xref: /freebsd/sys/kern/uipc_sockbuf.c (revision 2be1a816b9ff69588e55be0a84cbe2a31efc0f2f)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_param.h"
36 
37 #include <sys/param.h>
38 #include <sys/aio.h> /* for aio_swake proto */
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mbuf.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/protosw.h>
45 #include <sys/resourcevar.h>
46 #include <sys/signalvar.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/sx.h>
50 #include <sys/sysctl.h>
51 
52 /*
53  * Function pointer set by the AIO routines so that the socket buffer code
54  * can call back into the AIO module if it is loaded.
55  */
56 void	(*aio_swake)(struct socket *, struct sockbuf *);
57 
58 /*
59  * Primitive routines for operating on socket buffers
60  */
61 
62 u_long	sb_max = SB_MAX;
63 u_long sb_max_adj =
64        SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
65 
66 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
67 
68 static void	sbdrop_internal(struct sockbuf *sb, int len);
69 static void	sbflush_internal(struct sockbuf *sb);
70 
71 /*
72  * Socantsendmore indicates that no more data will be sent on the socket; it
73  * would normally be applied to a socket when the user informs the system
74  * that no more data is to be sent, by the protocol code (in case
75  * PRU_SHUTDOWN).  Socantrcvmore indicates that no more data will be
76  * received, and will normally be applied to the socket by a protocol when it
77  * detects that the peer will send no more data.  Data queued for reading in
78  * the socket may yet be read.
79  */
80 void
81 socantsendmore_locked(struct socket *so)
82 {
83 
84 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
85 
86 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
87 	sowwakeup_locked(so);
88 	mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
89 }
90 
91 void
92 socantsendmore(struct socket *so)
93 {
94 
95 	SOCKBUF_LOCK(&so->so_snd);
96 	socantsendmore_locked(so);
97 	mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
98 }
99 
100 void
101 socantrcvmore_locked(struct socket *so)
102 {
103 
104 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
105 
106 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
107 	sorwakeup_locked(so);
108 	mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
109 }
110 
111 void
112 socantrcvmore(struct socket *so)
113 {
114 
115 	SOCKBUF_LOCK(&so->so_rcv);
116 	socantrcvmore_locked(so);
117 	mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
118 }
119 
120 /*
121  * Wait for data to arrive at/drain from a socket buffer.
122  */
123 int
124 sbwait(struct sockbuf *sb)
125 {
126 
127 	SOCKBUF_LOCK_ASSERT(sb);
128 
129 	sb->sb_flags |= SB_WAIT;
130 	return (msleep(&sb->sb_cc, &sb->sb_mtx,
131 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
132 	    sb->sb_timeo));
133 }
134 
135 int
136 sblock(struct sockbuf *sb, int flags)
137 {
138 
139 	KASSERT((flags & SBL_VALID) == flags,
140 	    ("sblock: flags invalid (0x%x)", flags));
141 
142 	if (flags & SBL_WAIT) {
143 		if ((sb->sb_flags & SB_NOINTR) ||
144 		    (flags & SBL_NOINTR)) {
145 			sx_xlock(&sb->sb_sx);
146 			return (0);
147 		}
148 		return (sx_xlock_sig(&sb->sb_sx));
149 	} else {
150 		if (sx_try_xlock(&sb->sb_sx) == 0)
151 			return (EWOULDBLOCK);
152 		return (0);
153 	}
154 }
155 
156 void
157 sbunlock(struct sockbuf *sb)
158 {
159 
160 	sx_xunlock(&sb->sb_sx);
161 }
162 
163 /*
164  * Wakeup processes waiting on a socket buffer.  Do asynchronous notification
165  * via SIGIO if the socket has the SS_ASYNC flag set.
166  *
167  * Called with the socket buffer lock held; will release the lock by the end
168  * of the function.  This allows the caller to acquire the socket buffer lock
169  * while testing for the need for various sorts of wakeup and hold it through
170  * to the point where it's no longer required.  We currently hold the lock
171  * through calls out to other subsystems (with the exception of kqueue), and
172  * then release it to avoid lock order issues.  It's not clear that's
173  * correct.
