xref: /freebsd/sys/kern/uipc_sockbuf.c (revision 1165fc9a526630487a1feb63daef65c5aee1a583)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_kern_tls.h"
38 #include "opt_param.h"
39 
40 #include <sys/param.h>
41 #include <sys/aio.h> /* for aio_swake proto */
42 #include <sys/kernel.h>
43 #include <sys/ktls.h>
44 #include <sys/lock.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/mutex.h>
48 #include <sys/proc.h>
49 #include <sys/protosw.h>
50 #include <sys/resourcevar.h>
51 #include <sys/signalvar.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sx.h>
55 #include <sys/sysctl.h>
56 
57 #include <netinet/in.h>
58 
59 /*
60  * Function pointer set by the AIO routines so that the socket buffer code
61  * can call back into the AIO module if it is loaded.
62  */
63 void	(*aio_swake)(struct socket *, struct sockbuf *);
64 
65 /*
66  * Primitive routines for operating on socket buffers
67  */
68 
69 u_long	sb_max = SB_MAX;
70 u_long sb_max_adj =
71        (quad_t)SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
72 
73 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
74 
75 #ifdef KERN_TLS
76 static void	sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m,
77     struct mbuf *n);
78 #endif
79 static struct mbuf	*sbcut_internal(struct sockbuf *sb, int len);
80 static void	sbflush_internal(struct sockbuf *sb);
81 
82 /*
83  * Our own version of m_clrprotoflags(), that can preserve M_NOTREADY.
84  */
85 static void
86 sbm_clrprotoflags(struct mbuf *m, int flags)
87 {
88 	int mask;
89 
90 	mask = ~M_PROTOFLAGS;
91 	if (flags & PRUS_NOTREADY)
92 		mask |= M_NOTREADY;
93 	while (m) {
94 		m->m_flags &= mask;
95 		m = m->m_next;
96 	}
97 }
98 
99 /*
100  * Compress M_NOTREADY mbufs after they have been readied by sbready().
101  *
102  * sbcompress() skips M_NOTREADY mbufs since the data is not available to
103  * be copied at the time of sbcompress().  This function combines small
104  * mbufs similar to sbcompress() once mbufs are ready.  'm0' is the first
105  * mbuf sbready() marked ready, and 'end' is the first mbuf still not
106  * ready.
107  */
108 static void
109 sbready_compress(struct sockbuf *sb, struct mbuf *m0, struct mbuf *end)
110 {
111 	struct mbuf *m, *n;
112 	int ext_size;
113 
114 	SOCKBUF_LOCK_ASSERT(sb);
115 
116 	if ((sb->sb_flags & SB_NOCOALESCE) != 0)
117 		return;
118 
119 	for (m = m0; m != end; m = m->m_next) {
120 		MPASS((m->m_flags & M_NOTREADY) == 0);
121 		/*
122 		 * NB: In sbcompress(), 'n' is the last mbuf in the
123 		 * socket buffer and 'm' is the new mbuf being copied
124 		 * into the trailing space of 'n'.  Here, the roles
125 		 * are reversed and 'n' is the next mbuf after 'm'
126 		 * that is being copied into the trailing space of
127 		 * 'm'.
