1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_param.h" 36 37 #include <sys/param.h> 38 #include <sys/aio.h> /* for aio_swake proto */ 39 #include <sys/kernel.h> 40 #include <sys/lock.h> 41 #include <sys/mbuf.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 #include <sys/protosw.h> 45 #include <sys/resourcevar.h> 46 #include <sys/signalvar.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/sx.h> 50 #include <sys/sysctl.h> 51 52 /* 53 * Function pointer set by the AIO routines so that the socket buffer code 54 * can call back into the AIO module if it is loaded. 55 */ 56 void (*aio_swake)(struct socket *, struct sockbuf *); 57 58 /* 59 * Primitive routines for operating on socket buffers 60 */ 61 62 u_long sb_max = SB_MAX; 63 u_long sb_max_adj = 64 SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */ 65 66 static u_long sb_efficiency = 8; /* parameter for sbreserve() */ 67 68 static void sbdrop_internal(struct sockbuf *sb, int len); 69 static void sbflush_internal(struct sockbuf *sb); 70 static void sbrelease_internal(struct sockbuf *sb, struct socket *so); 71 72 /* 73 * Socantsendmore indicates that no more data will be sent on the socket; it 74 * would normally be applied to a socket when the user informs the system 75 * that no more data is to be sent, by the protocol code (in case 76 * PRU_SHUTDOWN). Socantrcvmore indicates that no more data will be 77 * received, and will normally be applied to the socket by a protocol when it 78 * detects that the peer will send no more data. Data queued for reading in 79 * the socket may yet be read. 80 */ 81 void 82 socantsendmore_locked(struct socket *so) 83 { 84 85 SOCKBUF_LOCK_ASSERT(&so->so_snd); 86 87 so->so_snd.sb_state |= SBS_CANTSENDMORE; 88 sowwakeup_locked(so); 89 mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED); 90 } 91 92 void 93 socantsendmore(struct socket *so) 94 { 95 96 SOCKBUF_LOCK(&so->so_snd); 97 socantsendmore_locked(so); 98 mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED); 99 } 100 101 void 102 socantrcvmore_locked(struct socket *so) 103 { 104 105 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 106 107 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 108 sorwakeup_locked(so); 109 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED); 110 } 111 112 void 113 socantrcvmore(struct socket *so) 114 { 115 116 SOCKBUF_LOCK(&so->so_rcv); 117 socantrcvmore_locked(so); 118 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED); 119 } 120 121 /* 122 * Wait for data to arrive at/drain from a socket buffer. 123 */ 124 int 125 sbwait(struct sockbuf *sb) 126 { 127 128 SOCKBUF_LOCK_ASSERT(sb); 129 130 sb->sb_flags |= SB_WAIT; 131 return (msleep(&sb->sb_cc, &sb->sb_mtx, 132 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", 133 sb->sb_timeo)); 134 } 135 136 int 137 sblock(struct sockbuf *sb, int flags) 138 { 139 140 if (flags == M_WAITOK) { 141 if (sb->sb_flags & SB_NOINTR) { 142 sx_xlock(&sb->sb_sx); 143 return (0); 144 } 145 return (sx_xlock_sig(&sb->sb_sx)); 146 } else { 147 if (sx_try_xlock(&sb->sb_sx) == 0) 148 return (EWOULDBLOCK); 149 return (0); 150 } 151 } 152 153 void 154 sbunlock(struct sockbuf *sb) 155 { 156 157 sx_xunlock(&sb->sb_sx); 158 } 159 160 /* 161 * Wakeup processes waiting on a socket buffer. Do asynchronous notification 162 * via SIGIO if the socket has the SS_ASYNC flag set. 163 * 164 * Called with the socket buffer lock held; will release the lock by the end 165 * of the function. This allows the caller to acquire the socket buffer lock 166 * while testing for the need for various sorts of wakeup and hold it through 167 * to the point where it's no longer required. We currently hold the lock 168 * through calls out to other subsystems (with the exception of kqueue), and 169 * then release it to avoid lock order issues. It's not clear that's 170 * correct. 