xref: /freebsd/sys/kern/uipc_sockbuf.c (revision 17ee9d00bc1ae1e598c38f25826f861e4bc6c3ce)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
34  * $Id: uipc_socket2.c,v 1.3 1994/08/02 07:43:08 davidg Exp $
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/proc.h>
40 #include <sys/file.h>
41 #include <sys/buf.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/protosw.h>
45 #include <sys/stat.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 #include <sys/signalvar.h>
49 
50 /*
51  * Primitive routines for operating on sockets and socket buffers
52  */
53 
54 /* strings for sleep message: */
55 char	netio[] = "netio";
56 char	netcon[] = "netcon";
57 char	netcls[] = "netcls";
58 
59 u_long	sb_max = SB_MAX;		/* patchable */
60 
61 /*
62  * Procedures to manipulate state flags of socket
63  * and do appropriate wakeups.  Normal sequence from the
64  * active (originating) side is that soisconnecting() is
65  * called during processing of connect() call,
66  * resulting in an eventual call to soisconnected() if/when the
67  * connection is established.  When the connection is torn down
68  * soisdisconnecting() is called during processing of disconnect() call,
69  * and soisdisconnected() is called when the connection to the peer
70  * is totally severed.  The semantics of these routines are such that
71  * connectionless protocols can call soisconnected() and soisdisconnected()
72  * only, bypassing the in-progress calls when setting up a ``connection''
73  * takes no time.
74  *
75  * From the passive side, a socket is created with
76  * two queues of sockets: so_q0 for connections in progress
77  * and so_q for connections already made and awaiting user acceptance.
78  * As a protocol is preparing incoming connections, it creates a socket
79  * structure queued on so_q0 by calling sonewconn().  When the connection
80  * is established, soisconnected() is called, and transfers the
81  * socket structure to so_q, making it available to accept().
82  *
83  * If a socket is closed with sockets on either
84  * so_q0 or so_q, these sockets are dropped.
85  *
86  * If higher level protocols are implemented in
87  * the kernel, the wakeups done here will sometimes
88  * cause software-interrupt process scheduling.
89  */
90 
91 void
92 soisconnecting(so)
93 	register struct socket *so;
94 {
95 
96 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
97 	so->so_state |= SS_ISCONNECTING;
98 }
99 
100 void
101 soisconnected(so)
102 	register struct socket *so;
103 {
104 	register struct socket *head = so->so_head;
105 
106 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
107 	so->so_state |= SS_ISCONNECTED;
108 	if (head && soqremque(so, 0)) {
109 		soqinsque(head, so, 1);
110 		sorwakeup(head);
111 		wakeup((caddr_t)&head->so_timeo);
112 	} else {
113 		wakeup((caddr_t)&so->so_timeo);
114 		sorwakeup(so);
115 		sowwakeup(so);
116 	}
117 }
118 
119 void
120 soisdisconnecting(so)
121 	register struct socket *so;
122 {
123 
124 	so->so_state &= ~SS_ISCONNECTING;
125 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
126 	wakeup((caddr_t)&so->so_timeo);
127 	sowwakeup(so);
128 	sorwakeup(so);
129 }
130 
131 void
132 soisdisconnected(so)
133 	register struct socket *so;
134 {
135 
136 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
137 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
138 	wakeup((caddr_t)&so->so_timeo);
139 	sowwakeup(so);
140 	sorwakeup(so);
141 }
142 
143 /*
144  * When an attempt at a new connection is noted on a socket
145  * which accepts connections, sonewconn is called.  If the
146  * connection is possible (subject to space constraints, etc.)
147  * then we allocate a new structure, propoerly linked into the
148  * data structure of the original socket, and return this.
149  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
150  *
151  * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
152  * to catch calls that are missing the (new) second parameter.