174  */
175 void
176 sowakeup(struct socket *so, struct sockbuf *sb)
177 {
178 
179 	SOCKBUF_LOCK_ASSERT(sb);
180 
181 	selwakeuppri(&sb->sb_sel, PSOCK);
182 	if (!SEL_WAITING(&sb->sb_sel))
183 		sb->sb_flags &= ~SB_SEL;
184 	if (sb->sb_flags & SB_WAIT) {
185 		sb->sb_flags &= ~SB_WAIT;
186 		wakeup(&sb->sb_cc);
187 	}
188 	KNOTE_LOCKED(&sb->sb_sel.si_note, 0);
189 	SOCKBUF_UNLOCK(sb);
190 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
191 		pgsigio(&so->so_sigio, SIGIO, 0);
192 	if (sb->sb_flags & SB_UPCALL)
193 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
194 	if (sb->sb_flags & SB_AIO)
195 		aio_swake(so, sb);
196 	mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED);
197 }
198 
199 /*
200  * Socket buffer (struct sockbuf) utility routines.
201  *
202  * Each socket contains two socket buffers: one for sending data and one for
203  * receiving data.  Each buffer contains a queue of mbufs, information about
204  * the number of mbufs and amount of data in the queue, and other fields
205  * allowing select() statements and notification on data availability to be
206  * implemented.
207  *
208  * Data stored in a socket buffer is maintained as a list of records.  Each
209  * record is a list of mbufs chained together with the m_next field.  Records
210  * are chained together with the m_nextpkt field. The upper level routine
211  * soreceive() expects the following conventions to be observed when placing
212  * information in the receive buffer:
213  *
214  * 1. If the protocol requires each message be preceded by the sender's name,
215  *    then a record containing that name must be present before any
216  *    associated data (mbuf's must be of type MT_SONAME).
217  * 2. If the protocol supports the exchange of ``access rights'' (really just
218  *    additional data associated with the message), and there are ``rights''
219  *    to be received, then a record containing this data should be present
220  *    (mbuf's must be of type MT_RIGHTS).
221  * 3. If a name or rights record exists, then it must be followed by a data
222  *    record, perhaps of zero length.
223  *
224  * Before using a new socket structure it is first necessary to reserve
225  * buffer space to the socket, by calling sbreserve().  This should commit
226  * some of the available buffer space in the system buffer pool for the
227  * socket (currently, it does nothing but enforce limits).  The space should
228  * be released by calling sbrelease() when the socket is destroyed.
229  */
230 int
231 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
232 {
233 	struct thread *td = curthread;
234 
235 	SOCKBUF_LOCK(&so->so_snd);
236 	SOCKBUF_LOCK(&so->so_rcv);
237 	if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0)
238 		goto bad;
239 	if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0)
240 		goto bad2;
241 	if (so->so_rcv.sb_lowat == 0)
242 		so->so_rcv.sb_lowat = 1;
243 	if (so->so_snd.sb_lowat == 0)
244 		so->so_snd.sb_lowat = MCLBYTES;
245 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
246 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
247 	SOCKBUF_UNLOCK(&so->so_rcv);
248 	SOCKBUF_UNLOCK(&so->so_snd);
249 	return (0);
250 bad2:
251 	sbrelease_locked(&so->so_snd, so);
252 bad:
253 	SOCKBUF_UNLOCK(&so->so_rcv);
254 	SOCKBUF_UNLOCK(&so->so_snd);
255 	return (ENOBUFS);
256 }
257 
258 static int
259 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
260 {
261 	int error = 0;
262 	u_long tmp_sb_max = sb_max;
263 
264 	error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req);
265 	if (error || !req->newptr)
266 		return (error);
267 	if (tmp_sb_max < MSIZE + MCLBYTES)
268 		return (EINVAL);
269 	sb_max = tmp_sb_max;
270 	sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
271 	return (0);
272 }
273 
274 /*
275  * Allot mbufs to a sockbuf.  Attempt to scale mbmax so that mbcnt doesn't
276  * become limiting if buffering efficiency is near the normal case.