171 */ 172 void 173 sowakeup(struct socket *so, struct sockbuf *sb) 174 { 175 176 SOCKBUF_LOCK_ASSERT(sb); 177 178 selwakeuppri(&sb->sb_sel, PSOCK); 179 if (!SEL_WAITING(&sb->sb_sel)) 180 sb->sb_flags &= ~SB_SEL; 181 if (sb->sb_flags & SB_WAIT) { 182 sb->sb_flags &= ~SB_WAIT; 183 wakeup(&sb->sb_cc); 184 } 185 KNOTE_LOCKED(&sb->sb_sel.si_note, 0); 186 SOCKBUF_UNLOCK(sb); 187 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL) 188 pgsigio(&so->so_sigio, SIGIO, 0); 189 if (sb->sb_flags & SB_UPCALL) 190 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT); 191 if (sb->sb_flags & SB_AIO) 192 aio_swake(so, sb); 193 mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED); 194 } 195 196 /* 197 * Socket buffer (struct sockbuf) utility routines. 198 * 199 * Each socket contains two socket buffers: one for sending data and one for 200 * receiving data. Each buffer contains a queue of mbufs, information about 201 * the number of mbufs and amount of data in the queue, and other fields 202 * allowing select() statements and notification on data availability to be 203 * implemented. 204 * 205 * Data stored in a socket buffer is maintained as a list of records. Each 206 * record is a list of mbufs chained together with the m_next field. Records 207 * are chained together with the m_nextpkt field. The upper level routine 208 * soreceive() expects the following conventions to be observed when placing 209 * information in the receive buffer: 210 * 211 * 1. If the protocol requires each message be preceded by the sender's name, 212 * then a record containing that name must be present before any 213 * associated data (mbuf's must be of type MT_SONAME). 214 * 2. If the protocol supports the exchange of ``access rights'' (really just 215 * additional data associated with the message), and there are ``rights'' 216 * to be received, then a record containing this data should be present 217 * (mbuf's must be of type MT_RIGHTS). 218 * 3. If a name or rights record exists, then it must be followed by a data 219 * record, perhaps of zero length. 220 * 221 * Before using a new socket structure it is first necessary to reserve 222 * buffer space to the socket, by calling sbreserve(). This should commit 223 * some of the available buffer space in the system buffer pool for the 224 * socket (currently, it does nothing but enforce limits). The space should 225 * be released by calling sbrelease() when the socket is destroyed. 226 */ 227 int 228 soreserve(struct socket *so, u_long sndcc, u_long rcvcc) 229 { 230 struct thread *td = curthread; 231 232 SOCKBUF_LOCK(&so->so_snd); 233 SOCKBUF_LOCK(&so->so_rcv); 234 if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0) 235 goto bad; 236 if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0) 237 goto bad2; 238 if (so->so_rcv.sb_lowat == 0) 239 so->so_rcv.sb_lowat = 1; 240 if (so->so_snd.sb_lowat == 0) 241 so->so_snd.sb_lowat = MCLBYTES; 242 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 243 