153  */
154 struct socket *
155 sonewconn1(head, connstatus)
156 	register struct socket *head;
157 	int connstatus;
158 {
159 	register struct socket *so;
160 	int soqueue = connstatus ? 1 : 0;
161 
162 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
163 		return ((struct socket *)0);
164 	MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
165 	if (so == NULL)
166 		return ((struct socket *)0);
167 	bzero((caddr_t)so, sizeof(*so));
168 	so->so_type = head->so_type;
169 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
170 	so->so_linger = head->so_linger;
171 	so->so_state = head->so_state | SS_NOFDREF;
172 	so->so_proto = head->so_proto;
173 	so->so_timeo = head->so_timeo;
174 	so->so_pgid = head->so_pgid;
175 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
176 	soqinsque(head, so, soqueue);
177 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
178 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
179 		(void) soqremque(so, soqueue);
180 		(void) free((caddr_t)so, M_SOCKET);
181 		return ((struct socket *)0);
182 	}
183 	if (connstatus) {
184 		sorwakeup(head);
185 		wakeup((caddr_t)&head->so_timeo);
186 		so->so_state |= connstatus;
187 	}
188 	return (so);
189 }
190 
191 void
192 soqinsque(head, so, q)
193 	register struct socket *head, *so;
194 	int q;
195 {
196 
197 	register struct socket **prev;
198 	so->so_head = head;
199 	if (q == 0) {
200 		head->so_q0len++;
201 		so->so_q0 = 0;
202 		for (prev = &(head->so_q0); *prev; )
203 			prev = &((*prev)->so_q0);
204 	} else {
205 		head->so_qlen++;
206 		so->so_q = 0;
207 		for (prev = &(head->so_q); *prev; )
208 			prev = &((*prev)->so_q);
209 	}
210 	*prev = so;
211 }
212 
213 int
214 soqremque(so, q)
215 	register struct socket *so;
216 	int q;
217 {
218 	register struct socket *head, *prev, *next;
219 
220 	head = so->so_head;
221 	prev = head;
222 	for (;;) {
223 		next = q ? prev->so_q : prev->so_q0;
224 		if (next == so)
225 			break;
226 		if (next == 0)
227 			return (0);
228 		prev = next;
229 	}
230 	if (q == 0) {
231 		prev->so_q0 = next->so_q0;
232 		head->so_q0len--;
233 	} else {
234 		prev->so_q = next->so_q;
235 		head->so_qlen--;
236 	}
237 	next->so_q0 = next->so_q = 0;
238 	next->so_head = 0;
239 	return (1);
240 }
241 
242 /*
243  * Socantsendmore indicates that no more data will be sent on the
244  * socket; it would normally be applied to a socket when the user
245  * informs the system that no more data is to be sent, by the protocol
246  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
247  * will be received, and will normally be applied to the socket by a
248  * protocol when it detects that the peer will send no more data.
249  * Data queued for reading in the socket may yet be read.
250  */
251 
252 void
253 socantsendmore(so)
254 	struct socket *so;
255 {
256 
257 	so->so_state |= SS_CANTSENDMORE;
258 	sowwakeup(so);
259 }
260 
261 void
262 socantrcvmore(so)
263 	struct socket *so;
264 {
265 
266 	so->so_state |= SS_CANTRCVMORE;
267 	sorwakeup(so);
268 }
269 
270 /*
271  * Wait for data to arrive at/drain from a socket buffer.
272  */
273 int
274 sbwait(sb)
275 	struct sockbuf *sb;
276 {
277 
278 	sb->sb_flags |= SB_WAIT;
279 	return (tsleep((caddr_t)&sb->sb_cc,
280 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
281 	    sb->sb_timeo));
282 }
283 
284 /*
285  * Lock a sockbuf already known to be locked;
286  * return any error returned from sleep (EINTR).
287  */
288 int
289 sb_lock(sb)
290 	register struct sockbuf *sb;
291 {
292 	int error;
293 
294 	while (sb->sb_flags & SB_LOCK) {
295 		sb->sb_flags |= SB_WANT;
296 		error = tsleep((caddr_t)&sb->sb_flags,
297 		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
298 		    netio, 0);
299 		if (error)
300 			return (error);
301 	}
302 	sb->sb_flags |= SB_LOCK;
303 	return (0);
304 }
305 
306 /*
307  * Wakeup processes waiting on a socket buffer.