128 		 */
129 		n = m->m_next;
130 #ifdef KERN_TLS
131 		/* Try to coalesce adjacent ktls mbuf hdr/trailers. */
132 		if ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
133 		    (m->m_flags & M_EXTPG) &&
134 		    (n->m_flags & M_EXTPG) &&
135 		    !mbuf_has_tls_session(m) &&
136 		    !mbuf_has_tls_session(n)) {
137 			int hdr_len, trail_len;
138 
139 			hdr_len = n->m_epg_hdrlen;
140 			trail_len = m->m_epg_trllen;
141 			if (trail_len != 0 && hdr_len != 0 &&
142 			    trail_len + hdr_len <= MBUF_PEXT_TRAIL_LEN) {
143 				/* copy n's header to m's trailer */
144 				memcpy(&m->m_epg_trail[trail_len],
145 				    n->m_epg_hdr, hdr_len);
146 				m->m_epg_trllen += hdr_len;
147 				m->m_len += hdr_len;
148 				n->m_epg_hdrlen = 0;
149 				n->m_len -= hdr_len;
150 			}
151 		}
152 #endif
153 
154 		/* Compress small unmapped mbufs into plain mbufs. */
155 		if ((m->m_flags & M_EXTPG) && m->m_len <= MLEN &&
156 		    !mbuf_has_tls_session(m)) {
157 			ext_size = m->m_ext.ext_size;
158 			if (mb_unmapped_compress(m) == 0)
159 				sb->sb_mbcnt -= ext_size;
160 		}
161 
162 		while ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
163 		    M_WRITABLE(m) &&
164 		    (m->m_flags & M_EXTPG) == 0 &&
165 		    !mbuf_has_tls_session(n) &&
166 		    !mbuf_has_tls_session(m) &&
167 		    n->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
168 		    n->m_len <= M_TRAILINGSPACE(m) &&
169 		    m->m_type == n->m_type) {
170 			KASSERT(sb->sb_lastrecord != n,
171 		    ("%s: merging start of record (%p) into previous mbuf (%p)",
172 			    __func__, n, m));
173 			m_copydata(n, 0, n->m_len, mtodo(m, m->m_len));
174 			m->m_len += n->m_len;
175 			m->m_next = n->m_next;
176 			m->m_flags |= n->m_flags & M_EOR;
177 			if (sb->sb_mbtail == n)
178 				sb->sb_mbtail = m;
179 
180 			sb->sb_mbcnt -= MSIZE;
181 			if (n->m_flags & M_EXT)
182 				sb->sb_mbcnt -= n->m_ext.ext_size;
183 			m_free(n);
184 			n = m->m_next;
185 		}
186 	}
187 	SBLASTRECORDCHK(sb);
188 	SBLASTMBUFCHK(sb);
189 }
190 
191 /*
192  * Mark ready "count" units of I/O starting with "m".  Most mbufs
193  * count as a single unit of I/O except for M_EXTPG mbufs which
194  * are backed by multiple pages.
195  */
196 int
197 sbready(struct sockbuf *sb, struct mbuf *m0, int count)
198 {
199 	struct mbuf *m;
200 	u_int blocker;
201 
202 	SOCKBUF_LOCK_ASSERT(sb);
203 	KASSERT(sb->sb_fnrdy != NULL, ("%s: sb %p NULL fnrdy", __func__, sb));
204 	KASSERT(count > 0, ("%s: invalid count %d", __func__, count));
205 
206 	m = m0;
207 	blocker = (sb->sb_fnrdy == m) ? M_BLOCKED : 0;
208 
209 	while (count > 0) {
210 		KASSERT(m->m_flags & M_NOTREADY,
211 		    ("%s: m %p !M_NOTREADY", __func__, m));
212 		if ((m->m_flags & M_EXTPG) != 0 && m->m_epg_npgs != 0) {
213 			if (count < m->m_epg_nrdy) {
214 				m->m_epg_nrdy -= count;
215 				count = 0;
216 				break;
217 			}
218 			count -= m->m_epg_nrdy;
219 			m->m_epg_nrdy = 0;
220 		} else
221 			count--;
222 
223 		m->m_flags &= ~(M_NOTREADY | blocker);
224 		if (blocker)
225 			sb->sb_acc += m->m_len;
226 		m = m->m_next;
227 	}
228 
229 	/*
230 	 * If the first mbuf is still not fully ready because only
231 	 * some of its backing pages were readied, no further progress
232 	 * can be made.