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 244 SOCKBUF_UNLOCK(&so->so_rcv); 245 SOCKBUF_UNLOCK(&so->so_snd); 246 return (0); 247 bad2: 248 sbrelease_locked(&so->so_snd, so); 249 bad: 250 SOCKBUF_UNLOCK(&so->so_rcv); 251 SOCKBUF_UNLOCK(&so->so_snd); 252 return (ENOBUFS); 253 } 254 255 static int 256 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS) 257 { 258 int error = 0; 259 u_long tmp_sb_max = sb_max; 260 261 error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req); 262 if (error || !req->newptr) 263 return (error); 264 if (tmp_sb_max < MSIZE + MCLBYTES) 265 return (EINVAL); 266 sb_max = tmp_sb_max; 267 sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES); 268 return (0); 269 } 270 271 /* 272 * Allot mbufs to a sockbuf. Attempt to scale mbmax so that mbcnt doesn't 273 * become limiting if buffering efficiency is near the normal case. 274 */ 275 int 276 sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so, 277 struct thread *td) 278 { 279 rlim_t sbsize_limit; 280 281 SOCKBUF_LOCK_ASSERT(sb); 282 283 /* 284 * td will only be NULL when we're in an interrupt (e.g. in 285 * tcp_input()). 286 * 287 * XXXRW: This comment needs updating, as might the code. 288 */ 289 if (cc > sb_max_adj) 290 return (0); 291 if (td != NULL) { 292 PROC_LOCK(td->td_proc); 293 sbsize_limit = lim_cur(td->td_proc, RLIMIT_SBSIZE); 294 PROC_UNLOCK(td->td_proc); 295 } else 296 sbsize_limit = RLIM_INFINITY; 297 if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc, 298 sbsize_limit)) 299 return (0); 300 sb->sb_mbmax = min(cc * sb_efficiency, sb_max); 301 if (sb->sb_lowat > sb->sb_hiwat) 302 sb->sb_lowat = sb->sb_hiwat; 303 return (1); 304 } 305 306 int 307 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so, 308 struct thread *td) 309 { 310 int error; 311 312 SOCKBUF_LOCK(sb); 313 error = sbreserve_locked(sb, cc, so, td); 314 SOCKBUF_UNLOCK(sb); 315 return (error); 316 } 317 318 /* 319 * Free mbufs held by a socket, and reserved mbuf space. 320 */ 321 static void 322 sbrelease_internal(struct sockbuf *sb, struct socket *so) 323 { 324 325 sbflush_internal(sb); 326 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0, 327 RLIM_INFINITY); 328 sb->sb_mbmax = 0; 329 } 330 331 void 332 sbrelease_locked(struct sockbuf *sb, struct socket *so) 333 { 334 335 SOCKBUF_LOCK_ASSERT(sb); 336 337 sbrelease_internal(sb, so); 338 } 339 340 void 341 sbrelease(struct sockbuf *sb, struct socket *so) 342 { 343 344 SOCKBUF_LOCK(sb); 345 sbrelease_locked(sb, so); 346 SOCKBUF_UNLOCK(sb); 347 } 348 349 void 350 sbdestroy(struct sockbuf *sb, struct socket *so) 351 { 352 353 sbrelease_internal(sb, so); 354 } 355 356 /* 357 * Routines to add and remove data from an mbuf queue. 358 * 359 * The routines sbappend() or sbappendrecord() are normally called to append 360 * new mbufs to a socket buffer, after checking that adequate space is 361 * available, comparing the function sbspace() with the amount of data to be 362 * added. sbappendrecord() differs from sbappend() in that data supplied is 363 * treated as the beginning of a new record. To place a sender's address, 364 * optional access rights, and data in a socket receive buffer, 365 * sbappendaddr() should be used. To place access rights and data in a 366 * socket receive buffer, sbappendrights() should be used. In either case, 367 * the new data begins a new record. Note that unlike sbappend() and 368 * sbappendrecord(), these routines check for the caller