308  * Do asynchronous notification via SIGIO
309  * if the socket has the SS_ASYNC flag set.
310  */
311 void
312 sowakeup(so, sb)
313 	register struct socket *so;
314 	register struct sockbuf *sb;
315 {
316 	struct proc *p;
317 
318 	selwakeup(&sb->sb_sel);
319 	sb->sb_flags &= ~SB_SEL;
320 	if (sb->sb_flags & SB_WAIT) {
321 		sb->sb_flags &= ~SB_WAIT;
322 		wakeup((caddr_t)&sb->sb_cc);
323 	}
324 	if (so->so_state & SS_ASYNC) {
325 		if (so->so_pgid < 0)
326 			gsignal(-so->so_pgid, SIGIO);
327 		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
328 			psignal(p, SIGIO);
329 	}
330 }
331 
332 /*
333  * Socket buffer (struct sockbuf) utility routines.
334  *
335  * Each socket contains two socket buffers: one for sending data and
336  * one for receiving data.  Each buffer contains a queue of mbufs,
337  * information about the number of mbufs and amount of data in the
338  * queue, and other fields allowing select() statements and notification
339  * on data availability to be implemented.
340  *
341  * Data stored in a socket buffer is maintained as a list of records.
342  * Each record is a list of mbufs chained together with the m_next
343  * field.  Records are chained together with the m_nextpkt field. The upper
344  * level routine soreceive() expects the following conventions to be
345  * observed when placing information in the receive buffer:
346  *
347  * 1. If the protocol requires each message be preceded by the sender's
348  *    name, then a record containing that name must be present before
349  *    any associated data (mbuf's must be of type MT_SONAME).
350  * 2. If the protocol supports the exchange of ``access rights'' (really
351  *    just additional data associated with the message), and there are
352  *    ``rights'' to be received, then a record containing this data
353  *    should be present (mbuf's must be of type MT_RIGHTS).
354  * 3. If a name or rights record exists, then it must be followed by
355  *    a data record, perhaps of zero length.
356  *
357  * Before using a new socket structure it is first necessary to reserve
358  * buffer space to the socket, by calling sbreserve().  This should commit
359  * some of the available buffer space in the system buffer pool for the
360  * socket (currently, it does nothing but enforce limits).  The space
361  * should be released by calling sbrelease() when the socket is destroyed.
362  */
363 
364 int
365 soreserve(so, sndcc, rcvcc)
366 	register struct socket *so;
367 	u_long sndcc, rcvcc;
368 {
369 
370 	if (sbreserve(&so->so_snd, sndcc) == 0)
371 		goto bad;
372 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
373 		goto bad2;
374 	if (so->so_rcv.sb_lowat == 0)
375 		so->so_rcv.sb_lowat = 1;
376 	if (so->so_snd.sb_lowat == 0)
377 		so->so_snd.sb_lowat = MCLBYTES;
378 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
379 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
380 	return (0);
381 bad2:
382 	sbrelease(&so->so_snd);
383 bad:
384 	return (ENOBUFS);
385 }
386 
387 /*
388  * Allot mbufs to a sockbuf.
389  * Attempt to scale mbmax so that mbcnt doesn't become limiting
390  * if buffering efficiency is near the normal case.
391  */
392 int
393 sbreserve(sb, cc)
394 	struct sockbuf *sb;
395 	u_long cc;
396 {
397 
398 	if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
399 		return (0);
400 	sb->sb_hiwat = cc;
401 	sb->sb_mbmax = min(cc * 2, sb_max);
402 	if (sb->sb_lowat > sb->sb_hiwat)
403 		sb->sb_lowat = sb->sb_hiwat;
404 	return (1);
405 }
406 
407 /*
408  * Free mbufs held by a socket, and reserved mbuf space.