233 	 */
234 	if (m0 == m) {
235 		MPASS(m->m_flags & M_NOTREADY);
236 		return (EINPROGRESS);
237 	}
238 
239 	if (!blocker) {
240 		sbready_compress(sb, m0, m);
241 		return (EINPROGRESS);
242 	}
243 
244 	/* This one was blocking all the queue. */
245 	for (; m && (m->m_flags & M_NOTREADY) == 0; m = m->m_next) {
246 		KASSERT(m->m_flags & M_BLOCKED,
247 		    ("%s: m %p !M_BLOCKED", __func__, m));
248 		m->m_flags &= ~M_BLOCKED;
249 		sb->sb_acc += m->m_len;
250 	}
251 
252 	sb->sb_fnrdy = m;
253 	sbready_compress(sb, m0, m);
254 
255 	return (0);
256 }
257 
258 /*
259  * Adjust sockbuf state reflecting allocation of m.
260  */
261 void
262 sballoc(struct sockbuf *sb, struct mbuf *m)
263 {
264 
265 	SOCKBUF_LOCK_ASSERT(sb);
266 
267 	sb->sb_ccc += m->m_len;
268 
269 	if (sb->sb_fnrdy == NULL) {
270 		if (m->m_flags & M_NOTREADY)
271 			sb->sb_fnrdy = m;
272 		else
273 			sb->sb_acc += m->m_len;
274 	} else
275 		m->m_flags |= M_BLOCKED;
276 
277 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
278 		sb->sb_ctl += m->m_len;
279 
280 	sb->sb_mbcnt += MSIZE;
281 
282 	if (m->m_flags & M_EXT)
283 		sb->sb_mbcnt += m->m_ext.ext_size;
284 }
285 
286 /*
287  * Adjust sockbuf state reflecting freeing of m.
288  */
289 void
290 sbfree(struct sockbuf *sb, struct mbuf *m)
291 {
292 
293 #if 0	/* XXX: not yet: soclose() call path comes here w/o lock. */
294 	SOCKBUF_LOCK_ASSERT(sb);
295 #endif
296 
297 	sb->sb_ccc -= m->m_len;
298 
299 	if (!(m->m_flags & M_NOTAVAIL))
300 		sb->sb_acc -= m->m_len;
301 
302 	if (m == sb->sb_fnrdy) {
303 		struct mbuf *n;
304 
305 		KASSERT(m->m_flags & M_NOTREADY,
306 		    ("%s: m %p !M_NOTREADY", __func__, m));
307 
308 		n = m->m_next;
309 		while (n != NULL && !(n->m_flags & M_NOTREADY)) {
310 			n->m_flags &= ~M_BLOCKED;
311 			sb->sb_acc += n->m_len;
312 			n = n->m_next;
313 		}
314 		sb->sb_fnrdy = n;
315 	}
316 
317 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
318 		sb->sb_ctl -= m->m_len;
319 
320 	sb->sb_mbcnt -= MSIZE;
321 	if (m->m_flags & M_EXT)
322 		sb->sb_mbcnt -= m->m_ext.ext_size;
323 
324 	if (sb->sb_sndptr == m) {
325 		sb->sb_sndptr = NULL;
326 		sb->sb_sndptroff = 0;
327 	}
328 	if (sb->sb_sndptroff != 0)
329 		sb->sb_sndptroff -= m->m_len;
330 }
331 
332 #ifdef KERN_TLS
333 /*
334  * Similar to sballoc/sbfree but does not adjust state associated with
335  * the sb_mb chain such as sb_fnrdy or sb_sndptr*.  Also assumes mbufs
336  * are not ready.