that there will be 369 * enough space to store the data. Each fails if there is not enough space, 370 * or if it cannot find mbufs to store additional information in. 371 * 372 * Reliable protocols may use the socket send buffer to hold data awaiting 373 * acknowledgement. Data is normally copied from a socket send buffer in a 374 * protocol with m_copy for output to a peer, and then removing the data from 375 * the socket buffer with sbdrop() or sbdroprecord() when the data is 376 * acknowledged by the peer. 377 */ 378 #ifdef SOCKBUF_DEBUG 379 void 380 sblastrecordchk(struct sockbuf *sb, const char *file, int line) 381 { 382 struct mbuf *m = sb->sb_mb; 383 384 SOCKBUF_LOCK_ASSERT(sb); 385 386 while (m && m->m_nextpkt) 387 m = m->m_nextpkt; 388 389 if (m != sb->sb_lastrecord) { 390 printf("%s: sb_mb %p sb_lastrecord %p last %p\n", 391 __func__, sb->sb_mb, sb->sb_lastrecord, m); 392 printf("packet chain:\n"); 393 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) 394 printf("\t%p\n", m); 395 panic("%s from %s:%u", __func__, file, line); 396 } 397 } 398 399 void 400 sblastmbufchk(struct sockbuf *sb, const char *file, int line) 401 { 402 struct mbuf *m = sb->sb_mb; 403 struct mbuf *n; 404 405 SOCKBUF_LOCK_ASSERT(sb); 406 407 while (m && m->m_nextpkt) 408 m = m->m_nextpkt; 409 410 while (m && m->m_next) 411 m = m->m_next; 412 413 if (m != sb->sb_mbtail) { 414 printf("%s: sb_mb %p sb_mbtail %p last %p\n", 415 __func__, sb->sb_mb, sb->sb_mbtail, m); 416 printf("packet tree:\n"); 417 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) { 418 printf("\t"); 419 for (n = m; n != NULL; n = n->m_next) 420 printf("%p ", n); 421 printf("\n"); 422 } 423 panic("%s from %s:%u", __func__, file, line); 424 } 425 } 426 #endif /* SOCKBUF_DEBUG */ 427 428 #define SBLINKRECORD(sb, m0) do { \ 429 SOCKBUF_LOCK_ASSERT(sb); \ 430 if ((sb)->sb_lastrecord != NULL) \ 431 (sb)->sb_lastrecord->m_nextpkt = (m0); \ 432 else \ 433 (sb)->sb_mb = (m0); \ 434 (sb)->sb_lastrecord = (m0); \ 435 } while (/*CONSTCOND*/0) 436 437 /* 438 * Append mbuf chain m to the last record in the socket buffer sb. The 439 * additional space associated the mbuf chain is recorded in sb. Empty mbufs 440 * are discarded and mbufs are compacted where possible. 441 */ 442 void 443 sbappend_locked(struct sockbuf *sb, struct mbuf *m) 444 { 445 struct mbuf *n; 446 447 SOCKBUF_LOCK_ASSERT(sb); 448 449 if (m == 0) 450 return; 451 452 SBLASTRECORDCHK(sb); 453 n = sb->sb_mb; 454 if (n) { 455 while (n->m_nextpkt) 456 n = n->m_nextpkt; 457 do { 458 if (n->m_flags & M_EOR) { 459 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */ 460 return; 461 } 462 } while (n->m_next && (n = n->m_next)); 463 } else { 464 /* 465 * XXX Would like to simply use sb_mbtail here, but 466 * XXX I need to verify that I won't miss an EOR that 467 * XXX way. 468 */ 469 if ((n = sb->sb_lastrecord) != NULL) { 470 do { 471 if (n->m_flags & M_EOR) { 472 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */ 473 return; 474 } 475 } while (n->m_next && (n = n->m_next)); 476 } else { 477 /* 478 * If this is the first record in the socket buffer, 479 * it's also the last record. 480 */ 481 sb->sb_lastrecord = m; 482 } 483 } 484 sbcompress(sb, m, n); 485 SBLASTRECORDCHK(sb); 486 } 487 488 /* 489 * Append mbuf chain m to the last record in the socket buffer sb. The 490 * additional space associated the mbuf chain is recorded in sb. Empty mbufs 491 * are discarded and mbufs are compacted where possible. 