409  */
410 void
411 sbrelease(sb)
412 	struct sockbuf *sb;
413 {
414 
415 	sbflush(sb);
416 	sb->sb_hiwat = sb->sb_mbmax = 0;
417 }
418 
419 /*
420  * Routines to add and remove
421  * data from an mbuf queue.
422  *
423  * The routines sbappend() or sbappendrecord() are normally called to
424  * append new mbufs to a socket buffer, after checking that adequate
425  * space is available, comparing the function sbspace() with the amount
426  * of data to be added.  sbappendrecord() differs from sbappend() in
427  * that data supplied is treated as the beginning of a new record.
428  * To place a sender's address, optional access rights, and data in a
429  * socket receive buffer, sbappendaddr() should be used.  To place
430  * access rights and data in a socket receive buffer, sbappendrights()
431  * should be used.  In either case, the new data begins a new record.
432  * Note that unlike sbappend() and sbappendrecord(), these routines check
433  * for the caller that there will be enough space to store the data.
434  * Each fails if there is not enough space, or if it cannot find mbufs
435  * to store additional information in.
436  *
437  * Reliable protocols may use the socket send buffer to hold data
438  * awaiting acknowledgement.  Data is normally copied from a socket
439  * send buffer in a protocol with m_copy for output to a peer,
440  * and then removing the data from the socket buffer with sbdrop()
441  * or sbdroprecord() when the data is acknowledged by the peer.
442  */
443 
444 /*
445  * Append mbuf chain m to the last record in the
446  * socket buffer sb.  The additional space associated
447  * the mbuf chain is recorded in sb.  Empty mbufs are
448  * discarded and mbufs are compacted where possible.
449  */
450 void
451 sbappend(sb, m)
452 	struct sockbuf *sb;
453 	struct mbuf *m;
454 {
455 	register struct mbuf *n;
456 
457 	if (m == 0)
458 		return;
459 	n = sb->sb_mb;
460 	if (n) {
461 		while (n->m_nextpkt)
462 			n = n->m_nextpkt;
463 		do {
464 			if (n->m_flags & M_EOR) {
465 				sbappendrecord(sb, m); /* XXXXXX!!!! */
466 				return;
467 			}
468 		} while (n->m_next && (n = n->m_next));
469 	}
470 	sbcompress(sb, m, n);
471 }
472 
473 #ifdef SOCKBUF_DEBUG
474 void
475 sbcheck(sb)
476 	register struct sockbuf *sb;
477 {
478 	register struct mbuf *m;
479 	register int len = 0, mbcnt = 0;
480 
481 	for (m = sb->sb_mb; m; m = m->m_next) {
482 		len += m->m_len;
483 		mbcnt += MSIZE;
484 		if (m->m_flags & M_EXT)
485 			mbcnt += m->m_ext.ext_size;
486 		if (m->m_nextpkt)
487 			panic("sbcheck nextpkt");
488 	}
489 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
490 		printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
491 		    mbcnt, sb->sb_mbcnt);
492 		panic("sbcheck");
493 	}
494 }
495 #endif
496 
497 /*
498  * As above, except the mbuf chain
499  * begins a new record.
500  */
501 void
502 sbappendrecord(sb, m0)
503 	register struct sockbuf *sb;
504 	register struct mbuf *m0;
505 {
506 	register struct mbuf *m;
507 
508 	if (m0 == 0)
509 		return;
510 	m = sb->sb_mb;
511 	if (m)
512 		while (m->m_nextpkt)
513 			m = m->m_nextpkt;
514 	/*
515 	 * Put the first mbuf on the queue.
516 	 * Note this permits zero length records.