277  */
278 int
279 sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so,
280     struct thread *td)
281 {
282 	rlim_t sbsize_limit;
283 
284 	SOCKBUF_LOCK_ASSERT(sb);
285 
286 	/*
287 	 * td will only be NULL when we're in an interrupt (e.g. in
288 	 * tcp_input()).
289 	 *
290 	 * XXXRW: This comment needs updating, as might the code.
291 	 */
292 	if (cc > sb_max_adj)
293 		return (0);
294 	if (td != NULL) {
295 		PROC_LOCK(td->td_proc);
296 		sbsize_limit = lim_cur(td->td_proc, RLIMIT_SBSIZE);
297 		PROC_UNLOCK(td->td_proc);
298 	} else
299 		sbsize_limit = RLIM_INFINITY;
300 	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
301 	    sbsize_limit))
302 		return (0);
303 	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
304 	if (sb->sb_lowat > sb->sb_hiwat)
305 		sb->sb_lowat = sb->sb_hiwat;
306 	return (1);
307 }
308 
309 int
310 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so,
311     struct thread *td)
312 {
313 	int error;
314 
315 	SOCKBUF_LOCK(sb);
316 	error = sbreserve_locked(sb, cc, so, td);
317 	SOCKBUF_UNLOCK(sb);
318 	return (error);
319 }
320 
321 /*
322  * Free mbufs held by a socket, and reserved mbuf space.
323  */
324 void
325 sbrelease_internal(struct sockbuf *sb, struct socket *so)
326 {
327 
328 	sbflush_internal(sb);
329 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
330 	    RLIM_INFINITY);
331 	sb->sb_mbmax = 0;
332 }
333 
334 void
335 sbrelease_locked(struct sockbuf *sb, struct socket *so)
336 {
337 
338 	SOCKBUF_LOCK_ASSERT(sb);
339 
340 	sbrelease_internal(sb, so);
341 }
342 
343 void
344 sbrelease(struct sockbuf *sb, struct socket *so)
345 {
346 
347 	SOCKBUF_LOCK(sb);
348 	sbrelease_locked(sb, so);
349 	SOCKBUF_UNLOCK(sb);
350 }
351 
352 void
353 sbdestroy(struct sockbuf *sb, struct socket *so)
354 {
355 
356 	sbrelease_internal(sb, so);
357 }
358 
359 /*
360  * Routines to add and remove data from an mbuf queue.
361  *
362  * The routines sbappend() or sbappendrecord() are normally called to append
363  * new mbufs to a socket buffer, after checking that adequate space is
364  * available, comparing the function sbspace() with the amount of data to be
365  * added.  sbappendrecord() differs from sbappend() in that data supplied is
366  * treated as the beginning of a new record.  To place a sender's address,
367  * optional access rights, and data in a socket receive buffer,
368  * sbappendaddr() should be used.  To place access rights and data in a
369  * socket receive buffer, sbappendrights() should be used.  In either case,
370  * the new data begins a new record.  Note that unlike sbappend() and
371  * sbappendrecord(), these routines check for the caller that there will be
372  * enough space to store the data.  Each fails if there is not enough space,
373  * or if it cannot find mbufs to store additional information in.
374  *
375  * Reliable protocols may use the socket send buffer to hold data awaiting
376  * acknowledgement.  Data is normally copied from a socket send buffer in a
377  * protocol with m_copy for output to a peer, and then removing the data from
378  * the socket buffer with sbdrop() or sbdroprecord() when the data is
379  * acknowledged by the peer.