492 */ 493 void 494 sbappend(struct sockbuf *sb, struct mbuf *m) 495 { 496 497 SOCKBUF_LOCK(sb); 498 sbappend_locked(sb, m); 499 SOCKBUF_UNLOCK(sb); 500 } 501 502 /* 503 * This version of sbappend() should only be used when the caller absolutely 504 * knows that there will never be more than one record in the socket buffer, 505 * that is, a stream protocol (such as TCP). 506 */ 507 void 508 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m) 509 { 510 SOCKBUF_LOCK_ASSERT(sb); 511 512 KASSERT(m->m_nextpkt == NULL,("sbappendstream 0")); 513 KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1")); 514 515 SBLASTMBUFCHK(sb); 516 517 sbcompress(sb, m, sb->sb_mbtail); 518 519 sb->sb_lastrecord = sb->sb_mb; 520 SBLASTRECORDCHK(sb); 521 } 522 523 /* 524 * This version of sbappend() should only be used when the caller absolutely 525 * knows that there will never be more than one record in the socket buffer, 526 * that is, a stream protocol (such as TCP). 527 */ 528 void 529 sbappendstream(struct sockbuf *sb, struct mbuf *m) 530 { 531 532 SOCKBUF_LOCK(sb); 533 sbappendstream_locked(sb, m); 534 SOCKBUF_UNLOCK(sb); 535 } 536 537 #ifdef SOCKBUF_DEBUG 538 void 539 sbcheck(struct sockbuf *sb) 540 { 541 struct mbuf *m; 542 struct mbuf *n = 0; 543 u_long len = 0, mbcnt = 0; 544 545 SOCKBUF_LOCK_ASSERT(sb); 546 547 for (m = sb->sb_mb; m; m = n) { 548 n = m->m_nextpkt; 549 for (; m; m = m->m_next) { 550 len += m->m_len; 551 mbcnt += MSIZE; 552 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ 553 mbcnt += m->m_ext.ext_size; 554 } 555 } 556 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 557 printf("cc %ld != %u || mbcnt %ld != %u\n", len, sb->sb_cc, 558 mbcnt, sb->sb_mbcnt); 559 panic("sbcheck"); 560 } 561 } 562 #endif 563 564 /* 565 * As above, except the mbuf chain begins a new record. 566 */ 567 void 568 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0) 569 { 570 struct mbuf *m; 571 572 SOCKBUF_LOCK_ASSERT(sb); 573 574 if (m0 == 0) 575 return; 576 m = sb->sb_mb; 577 if (m) 578 while (m->m_nextpkt) 579 m = m->m_nextpkt; 580 /* 581 * Put the first mbuf on the queue. Note this permits zero length 582 * records. 583 */ 584 sballoc(sb, m0); 585 SBLASTRECORDCHK(sb); 586 SBLINKRECORD(sb, m0); 587 if (m) 588 m->m_nextpkt = m0; 589 else 590 sb->sb_mb = m0; 591 m = m0->m_next; 592 m0->m_next = 0; 593 if (m && (m0->m_flags & M_EOR)) { 594 m0->m_flags &= ~M_EOR; 595 m->m_flags |= M_EOR; 596 } 597 sbcompress(sb, m, m0); 598 } 599 600 /* 601 * As above, except the mbuf chain begins a new record. 602 */ 603 void 604 sbappendrecord(struct sockbuf *sb, struct mbuf *m0) 605 { 606 607 SOCKBUF_LOCK(sb); 608 sbappendrecord_locked(sb, m0); 609 SOCKBUF_UNLOCK(sb); 610 } 611 612 /* 613 * Append address and data, and optionally, control (ancillary) data to the 614 * receive queue of a socket. If present, m0 must include a packet header 615 * with total length. Returns 0 if no space in sockbuf or insufficient 616 * mbufs. 