337  */
338 void
339 sballoc_ktls_rx(struct sockbuf *sb, struct mbuf *m)
340 {
341 
342 	SOCKBUF_LOCK_ASSERT(sb);
343 
344 	sb->sb_ccc += m->m_len;
345 	sb->sb_tlscc += m->m_len;
346 
347 	sb->sb_mbcnt += MSIZE;
348 
349 	if (m->m_flags & M_EXT)
350 		sb->sb_mbcnt += m->m_ext.ext_size;
351 }
352 
353 void
354 sbfree_ktls_rx(struct sockbuf *sb, struct mbuf *m)
355 {
356 
357 #if 0	/* XXX: not yet: soclose() call path comes here w/o lock. */
358 	SOCKBUF_LOCK_ASSERT(sb);
359 #endif
360 
361 	sb->sb_ccc -= m->m_len;
362 	sb->sb_tlscc -= m->m_len;
363 
364 	sb->sb_mbcnt -= MSIZE;
365 
366 	if (m->m_flags & M_EXT)
367 		sb->sb_mbcnt -= m->m_ext.ext_size;
368 }
369 #endif
370 
371 /*
372  * Socantsendmore indicates that no more data will be sent on the socket; it
373  * would normally be applied to a socket when the user informs the system
374  * that no more data is to be sent, by the protocol code (in case
375  * PRU_SHUTDOWN).  Socantrcvmore indicates that no more data will be
376  * received, and will normally be applied to the socket by a protocol when it
377  * detects that the peer will send no more data.  Data queued for reading in
378  * the socket may yet be read.
379  */
380 void
381 socantsendmore_locked(struct socket *so)
382 {
383 
384 	SOCK_SENDBUF_LOCK_ASSERT(so);
385 
386 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
387 	sowwakeup_locked(so);
388 	SOCK_SENDBUF_UNLOCK_ASSERT(so);
389 }
390 
391 void
392 socantsendmore(struct socket *so)
393 {
394 
395 	SOCK_SENDBUF_LOCK(so);
396 	socantsendmore_locked(so);
397 	SOCK_SENDBUF_UNLOCK_ASSERT(so);
398 }
399 
400 void
401 socantrcvmore_locked(struct socket *so)
402 {
403 
404 	SOCK_RECVBUF_LOCK_ASSERT(so);
405 
406 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
407 #ifdef KERN_TLS
408 	if (so->so_rcv.sb_flags & SB_TLS_RX)
409 		ktls_check_rx(&so->so_rcv);
410 #endif
411 	sorwakeup_locked(so);
412 	SOCK_RECVBUF_UNLOCK_ASSERT(so);
413 }
414 
415 void
416 socantrcvmore(struct socket *so)
417 {
418 
419 	SOCK_RECVBUF_LOCK(so);
420 	socantrcvmore_locked(so);
421 	SOCK_RECVBUF_UNLOCK_ASSERT(so);
422 }
423 
424 void
425 soroverflow_locked(struct socket *so)
426 {
427 
428 	SOCK_RECVBUF_LOCK_ASSERT(so);
429 
430 	if (so->so_options & SO_RERROR) {
431 		so->so_rerror = ENOBUFS;
432 		sorwakeup_locked(so);
433 	} else
434 		SOCK_RECVBUF_UNLOCK(so);
435 
436 	SOCK_RECVBUF_UNLOCK_ASSERT(so);
437 }
438 
439 void
440 soroverflow(struct socket *so)
441 {
442 
443 	SOCK_RECVBUF_LOCK(so);
444 	soroverflow_locked(so);
445 	SOCK_RECVBUF_UNLOCK_ASSERT(so);
446 }
447 
448 /*
449  * Wait for data to arrive at/drain from a socket buffer.
450  */
451 int
452 sbwait(struct socket *so, sb_which which)
453 {
454 	struct sockbuf *sb;
455 
456 	SOCK_BUF_LOCK_ASSERT(so, which);
457 
458 	sb = sobuf(so, which);
459 	sb->sb_flags |= SB_WAIT;
460 	return (msleep_sbt(&sb->sb_acc, soeventmtx(so, which),
461 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
462 	    sb->sb_timeo, 0, 0));
463 }
464 
465 /*
466  * Wakeup processes waiting on a socket buffer.  Do asynchronous notification
467  * via SIGIO if the socket has the SS_ASYNC flag set.
468  *
469  * Called with the socket buffer lock held; will release the lock by the end
470  * of the function.  This allows the caller to acquire the socket buffer lock
471  * while testing for the need for various sorts of wakeup and hold it through
472  * to the point where it's no longer required.  We currently hold the lock
473  * through calls out to other subsystems (with the exception of kqueue), and
474  * then release it to avoid lock order issues.  It's not clear that's
475  * correct.