380  */
381 #ifdef SOCKBUF_DEBUG
382 void
383 sblastrecordchk(struct sockbuf *sb, const char *file, int line)
384 {
385 	struct mbuf *m = sb->sb_mb;
386 
387 	SOCKBUF_LOCK_ASSERT(sb);
388 
389 	while (m && m->m_nextpkt)
390 		m = m->m_nextpkt;
391 
392 	if (m != sb->sb_lastrecord) {
393 		printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
394 			__func__, sb->sb_mb, sb->sb_lastrecord, m);
395 		printf("packet chain:\n");
396 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
397 			printf("\t%p\n", m);
398 		panic("%s from %s:%u", __func__, file, line);
399 	}
400 }
401 
402 void
403 sblastmbufchk(struct sockbuf *sb, const char *file, int line)
404 {
405 	struct mbuf *m = sb->sb_mb;
406 	struct mbuf *n;
407 
408 	SOCKBUF_LOCK_ASSERT(sb);
409 
410 	while (m && m->m_nextpkt)
411 		m = m->m_nextpkt;
412 
413 	while (m && m->m_next)
414 		m = m->m_next;
415 
416 	if (m != sb->sb_mbtail) {
417 		printf("%s: sb_mb %p sb_mbtail %p last %p\n",
418 			__func__, sb->sb_mb, sb->sb_mbtail, m);
419 		printf("packet tree:\n");
420 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
421 			printf("\t");
422 			for (n = m; n != NULL; n = n->m_next)
423 				printf("%p ", n);
424 			printf("\n");
425 		}
426 		panic("%s from %s:%u", __func__, file, line);
427 	}
428 }
429 #endif /* SOCKBUF_DEBUG */
430 
431 #define SBLINKRECORD(sb, m0) do {					\
432 	SOCKBUF_LOCK_ASSERT(sb);					\
433 	if ((sb)->sb_lastrecord != NULL)				\
434 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
435 	else								\
436 		(sb)->sb_mb = (m0);					\
437 	(sb)->sb_lastrecord = (m0);					\
438 } while (/*CONSTCOND*/0)
439 
440 /*
441  * Append mbuf chain m to the last record in the socket buffer sb.  The
442  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
443  * are discarded and mbufs are compacted where possible.
444  */
445 void
446 sbappend_locked(struct sockbuf *sb, struct mbuf *m)
447 {
448 	struct mbuf *n;
449 
450 	SOCKBUF_LOCK_ASSERT(sb);
451 
452 	if (m == 0)
453 		return;
454 
455 	SBLASTRECORDCHK(sb);
456 	n = sb->sb_mb;
457 	if (n) {
458 		while (n->m_nextpkt)
459 			n = n->m_nextpkt;
460 		do {
461 			if (n->m_flags & M_EOR) {
462 				sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
463 				return;
464 			}
465 		} while (n->m_next && (n = n->m_next));
466 	} else {
467 		/*
468 		 * XXX Would like to simply use sb_mbtail here, but
469 		 * XXX I need to verify that I won't miss an EOR that
470 		 * XXX way.
471 		 */
472 		if ((n = sb->sb_lastrecord) != NULL) {
473 			do {
474 				if (n->m_flags & M_EOR) {
475 					sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
476 					return;
477 				}
478 			} while (n->m_next && (n = n->m_next));
479 		} else {
480 			/*
481 			 * If this is the first record in the socket buffer,
482 			 * it's also the last record.
483 			 */
484 			sb->sb_lastrecord = m;
485 		}
486 	}
487 	sbcompress(sb, m, n);
488 	SBLASTRECORDCHK(sb);
489 }
490 
491 /*
492  * Append mbuf chain m to the last record in the socket buffer sb.  The
493  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
494  * are discarded and mbufs are compacted where possible.
495  */
496 void
497 sbappend(struct sockbuf *sb, struct mbuf *m)
498 {
499 
500 	SOCKBUF_LOCK(sb);
501 	sbappend_locked(sb, m);
502 	SOCKBUF_UNLOCK(sb);
503 }
504 
505 /*
506  * This version of sbappend() should only be used when the caller absolutely
507  * knows that there will never be more than one record in the socket buffer,
508  * that is, a stream protocol (such as TCP).
509  */
510 void
511 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m)
512 {
513 	SOCKBUF_LOCK_ASSERT(sb);
514 
515 	KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
516 	KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
517 
518 	SBLASTMBUFCHK(sb);
519 
520 	sbcompress(sb, m, sb->sb_mbtail);
521 
522 	sb->sb_lastrecord = sb->sb_mb;
523 	SBLASTRECORDCHK(sb);
524 }
525 
526 /*
527  * This version of sbappend() should only be used when the caller absolutely
528  * knows that there will never be more than one record in the socket buffer,
529  * that is, a stream protocol (such as TCP).