517 	 */
518 	sballoc(sb, m0);
519 	if (m)
520 		m->m_nextpkt = m0;
521 	else
522 		sb->sb_mb = m0;
523 	m = m0->m_next;
524 	m0->m_next = 0;
525 	if (m && (m0->m_flags & M_EOR)) {
526 		m0->m_flags &= ~M_EOR;
527 		m->m_flags |= M_EOR;
528 	}
529 	sbcompress(sb, m, m0);
530 }
531 
532 /*
533  * As above except that OOB data
534  * is inserted at the beginning of the sockbuf,
535  * but after any other OOB data.
536  */
537 void
538 sbinsertoob(sb, m0)
539 	register struct sockbuf *sb;
540 	register struct mbuf *m0;
541 {
542 	register struct mbuf *m;
543 	register struct mbuf **mp;
544 
545 	if (m0 == 0)
546 		return;
547 	for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
548 	    m = *mp;
549 	    again:
550 		switch (m->m_type) {
551 
552 		case MT_OOBDATA:
553 			continue;		/* WANT next train */
554 
555 		case MT_CONTROL:
556 			m = m->m_next;
557 			if (m)
558 				goto again;	/* inspect THIS train further */
559 		}
560 		break;
561 	}
562 	/*
563 	 * Put the first mbuf on the queue.
564 	 * Note this permits zero length records.
565 	 */
566 	sballoc(sb, m0);
567 	m0->m_nextpkt = *mp;
568 	*mp = m0;
569 	m = m0->m_next;
570 	m0->m_next = 0;
571 	if (m && (m0->m_flags & M_EOR)) {
572 		m0->m_flags &= ~M_EOR;
573 		m->m_flags |= M_EOR;
574 	}
575 	sbcompress(sb, m, m0);
576 }
577 
578 /*
579  * Append address and data, and optionally, control (ancillary) data
580  * to the receive queue of a socket.  If present,
581  * m0 must include a packet header with total length.
582  * Returns 0 if no space in sockbuf or insufficient mbufs.
583  */
584 int
585 sbappendaddr(sb, asa, m0, control)
586 	register struct sockbuf *sb;
587 	struct sockaddr *asa;
588 	struct mbuf *m0, *control;
589 {
590 	register struct mbuf *m, *n;
591 	int space = asa->sa_len;
592 
593 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
594 panic("sbappendaddr");
595 	if (m0)
596 		space += m0->m_pkthdr.len;
597 	for (n = control; n; n = n->m_next) {
598 		space += n->m_len;
599 		if (n->m_next == 0)	/* keep pointer to last control buf */
600 			break;
601 	}
602 	if (space > sbspace(sb))
603 		return (0);
604 	if (asa->sa_len > MLEN)
605 		return (0);
606 	MGET(m, M_DONTWAIT, MT_SONAME);
607 	if (m == 0)
608 		return (0);
609 	m->m_len = asa->sa_len;
610 	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
611 	if (n)
612 		n->m_next = m0;		/* concatenate data to control */
613 	else
614 		control = m0;
615 	m->m_next = control;
616 	for (n = m; n; n = n->m_next)
617 		sballoc(sb, n);
618 	n = sb->sb_mb;
619 	if (n) {
620 		while (n->m_nextpkt)
621 			n = n->m_nextpkt;
622 		n->m_nextpkt = m;
623 	} else
624 		sb->sb_mb = m;
625 	return (1);
626 }
627 
628 int
629 sbappendcontrol(sb, m0, control)
630 	struct sockbuf *sb;
631 	struct mbuf *control, *m0;
632 {
633 	register struct mbuf *m, *n;
634 	int space = 0;
635 
636 	if (control == 0)
637 		panic("sbappendcontrol");
638 	for (m = control; ; m = m->m_next) {
639 		space += m->m_len;
640 		if (m->m_next == 0)
641 			break;
642 	}
643 	n = m;			/* save pointer to last control buffer */
644 	for (m = m0; m; m = m->m_next)
645 		space += m->m_len;
646 	if (space > sbspace(sb))
647 		return (0);
648 	n->m_next = m0;			/* concatenate data to control */
649 	for (m = control; m; m = m->m_next)
650 		sballoc(sb, m);
651 	n = sb->sb_mb;
652 	if (n) {
653 		while (n->m_nextpkt)
654 			n = n->m_nextpkt;
655 		n->m_nextpkt = control;
656 	} else
657 		sb->sb_mb = control;
658 	return (1);
659 }
660 
661 /*
662  * Compress mbuf chain m into the socket
663  * buffer sb following mbuf n.  If n
664  * is null, the buffer is presumed empty.