617 */ 618 int 619 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa, 620 struct mbuf *m0, struct mbuf *control) 621 { 622 struct mbuf *m, *n, *nlast; 623 int space = asa->sa_len; 624 625 SOCKBUF_LOCK_ASSERT(sb); 626 627 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 628 panic("sbappendaddr_locked"); 629 if (m0) 630 space += m0->m_pkthdr.len; 631 space += m_length(control, &n); 632 633 if (space > sbspace(sb)) 634 return (0); 635 #if MSIZE <= 256 636 if (asa->sa_len > MLEN) 637 return (0); 638 #endif 639 MGET(m, M_DONTWAIT, MT_SONAME); 640 if (m == 0) 641 return (0); 642 m->m_len = asa->sa_len; 643 bcopy(asa, mtod(m, caddr_t), asa->sa_len); 644 if (n) 645 n->m_next = m0; /* concatenate data to control */ 646 else 647 control = m0; 648 m->m_next = control; 649 for (n = m; n->m_next != NULL; n = n->m_next) 650 sballoc(sb, n); 651 sballoc(sb, n); 652 nlast = n; 653 SBLINKRECORD(sb, m); 654 655 sb->sb_mbtail = nlast; 656 SBLASTMBUFCHK(sb); 657 658 SBLASTRECORDCHK(sb); 659 return (1); 660 } 661 662 /* 663 * Append address and data, and optionally, control (ancillary) data to the 664 * receive queue of a socket. If present, m0 must include a packet header 665 * with total length. Returns 0 if no space in sockbuf or insufficient 666 * mbufs. 667 */ 668 int 669 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, 670 struct mbuf *m0, struct mbuf *control) 671 { 672 int retval; 673 674 SOCKBUF_LOCK(sb); 675 retval = sbappendaddr_locked(sb, asa, m0, control); 676 SOCKBUF_UNLOCK(sb); 677 return (retval); 678 } 679 680 int 681 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0, 682 struct mbuf *control) 683 { 684 struct mbuf *m, *n, *mlast; 685 int space; 686 687 SOCKBUF_LOCK_ASSERT(sb); 688 689 if (control == 0) 690 panic("sbappendcontrol_locked"); 691 space = m_length(control, &n) + m_length(m0, NULL); 692 693 if (space > sbspace(sb)) 694 return (0); 695 n->m_next = m0; /* concatenate data to control */ 696 697 SBLASTRECORDCHK(sb); 698 699 for (m = control; m->m_next; m = m->m_next) 700 sballoc(sb, m); 701 sballoc(sb, m); 702 mlast = m; 703 SBLINKRECORD(sb, control); 704 705 sb->sb_mbtail = mlast; 706 SBLASTMBUFCHK(sb); 707 708 SBLASTRECORDCHK(sb); 709 return (1); 710 } 711 712 int 713 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control) 714 { 715 int retval; 716 717 SOCKBUF_LOCK(sb); 718 retval = sbappendcontrol_locked(sb, m0, control); 719 SOCKBUF_UNLOCK(sb); 720 return (retval); 721 } 722 723 /* 724 * Append the data in mbuf chain (m) into the socket buffer sb following mbuf 725 * (n). If (n) is NULL, the buffer is presumed empty. 726 * 727 * When the data is compressed, mbufs in the chain may be handled in one of 728 * three ways: 729 * 730 * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no 731 * record boundary, and no change in data type). 732 * 733 * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into 734 * an mbuf already in the socket buffer. This can occur if an 735 * appropriate mbuf exists, there is room, and no merging of data types 736 * will occur. 737 * 738 * (3) The mbuf may be appended to the end of the existing mbuf chain. 739 * 740 * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as 741 * end-of-record. 742 */ 743 void 744 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n) 745 { 746 int eor = 0; 747 struct mbuf *o; 748 749 SOCKBUF_LOCK_ASSERT(sb); 750 751 while (m) { 752 eor |= m->m_flags & M_EOR; 753 if (m->m_len == 0 && 754 (eor == 0 || 755 (((o = m->m_next) || (o = n)) && 756 o->m_type == m->m_type))) { 757 if (sb->sb_lastrecord == m) 758 sb->sb_lastrecord = m->m_next; 759 m = m_free(m); 760 continue; 761 } 762 if (n && (n->m_flags & M_EOR) == 0 && 763 M_WRITABLE(n) && 764 ((sb->sb_flags & SB_NOCOALESCE) == 0) && 765 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ 766 m->m_len <= M_TRAILINGSPACE(n) && 767 n->m_type == m->m_type) { 768 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, 769 (unsigned)m->m_len); 770 n->m_len += m->m_len; 771 sb->sb_cc += m->m_len; 772 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA) 773 /* XXX: Probably don't need.