530  */
531 void
532 sbappendstream(struct sockbuf *sb, struct mbuf *m)
533 {
534 
535 	SOCKBUF_LOCK(sb);
536 	sbappendstream_locked(sb, m);
537 	SOCKBUF_UNLOCK(sb);
538 }
539 
540 #ifdef SOCKBUF_DEBUG
541 void
542 sbcheck(struct sockbuf *sb)
543 {
544 	struct mbuf *m;
545 	struct mbuf *n = 0;
546 	u_long len = 0, mbcnt = 0;
547 
548 	SOCKBUF_LOCK_ASSERT(sb);
549 
550 	for (m = sb->sb_mb; m; m = n) {
551 	    n = m->m_nextpkt;
552 	    for (; m; m = m->m_next) {
553 		len += m->m_len;
554 		mbcnt += MSIZE;
555 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
556 			mbcnt += m->m_ext.ext_size;
557 	    }
558 	}
559 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
560 		printf("cc %ld != %u || mbcnt %ld != %u\n", len, sb->sb_cc,
561 		    mbcnt, sb->sb_mbcnt);
562 		panic("sbcheck");
563 	}
564 }
565 #endif
566 
567 /*
568  * As above, except the mbuf chain begins a new record.
569  */
570 void
571 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
572 {
573 	struct mbuf *m;
574 
575 	SOCKBUF_LOCK_ASSERT(sb);
576 
577 	if (m0 == 0)
578 		return;
579 	m = sb->sb_mb;
580 	if (m)
581 		while (m->m_nextpkt)
582 			m = m->m_nextpkt;
583 	/*
584 	 * Put the first mbuf on the queue.  Note this permits zero length
585 	 * records.
586 	 */
587 	sballoc(sb, m0);
588 	SBLASTRECORDCHK(sb);
589 	SBLINKRECORD(sb, m0);
590 	if (m)
591 		m->m_nextpkt = m0;
592 	else
593 		sb->sb_mb = m0;
594 	m = m0->m_next;
595 	m0->m_next = 0;
596 	if (m && (m0->m_flags & M_EOR)) {
597 		m0->m_flags &= ~M_EOR;
598 		m->m_flags |= M_EOR;
599 	}
600 	sbcompress(sb, m, m0);
601 }
602 
603 /*
604  * As above, except the mbuf chain begins a new record.
605  */
606 void
607 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
608 {
609 
610 	SOCKBUF_LOCK(sb);
611 	sbappendrecord_locked(sb, m0);
612 	SOCKBUF_UNLOCK(sb);
613 }
614 
615 /*
616  * Append address and data, and optionally, control (ancillary) data to the
617  * receive queue of a socket.  If present, m0 must include a packet header
618  * with total length.  Returns 0 if no space in sockbuf or insufficient
619  * mbufs.
620  */
621 int
622 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
623     struct mbuf *m0, struct mbuf *control)
624 {
625 	struct mbuf *m, *n, *nlast;
626 	int space = asa->sa_len;
627 
628 	SOCKBUF_LOCK_ASSERT(sb);
629 
630 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
631 		panic("sbappendaddr_locked");
632 	if (m0)
633 		space += m0->m_pkthdr.len;
634 	space += m_length(control, &n);
635 
636 	if (space > sbspace(sb))
637 		return (0);
638 #if MSIZE <= 256
639 	if (asa->sa_len > MLEN)
640 		return (0);
641 #endif
642 	MGET(m, M_DONTWAIT, MT_SONAME);
643 	if (m == 0)
644 		return (0);
645 	m->m_len = asa->sa_len;
646 	bcopy(asa, mtod(m, caddr_t), asa->sa_len);
647 	if (n)
648 		n->m_next = m0;		/* concatenate data to control */
649 	else
650 		control = m0;
651 	m->m_next = control;
652 	for (n = m; n->m_next != NULL; n = n->m_next)
653 		sballoc(sb, n);
654 	sballoc(sb, n);
655 	nlast = n;
656 	SBLINKRECORD(sb, m);
657 
658 	sb->sb_mbtail = nlast;
659 	SBLASTMBUFCHK(sb);
660 
661 	SBLASTRECORDCHK(sb);
662 	return (1);
663 }
664 
665 /*
666  * Append address and data, and optionally, control (ancillary) data to the
667  * receive queue of a socket.  If present, m0 must include a packet header
668  * with total length.  Returns 0 if no space in sockbuf or insufficient
669  * mbufs.