665  */
666 void
667 sbcompress(sb, m, n)
668 	register struct sockbuf *sb;
669 	register struct mbuf *m, *n;
670 {
671 	register int eor = 0;
672 	register struct mbuf *o;
673 
674 	while (m) {
675 		eor |= m->m_flags & M_EOR;
676 		if (m->m_len == 0 &&
677 		    (eor == 0 ||
678 		     (((o = m->m_next) || (o = n)) &&
679 		      o->m_type == m->m_type))) {
680 			m = m_free(m);
681 			continue;
682 		}
683 		if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
684 		    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
685 		    n->m_type == m->m_type) {
686 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
687 			    (unsigned)m->m_len);
688 			n->m_len += m->m_len;
689 			sb->sb_cc += m->m_len;
690 			m = m_free(m);
691 			continue;
692 		}
693 		if (n)
694 			n->m_next = m;
695 		else
696 			sb->sb_mb = m;
697 		sballoc(sb, m);
698 		n = m;
699 		m->m_flags &= ~M_EOR;
700 		m = m->m_next;
701 		n->m_next = 0;
702 	}
703 	if (eor) {
704 		if (n)
705 			n->m_flags |= eor;
706 		else
707 			printf("semi-panic: sbcompress\n");
708 	}
709 }
710 
711 /*
712  * Free all mbufs in a sockbuf.
713  * Check that all resources are reclaimed.
714  */
715 void
716 sbflush(sb)
717 	register struct sockbuf *sb;
718 {
719 
720 	if (sb->sb_flags & SB_LOCK)
721 		panic("sbflush");
722 	while (sb->sb_mbcnt)
723 		sbdrop(sb, (int)sb->sb_cc);
724 	if (sb->sb_cc || sb->sb_mb)
725 		panic("sbflush 2");
726 }
727 
728 /*
729  * Drop data from (the front of) a sockbuf.
730  */
731 void
732 sbdrop(sb, len)
733 	register struct sockbuf *sb;
734 	register int len;
735 {
736 	register struct mbuf *m, *mn;
737 	struct mbuf *next;
738 
739 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
740 	while (len > 0) {
741 		if (m == 0) {
742 			if (next == 0)
743 				panic("sbdrop");
744 			m = next;
745 			next = m->m_nextpkt;
746 			continue;
747 		}
748 		if (m->m_len > len) {
749 			m->m_len -= len;
750 			m->m_data += len;
751 			sb->sb_cc -= len;
752 			break;
753 		}
754 		len -= m->m_len;
755 		sbfree(sb, m);
756 		MFREE(m, mn);
757 		m = mn;
758 	}
759 	while (m && m->m_len == 0) {
760 		sbfree(sb, m);
761 		MFREE(m, mn);
762 		m = mn;
763 	}
764 	if (m) {
765 		sb->sb_mb = m;
766 		m->m_nextpkt = next;
767 	} else
768 		sb->sb_mb = next;
769 }
770 
771 /*
772  * Drop a record off the front of a sockbuf
773  * and move the next record to the front.
774  */
775 void
776 sbdroprecord(sb)
777 	register struct sockbuf *sb;
778 {
779 	register struct mbuf *m, *mn;
780 
781 	m = sb->sb_mb;
782 	if (m) {
783 		sb->sb_mb = m->m_nextpkt;
784 		do {
785 			sbfree(sb, m);
786 			MFREE(m, mn);
787 			m = mn;
788 		} while (m);
789 	}
790 }
791