb); 721 retval = sbappendcontrol_locked(sb, m0, control); 722 SOCKBUF_UNLOCK(sb); 723 return (retval); 724 } 725 726 /* 727 * Append the data in mbuf chain (m) into the socket buffer sb following mbuf 728 * (n). If (n) is NULL, the buffer is presumed empty. 729 * 730 * When the data is compressed, mbufs in the chain may be handled in one of 731 * three ways: 732 * 733 * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no 734 * record boundary, and no change in data type). 735 * 736 * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into 737 * an mbuf already in the socket buffer. This can occur if an 738 * appropriate mbuf exists, there is room, and no merging of data types 739 * will occur. 740 * 741 * (3) The mbuf may be appended to the end of the existing mbuf chain. 742 * 743 * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as 744 * end-of-record. 745 */ 746 void 747 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n) 748 { 749 int eor = 0; 750 struct mbuf *o; 751 752 SOCKBUF_LOCK_ASSERT(sb); 753 754 while (m) { 755 eor |= m->m_flags & M_EOR; 756 if (m->m_len == 0 && 757 (eor == 0 || 758 (((o = m->m_next) || (o = n)) && 759 o->m_type == m->m_type))) { 760 if (sb->sb_lastrecord == m) 761 sb->sb_lastrecord = m->m_next; 762 m = m_free(m); 763 continue; 764 } 765 if (n && (n->m_flags & M_EOR) == 0 && 766 M_WRITABLE(n) && 767 ((sb->sb_flags & SB_NOCOALESCE) == 0) && 768 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ 769 m->m_len <= M_TRAILINGSPACE(n) && 770 n->m_type == m->m_type) { 771 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, 772 (unsigned)m->m_len); 773 n->m_len += m->m_len; 774 sb->sb_cc += m->m_len; 775 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA) 776 /* XXX: Probably don't need.*/ 777 sb->sb_ctl += m->m_len; 778 m = m_free(m); 779 continue; 780 } 781 if (n) 782 n->m_next = m; 783 else 784 sb->sb_mb = m; 785 sb->sb_mbtail = m; 786 sballoc(sb, m); 787 n = m; 788 m->m_flags &= ~M_EOR; 789 m = m->m_next; 790 n->m_next = 0; 791 } 792 if (eor) { 793 KASSERT(n != NULL, ("sbcompress: eor && n == NULL")); 794 n->m_flags |= eor; 795 } 796 SBLASTMBUFCHK(sb); 797 } 798 799 /* 800 * Free all mbufs in a sockbuf. Check that all resources are reclaimed. 801 */ 802 static void 803 sbflush_internal(struct sockbuf *sb) 804 { 805 806 while (sb->sb_mbcnt) { 807 /* 808 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty: 809 * we would loop forever. Panic instead. 810 */ 811 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len)) 812 break; 813 sbdrop_internal(sb, (int)sb->sb_cc); 814 } 815 if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt) 816 panic("sbflush_internal: cc %u || mb %p || mbcnt %u", 817 sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt); 818 } 819 820 void 821 sbflush_locked(struct sockbuf *sb) 822 { 823 824 SOCKBUF_LOCK_ASSERT(sb); 825 sbflush_internal(sb); 826 } 827 828 void 829 sbflush(struct sockbuf *sb) 830 { 831 832 SOCKBUF_LOCK(sb); 833 sbflush_locked(sb); 834 SOCKBUF_UNLOCK(sb); 835 } 836 837 /* 838 * Drop data from (the front of) a sockbuf. 839 */ 840 static void 841 sbdrop_internal(struct sockbuf *sb, int len) 842 { 843 struct mbuf *m; 844 struct mbuf *next; 845 846 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 847 while (len > 0) { 848 if (m == 0) { 849 if (next == 0) 850 panic("sbdrop"); 851 m = next; 852 next = m->m_nextpkt; 853 continue; 854 } 855 if (m->m_len > len) { 856 m->m_len -= len; 857 m->m_data += len; 858 sb->sb_cc -= len; 859 if (sb->sb_sndptroff != 0) 860 sb->sb_sndptroff -= len; 861 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA) 862 sb->sb_ctl -= len; 863 break; 864 } 865 len -= m->m_len; 866 sbfree(sb, m); 867 m = m_free(m); 868 } 869 while (m && m->m_len == 0) { 870 sbfree(sb, m); 871 m = m_free(m); 872 } 873 if (m) { 874 sb->sb_mb = m; 875 m->m_nextpkt = next; 876 } else 877 sb->sb_mb = next; 878 /* 879 * First part is an inline SB_EMPTY_FIXUP(). Second part makes sure 880 * sb_lastrecord is up-to-date if we dropped part of the last record. 881 */ 882 m = sb->sb_mb; 883 if (m == NULL) { 884 sb->sb_mbtail = NULL; 885 sb->sb_lastrecord = NULL; 886 } else if (m->m_nextpkt == NULL) { 887 sb->sb_lastrecord = m; 888 } 889 } 890 891 /* 892 * Drop data from (the front of) a sockbuf. 