670  */
671 int
672 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
673     struct mbuf *m0, struct mbuf *control)
674 {
675 	int retval;
676 
677 	SOCKBUF_LOCK(sb);
678 	retval = sbappendaddr_locked(sb, asa, m0, control);
679 	SOCKBUF_UNLOCK(sb);
680 	return (retval);
681 }
682 
683 int
684 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
685     struct mbuf *control)
686 {
687 	struct mbuf *m, *n, *mlast;
688 	int space;
689 
690 	SOCKBUF_LOCK_ASSERT(sb);
691 
692 	if (control == 0)
693 		panic("sbappendcontrol_locked");
694 	space = m_length(control, &n) + m_length(m0, NULL);
695 
696 	if (space > sbspace(sb))
697 		return (0);
698 	n->m_next = m0;			/* concatenate data to control */
699 
700 	SBLASTRECORDCHK(sb);
701 
702 	for (m = control; m->m_next; m = m->m_next)
703 		sballoc(sb, m);
704 	sballoc(sb, m);
705 	mlast = m;
706 	SBLINKRECORD(sb, control);
707 
708 	sb->sb_mbtail = mlast;
709 	SBLASTMBUFCHK(sb);
710 
711 	SBLASTRECORDCHK(sb);
712 	return (1);
713 }
714 
715 int
716 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
717 {
718 	int retval;
719 
720 	SOCKBUF_LOCK(sb);
721 	retval = sbappendcontrol_locked(sb, m0, control);
722 	SOCKBUF_UNLOCK(sb);
723 	return (retval);
724 }
725 
726 /*
727  * Append the data in mbuf chain (m) into the socket buffer sb following mbuf
728  * (n).  If (n) is NULL, the buffer is presumed empty.
729  *
730  * When the data is compressed, mbufs in the chain may be handled in one of
731  * three ways:
732  *
733  * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
734  *     record boundary, and no change in data type).
735  *
736  * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
737  *     an mbuf already in the socket buffer.  This can occur if an
738  *     appropriate mbuf exists, there is room, and no merging of data types
739  *     will occur.
740  *
741  * (3) The mbuf may be appended to the end of the existing mbuf chain.
742  *
743  * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
744  * end-of-record.
745  */
746 void
747 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
748 {
749 	int eor = 0;
750 	struct mbuf *o;
751 
752 	SOCKBUF_LOCK_ASSERT(sb);
753 
754 	while (m) {
755 		eor |= m->m_flags & M_EOR;
756 		if (m->m_len == 0 &&
757 		    (eor == 0 ||
758 		     (((o = m->m_next) || (o = n)) &&
759 		      o->m_type == m->m_type))) {
760 			if (sb->sb_lastrecord == m)
761 				sb->sb_lastrecord = m->m_next;
762 			m = m_free(m);
763 			continue;
764 		}
765 		if (n && (n->m_flags & M_EOR) == 0 &&
766 		    M_WRITABLE(n) &&
767 		    ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
768 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
769 		    m->m_len <= M_TRAILINGSPACE(n) &&
770 		    n->m_type == m->m_type) {
771 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
772 			    (unsigned)m->m_len);
773 			n->m_len += m->m_len;
774 			sb->sb_cc += m->m_len;
775 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
776 				/* XXX: Probably don't need.*/
777 				sb->sb_ctl += m->m_len;
778 			m = m_free(m);
779 			continue;
780 		}
781 		if (n)
782 			n->m_next = m;
783 		else
784 			sb->sb_mb = m;
785 		sb->sb_mbtail = m;
786 		sballoc(sb, m);
787 		n = m;
788 		m->m_flags &= ~M_EOR;
789 		m = m->m_next;
790 		n->m_next = 0;
791 	}
792 	if (eor) {
793 		KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
794 		n->m_flags |= eor;
795 	}
796 	SBLASTMBUFCHK(sb);
797 }
798 
799 /*
800  * Free all mbufs in a sockbuf.  Check that all resources are reclaimed.