*/ 774 sb->sb_ctl += m->m_len; 775 m = m_free(m); 776 continue; 777 } 778 if (n) 779 n->m_next = m; 780 else 781 sb->sb_mb = m; 782 sb->sb_mbtail = m; 783 sballoc(sb, m); 784 n = m; 785 m->m_flags &= ~M_EOR; 786 m = m->m_next; 787 n->m_next = 0; 788 } 789 if (eor) { 790 KASSERT(n != NULL, ("sbcompress: eor && n == NULL")); 791 n->m_flags |= eor; 792 } 793 SBLASTMBUFCHK(sb); 794 } 795 796 /* 797 * Free all mbufs in a sockbuf. Check that all resources are reclaimed. 798 */ 799 static void 800 sbflush_internal(struct sockbuf *sb) 801 { 802 803 while (sb->sb_mbcnt) { 804 /* 805 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty: 806 * we would loop forever. Panic instead. 807 */ 808 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len)) 809 break; 810 sbdrop_internal(sb, (int)sb->sb_cc); 811 } 812 if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt) 813 panic("sbflush_internal: cc %u || mb %p || mbcnt %u", 814 sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt); 815 } 816 817 void 818 sbflush_locked(struct sockbuf *sb) 819 { 820 821 SOCKBUF_LOCK_ASSERT(sb); 822 sbflush_internal(sb); 823 } 824 825 void 826 sbflush(struct sockbuf *sb) 827 { 828 829 SOCKBUF_LOCK(sb); 830 sbflush_locked(sb); 831 SOCKBUF_UNLOCK(sb); 832 } 833 834 /* 835 * Drop data from (the front of) a sockbuf. 836 */ 837 static void 838 sbdrop_internal(struct sockbuf *sb, int len) 839 { 840 struct mbuf *m; 841 struct mbuf *next; 842 843 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 844 while (len > 0) { 845 if (m == 0) { 846 if (next == 0) 847 panic("sbdrop"); 848 m = next; 849 next = m->m_nextpkt; 850 continue; 851 } 852 if (m->m_len > len) { 853 m->m_len -= len; 854 m->m_data += len; 855 sb->sb_cc -= len; 856 if (sb->sb_sndptroff != 0) 857 sb->sb_sndptroff -= len; 858 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA) 859 sb->sb_ctl -= len; 860 break; 861 } 862 len -= m->m_len; 863 sbfree(sb, m); 864 m = m_free(m); 865 } 866 while (m && m->m_len == 0) { 867 sbfree(sb, m); 868 m = m_free(m); 869 } 870 if (m) { 871 sb->sb_mb = m; 872 m->m_nextpkt = next; 873 } else 874 sb->sb_mb = next; 875 /* 876 * First part is an inline SB_EMPTY_FIXUP(). Second part makes sure 877 * sb_lastrecord is up-to-date if we dropped part of the last record. 878 */ 879 m = sb->sb_mb; 880 if (m == NULL) { 881 sb->sb_mbtail = NULL; 882 sb->sb_lastrecord = NULL; 883 } else if (m->m_nextpkt == NULL) { 884 sb->sb_lastrecord = m; 885 } 886 } 887 888 /* 889 * Drop data from (the front of) a sockbuf. 890 */ 891 void 892 sbdrop_locked(struct sockbuf *sb, int len) 893 { 894 895 SOCKBUF_LOCK_ASSERT(sb); 896 897 sbdrop_internal(sb, len); 898 } 899 900 void 901 sbdrop(struct sockbuf *sb, int len) 902 { 903 904 SOCKBUF_LOCK(sb); 905 sbdrop_locked(sb, len); 906 SOCKBUF_UNLOCK(sb); 907 } 908 909 /* 910 * Maintain a pointer and offset pair into the socket buffer mbuf chain to 911 * avoid traversal of the entire socket buffer for larger offsets. 912 */ 913 struct mbuf * 914 sbsndptr(struct sockbuf *sb, u_int off, u_int len, u_int *moff) 915 { 916 struct mbuf *m, *ret; 917 918 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__)); 919 KASSERT(off + len <= sb->sb_cc, ("%s: beyond sb", __func__)); 920 KASSERT(sb->sb_sndptroff <= sb->sb_cc, ("%s: sndptroff broken", __func__)); 921 922 /* 923 * Is off below stored offset? Happens on retransmits. 