476  */
477 static __always_inline void
478 sowakeup(struct socket *so, const sb_which which)
479 {
480 	struct sockbuf *sb;
481 	int ret;
482 
483 	SOCK_BUF_LOCK_ASSERT(so, which);
484 
485 	sb = sobuf(so, which);
486 	selwakeuppri(sb->sb_sel, PSOCK);
487 	if (!SEL_WAITING(sb->sb_sel))
488 		sb->sb_flags &= ~SB_SEL;
489 	if (sb->sb_flags & SB_WAIT) {
490 		sb->sb_flags &= ~SB_WAIT;
491 		wakeup(&sb->sb_acc);
492 	}
493 	KNOTE_LOCKED(&sb->sb_sel->si_note, 0);
494 	if (sb->sb_upcall != NULL) {
495 		ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT);
496 		if (ret == SU_ISCONNECTED) {
497 			KASSERT(sb == &so->so_rcv,
498 			    ("SO_SND upcall returned SU_ISCONNECTED"));
499 			soupcall_clear(so, SO_RCV);
500 		}
501 	} else
502 		ret = SU_OK;
503 	if (sb->sb_flags & SB_AIO)
504 		sowakeup_aio(so, which);
505 	SOCK_BUF_UNLOCK(so, which);
506 	if (ret == SU_ISCONNECTED)
507 		soisconnected(so);
508 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
509 		pgsigio(&so->so_sigio, SIGIO, 0);
510 	SOCK_BUF_UNLOCK_ASSERT(so, which);
511 }
512 
513 /*
514  * Do we need to notify the other side when I/O is possible?
515  */
516 static __always_inline bool
517 sb_notify(const struct sockbuf *sb)
518 {
519 	return ((sb->sb_flags & (SB_WAIT | SB_SEL | SB_ASYNC |
520 	    SB_UPCALL | SB_AIO | SB_KNOTE)) != 0);
521 }
522 
523 void
524 sorwakeup_locked(struct socket *so)
525 {
526 	SOCK_RECVBUF_LOCK_ASSERT(so);
527 	if (sb_notify(&so->so_rcv))
528 		sowakeup(so, SO_RCV);
529 	else
530 		SOCK_RECVBUF_UNLOCK(so);
531 }
532 
533 void
534 sowwakeup_locked(struct socket *so)
535 {
536 	SOCK_SENDBUF_LOCK_ASSERT(so);
537 	if (sb_notify(&so->so_snd))
538 		sowakeup(so, SO_SND);
539 	else
540 		SOCK_SENDBUF_UNLOCK(so);
541 }
542 
543 /*
544  * Socket buffer (struct sockbuf) utility routines.
545  *
546  * Each socket contains two socket buffers: one for sending data and one for
547  * receiving data.  Each buffer contains a queue of mbufs, information about
548  * the number of mbufs and amount of data in the queue, and other fields
549  * allowing select() statements and notification on data availability to be
550  * implemented.
551  *
552  * Data stored in a socket buffer is maintained as a list of records.  Each
553  * record is a list of mbufs chained together with the m_next field.  Records
554  * are chained together with the m_nextpkt field. The upper level routine
555  * soreceive() expects the following conventions to be observed when placing
556  * information in the receive buffer:
557  *
558  * 1. If the protocol requires each message be preceded by the sender's name,
559  *    then a record containing that name must be present before any
560  *    associated data (mbuf's must be of type MT_SONAME).
561  * 2. If the protocol supports the exchange of ``access rights'' (really just
562  *    additional data associated with the message), and there are ``rights''
563  *    to be received, then a record containing this data should be present
564  *    (mbuf's must be of type MT_RIGHTS).
565  * 3. If a name or rights record exists, then it must be followed by a data
566  *    record, perhaps of zero length.
567  *
568  * Before using a new socket structure it is first necessary to reserve
569  * buffer space to the socket, by calling sbreserve().  This should commit
570  * some of the available buffer space in the system buffer pool for the
571  * socket (currently, it does nothing but enforce limits).  The space should
572  * be released by calling sbrelease() when the socket is destroyed.