801  */
802 static void
803 sbflush_internal(struct sockbuf *sb)
804 {
805 
806 	while (sb->sb_mbcnt) {
807 		/*
808 		 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
809 		 * we would loop forever. Panic instead.
810 		 */
811 		if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
812 			break;
813 		sbdrop_internal(sb, (int)sb->sb_cc);
814 	}
815 	if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt)
816 		panic("sbflush_internal: cc %u || mb %p || mbcnt %u",
817 		    sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt);
818 }
819 
820 void
821 sbflush_locked(struct sockbuf *sb)
822 {
823 
824 	SOCKBUF_LOCK_ASSERT(sb);
825 	sbflush_internal(sb);
826 }
827 
828 void
829 sbflush(struct sockbuf *sb)
830 {
831 
832 	SOCKBUF_LOCK(sb);
833 	sbflush_locked(sb);
834 	SOCKBUF_UNLOCK(sb);
835 }
836 
837 /*
838  * Drop data from (the front of) a sockbuf.
839  */
840 static void
841 sbdrop_internal(struct sockbuf *sb, int len)
842 {
843 	struct mbuf *m;
844 	struct mbuf *next;
845 
846 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
847 	while (len > 0) {
848 		if (m == 0) {
849 			if (next == 0)
850 				panic("sbdrop");
851 			m = next;
852 			next = m->m_nextpkt;
853 			continue;
854 		}
855 		if (m->m_len > len) {
856 			m->m_len -= len;
857 			m->m_data += len;
858 			sb->sb_cc -= len;
859 			if (sb->sb_sndptroff != 0)
860 				sb->sb_sndptroff -= len;
861 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
862 				sb->sb_ctl -= len;
863 			break;
864 		}
865 		len -= m->m_len;
866 		sbfree(sb, m);
867 		m = m_free(m);
868 	}
869 	while (m && m->m_len == 0) {
870 		sbfree(sb, m);
871 		m = m_free(m);
872 	}
873 	if (m) {
874 		sb->sb_mb = m;
875 		m->m_nextpkt = next;
876 	} else
877 		sb->sb_mb = next;
878 	/*
879 	 * First part is an inline SB_EMPTY_FIXUP().  Second part makes sure
880 	 * sb_lastrecord is up-to-date if we dropped part of the last record.
881 	 */
882 	m = sb->sb_mb;
883 	if (m == NULL) {
884 		sb->sb_mbtail = NULL;
885 		sb->sb_lastrecord = NULL;
886 	} else if (m->m_nextpkt == NULL) {
887 		sb->sb_lastrecord = m;
888 	}
889 }
890 
891 /*
892  * Drop data from (the front of) a sockbuf.
893  */
894 void
895 sbdrop_locked(struct sockbuf *sb, int len)
896 {
897 
898 	SOCKBUF_LOCK_ASSERT(sb);
899 
900 	sbdrop_internal(sb, len);
901 }
902 
903 void
904 sbdrop(struct sockbuf *sb, int len)
905 {
906 
907 	SOCKBUF_LOCK(sb);
908 	sbdrop_locked(sb, len);
909 	SOCKBUF_UNLOCK(sb);
910 }
911 
912 /*
913  * Maintain a pointer and offset pair into the socket buffer mbuf chain to
914  * avoid traversal of the entire socket buffer for larger offsets.
915  */
916 struct mbuf *
917 sbsndptr(struct sockbuf *sb, u_int off, u_int len, u_int *moff)
918 {
919 	struct mbuf *m, *ret;
920 
921 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
922 	KASSERT(off + len <= sb->sb_cc, ("%s: beyond sb", __func__));
923 	KASSERT(sb->sb_sndptroff <= sb->sb_cc, ("%s: sndptroff broken", __func__));
924 
925 	/*
926 	 * Is off below stored offset? Happens on retransmits.
927 	 * Just return, we can't help here.