893 */ 894 void 895 sbdrop_locked(struct sockbuf *sb, int len) 896 { 897 898 SOCKBUF_LOCK_ASSERT(sb); 899 900 sbdrop_internal(sb, len); 901 } 902 903 void 904 sbdrop(struct sockbuf *sb, int len) 905 { 906 907 SOCKBUF_LOCK(sb); 908 sbdrop_locked(sb, len); 909 SOCKBUF_UNLOCK(sb); 910 } 911 912 /* 913 * Maintain a pointer and offset pair into the socket buffer mbuf chain to 914 * avoid traversal of the entire socket buffer for larger offsets. 915 */ 916 struct mbuf * 917 sbsndptr(struct sockbuf *sb, u_int off, u_int len, u_int *moff) 918 { 919 struct mbuf *m, *ret; 920 921 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__)); 922 KASSERT(off + len <= sb->sb_cc, ("%s: beyond sb", __func__)); 923 KASSERT(sb->sb_sndptroff <= sb->sb_cc, ("%s: sndptroff broken", __func__)); 924 925 /* 926 * Is off below stored offset? Happens on retransmits. 927 * Just return, we can't help here. 928 */ 929 if (sb->sb_sndptroff > off) { 930 *moff = off; 931 return (sb->sb_mb); 932 } 933 934 /* Return closest mbuf in chain for current offset. */ 935 *moff = off - sb->sb_sndptroff; 936 m = ret = sb->sb_sndptr ? sb->sb_sndptr : sb->sb_mb; 937 938 /* Advance by len to be as close as possible for the next transmit. */ 939 for (off = off - sb->sb_sndptroff + len - 1; 940 off > 0 && off >= m->m_len; 941 m = m->m_next) { 942 sb->sb_sndptroff += m->m_len; 943 off -= m->m_len; 944 } 945 sb->sb_sndptr = m; 946 947 return (ret); 948 } 949 950 /* 951 * Drop a record off the front of a sockbuf and move the next record to the 952 * front. 953 */ 954 void 955 sbdroprecord_locked(struct sockbuf *sb) 956 { 957 struct mbuf *m; 958 959 SOCKBUF_LOCK_ASSERT(sb); 960 961 m = sb->sb_mb; 962 if (m) { 963 sb->sb_mb = m->m_nextpkt; 964 do { 965 sbfree(sb, m); 966 m = m_free(m); 967 } while (m); 968 } 969 SB_EMPTY_FIXUP(sb); 970 } 971 972 /* 973 * Drop a record off the front of a sockbuf and move the next record to the 974 * front. 975 */ 976 void 977 sbdroprecord(struct sockbuf *sb) 978 { 979 980 SOCKBUF_LOCK(sb); 981 sbdroprecord_locked(sb); 982 SOCKBUF_UNLOCK(sb); 983 } 984 985 /* 986 * Create a "control" mbuf containing the specified data with the specified 987 * type for presentation on a socket buffer. 988 */ 989 struct mbuf * 990 sbcreatecontrol(caddr_t p, int size, int type, int level) 991 { 992 struct cmsghdr *cp; 993 struct mbuf *m; 994 995 if (CMSG_SPACE((u_int)size) > MCLBYTES) 996 return ((struct mbuf *) NULL); 997 if (CMSG_SPACE((u_int)size) > MLEN) 998 m = m_getcl(M_DONTWAIT, MT_CONTROL, 0); 999 else 1000 m = m_get(M_DONTWAIT, MT_CONTROL); 1001 if (m == NULL) 1002 return ((struct mbuf *) NULL); 1003 cp = mtod(m, struct cmsghdr *); 1004 m->m_len = 0; 1005 KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m), 1006 ("sbcreatecontrol: short mbuf")); 1007 if (p != NULL) 1008 (void)memcpy(CMSG_DATA(cp), p, size); 1009 m->m_len = CMSG_SPACE(size); 1010 cp->cmsg_len = CMSG_LEN(size); 1011 cp->cmsg_level = level; 1012 cp->cmsg_type = type; 1013 return (m); 1014 } 1015 1016 /* 1017 * This does the same for socket buffers that sotoxsocket does for sockets: 1018 * generate an user-format data structure describing the socket buffer. Note 1019 * that the xsockbuf structure, since it is always embedded in a socket, does 1020 * not include a self pointer nor a length. We make this entry point public 1021 * in case some other mechanism needs it. 1022 */ 1023 void 1024 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb) 1025 { 1026 1027 xsb->sb_cc = sb->sb_cc; 1028 xsb->sb_hiwat = sb->sb_hiwat; 1029 xsb->sb_mbcnt = sb->sb_mbcnt; 1030 xsb->sb_mbmax = sb->sb_mbmax; 1031 xsb->sb_lowat = sb->sb_lowat; 1032 xsb->sb_flags = sb->sb_flags; 1033 xsb->sb_timeo = sb->sb_timeo; 1034 } 1035 1036 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */ 1037 static int dummy; 1038 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, ""); 1039 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_ULONG|CTLFLAG_RW, 1040 &sb_max, 0, sysctl_handle_sb_max, "LU", "Maximum socket buffer size"); 1041 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW, 1042 &sb_efficiency, 0, ""); 1043