924 * Just return, we can't help here. 925 */ 926 if (sb->sb_sndptroff > off) { 927 *moff = off; 928 return (sb->sb_mb); 929 } 930 931 /* Return closest mbuf in chain for current offset. */ 932 *moff = off - sb->sb_sndptroff; 933 m = ret = sb->sb_sndptr ? sb->sb_sndptr : sb->sb_mb; 934 935 /* Advance by len to be as close as possible for the next transmit. */ 936 for (off = off - sb->sb_sndptroff + len - 1; 937 off > 0 && off >= m->m_len; 938 m = m->m_next) { 939 sb->sb_sndptroff += m->m_len; 940 off -= m->m_len; 941 } 942 sb->sb_sndptr = m; 943 944 return (ret); 945 } 946 947 /* 948 * Drop a record off the front of a sockbuf and move the next record to the 949 * front. 950 */ 951 void 952 sbdroprecord_locked(struct sockbuf *sb) 953 { 954 struct mbuf *m; 955 956 SOCKBUF_LOCK_ASSERT(sb); 957 958 m = sb->sb_mb; 959 if (m) { 960 sb->sb_mb = m->m_nextpkt; 961 do { 962 sbfree(sb, m); 963 m = m_free(m); 964 } while (m); 965 } 966 SB_EMPTY_FIXUP(sb); 967 } 968 969 /* 970 * Drop a record off the front of a sockbuf and move the next record to the 971 * front. 972 */ 973 void 974 sbdroprecord(struct sockbuf *sb) 975 { 976 977 SOCKBUF_LOCK(sb); 978 sbdroprecord_locked(sb); 979 SOCKBUF_UNLOCK(sb); 980 } 981 982 /* 983 * Create a "control" mbuf containing the specified data with the specified 984 * type for presentation on a socket buffer. 985 */ 986 struct mbuf * 987 sbcreatecontrol(caddr_t p, int size, int type, int level) 988 { 989 struct cmsghdr *cp; 990 struct mbuf *m; 991 992 if (CMSG_SPACE((u_int)size) > MCLBYTES) 993 return ((struct mbuf *) NULL); 994 if (CMSG_SPACE((u_int)size) > MLEN) 995 m = m_getcl(M_DONTWAIT, MT_CONTROL, 0); 996 else 997 m = m_get(M_DONTWAIT, MT_CONTROL); 998 if (m == NULL) 999 return ((struct mbuf *) NULL); 1000 cp = mtod(m, struct cmsghdr *); 1001 m->m_len = 0; 1002 KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m), 1003 ("sbcreatecontrol: short mbuf")); 1004 if (p != NULL) 1005 (void)memcpy(CMSG_DATA(cp), p, size); 1006 m->m_len = CMSG_SPACE(size); 1007 cp->cmsg_len = CMSG_LEN(size); 1008 cp->cmsg_level = level; 1009 cp->cmsg_type = type; 1010 return (m); 1011 } 1012 1013 /* 1014 * This does the same for socket buffers that sotoxsocket does for sockets: 1015 * generate an user-format data structure describing the socket buffer. Note 1016 * that the xsockbuf structure, since it is always embedded in a socket, does 1017 * not include a self pointer nor a length. We make this entry point public 1018 * in case some other mechanism needs it. 1019 */ 1020 void 1021 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb) 1022 { 1023 1024 xsb->sb_cc = sb->sb_cc; 1025 xsb->sb_hiwat = sb->sb_hiwat; 1026 xsb->sb_mbcnt = sb->sb_mbcnt; 1027 xsb->sb_mbmax = sb->sb_mbmax; 1028 xsb->sb_lowat = sb->sb_lowat; 1029 xsb->sb_flags = sb->sb_flags; 1030 xsb->sb_timeo = sb->sb_timeo; 1031 } 1032 1033 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */ 1034 static int dummy; 1035 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, ""); 1036 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_ULONG|CTLFLAG_RW, 1037 &sb_max, 0, sysctl_handle_sb_max, "LU", "Maximum socket buffer size"); 1038 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW, 1039 &sb_efficiency, 0, ""); 1040