928 	 */
929 	if (sb->sb_sndptroff > off) {
930 		*moff = off;
931 		return (sb->sb_mb);
932 	}
933 
934 	/* Return closest mbuf in chain for current offset. */
935 	*moff = off - sb->sb_sndptroff;
936 	m = ret = sb->sb_sndptr ? sb->sb_sndptr : sb->sb_mb;
937 
938 	/* Advance by len to be as close as possible for the next transmit. */
939 	for (off = off - sb->sb_sndptroff + len - 1;
940 	     off > 0 && off >= m->m_len;
941 	     m = m->m_next) {
942 		sb->sb_sndptroff += m->m_len;
943 		off -= m->m_len;
944 	}
945 	sb->sb_sndptr = m;
946 
947 	return (ret);
948 }
949 
950 /*
951  * Drop a record off the front of a sockbuf and move the next record to the
952  * front.
953  */
954 void
955 sbdroprecord_locked(struct sockbuf *sb)
956 {
957 	struct mbuf *m;
958 
959 	SOCKBUF_LOCK_ASSERT(sb);
960 
961 	m = sb->sb_mb;
962 	if (m) {
963 		sb->sb_mb = m->m_nextpkt;
964 		do {
965 			sbfree(sb, m);
966 			m = m_free(m);
967 		} while (m);
968 	}
969 	SB_EMPTY_FIXUP(sb);
970 }
971 
972 /*
973  * Drop a record off the front of a sockbuf and move the next record to the
974  * front.
975  */
976 void
977 sbdroprecord(struct sockbuf *sb)
978 {
979 
980 	SOCKBUF_LOCK(sb);
981 	sbdroprecord_locked(sb);
982 	SOCKBUF_UNLOCK(sb);
983 }
984 
985 /*
986  * Create a "control" mbuf containing the specified data with the specified
987  * type for presentation on a socket buffer.
988  */
989 struct mbuf *
990 sbcreatecontrol(caddr_t p, int size, int type, int level)
991 {
992 	struct cmsghdr *cp;
993 	struct mbuf *m;
994 
995 	if (CMSG_SPACE((u_int)size) > MCLBYTES)
996 		return ((struct mbuf *) NULL);
997 	if (CMSG_SPACE((u_int)size) > MLEN)
998 		m = m_getcl(M_DONTWAIT, MT_CONTROL, 0);
999 	else
1000 		m = m_get(M_DONTWAIT, MT_CONTROL);
1001 	if (m == NULL)
1002 		return ((struct mbuf *) NULL);
1003 	cp = mtod(m, struct cmsghdr *);
1004 	m->m_len = 0;
1005 	KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
1006 	    ("sbcreatecontrol: short mbuf"));
1007 	if (p != NULL)
1008 		(void)memcpy(CMSG_DATA(cp), p, size);
1009 	m->m_len = CMSG_SPACE(size);
1010 	cp->cmsg_len = CMSG_LEN(size);
1011 	cp->cmsg_level = level;
1012 	cp->cmsg_type = type;
1013 	return (m);
1014 }
1015 
1016 /*
1017  * This does the same for socket buffers that sotoxsocket does for sockets:
1018  * generate an user-format data structure describing the socket buffer.  Note
1019  * that the xsockbuf structure, since it is always embedded in a socket, does
1020  * not include a self pointer nor a length.  We make this entry point public
1021  * in case some other mechanism needs it.
1022  */
1023 void
1024 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1025 {
1026 
1027 	xsb->sb_cc = sb->sb_cc;
1028 	xsb->sb_hiwat = sb->sb_hiwat;
1029 	xsb->sb_mbcnt = sb->sb_mbcnt;
1030 	xsb->sb_mbmax = sb->sb_mbmax;
1031 	xsb->sb_lowat = sb->sb_lowat;
1032 	xsb->sb_flags = sb->sb_flags;
1033 	xsb->sb_timeo = sb->sb_timeo;
1034 }
1035 
1036 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1037 static int dummy;
1038 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
1039 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_ULONG|CTLFLAG_RW,
1040     &sb_max, 0, sysctl_handle_sb_max, "LU", "Maximum socket buffer size");
1041 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1042     &sb_efficiency, 0, "");
1043