573  */
574 int
575 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
576 {
577 	struct thread *td = curthread;
578 
579 	SOCK_SENDBUF_LOCK(so);
580 	SOCK_RECVBUF_LOCK(so);
581 	if (sbreserve_locked(so, SO_SND, sndcc, td) == 0)
582 		goto bad;
583 	if (sbreserve_locked(so, SO_RCV, rcvcc, td) == 0)
584 		goto bad2;
585 	if (so->so_rcv.sb_lowat == 0)
586 		so->so_rcv.sb_lowat = 1;
587 	if (so->so_snd.sb_lowat == 0)
588 		so->so_snd.sb_lowat = MCLBYTES;
589 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
590 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
591 	SOCK_RECVBUF_UNLOCK(so);
592 	SOCK_SENDBUF_UNLOCK(so);
593 	return (0);
594 bad2:
595 	sbrelease_locked(so, SO_SND);
596 bad:
597 	SOCK_RECVBUF_UNLOCK(so);
598 	SOCK_SENDBUF_UNLOCK(so);
599 	return (ENOBUFS);
600 }
601 
602 static int
603 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
604 {
605 	int error = 0;
606 	u_long tmp_sb_max = sb_max;
607 
608 	error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req);
609 	if (error || !req->newptr)
610 		return (error);
611 	if (tmp_sb_max < MSIZE + MCLBYTES)
612 		return (EINVAL);
613 	sb_max = tmp_sb_max;
614 	sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
615 	return (0);
616 }
617 
618 /*
619  * Allot mbufs to a sockbuf.  Attempt to scale mbmax so that mbcnt doesn't
620  * become limiting if buffering efficiency is near the normal case.
621  */
622 bool
623 sbreserve_locked(struct socket *so, sb_which which, u_long cc,
624     struct thread *td)
625 {
626 	struct sockbuf *sb = sobuf(so, which);
627 	rlim_t sbsize_limit;
628 
629 	SOCK_BUF_LOCK_ASSERT(so, which);
630 
631 	/*
632 	 * When a thread is passed, we take into account the thread's socket
633 	 * buffer size limit.  The caller will generally pass curthread, but
634 	 * in the TCP input path, NULL will be passed to indicate that no
635 	 * appropriate thread resource limits are available.  In that case,
636 	 * we don't apply a process limit.
637 	 */
638 	if (cc > sb_max_adj)
639 		return (false);
640 	if (td != NULL) {
641 		sbsize_limit = lim_cur(td, RLIMIT_SBSIZE);
642 	} else
643 		sbsize_limit = RLIM_INFINITY;
644 	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
645 	    sbsize_limit))
646 		return (false);
647 	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
648 	if (sb->sb_lowat > sb->sb_hiwat)
649 		sb->sb_lowat = sb->sb_hiwat;
650 	return (true);
651 }
652 
653 int
654 sbsetopt(struct socket *so, int cmd, u_long cc)
655 {
656 	struct sockbuf *sb;
657 	sb_which wh;
658 	short *flags;
659 	u_int *hiwat, *lowat;
660 	int error;
661 
662 	sb = NULL;
663 	SOCK_LOCK(so);
664 	if (SOLISTENING(so)) {
665 		switch (cmd) {
666 			case SO_SNDLOWAT:
667 			case SO_SNDBUF:
668 				lowat = &so->sol_sbsnd_lowat;
669 				hiwat = &so->sol_sbsnd_hiwat;
670 				flags = &so->sol_sbsnd_flags;
671 				break;
672 			case SO_RCVLOWAT:
673 			case SO_RCVBUF:
674 				lowat = &so->sol_sbrcv_lowat;
675 				hiwat = &so->sol_sbrcv_hiwat;
676 				flags = &so->sol_sbrcv_flags;
677 				break;
678 		}
679 	} else {
680 		switch (cmd) {
681 			case SO_SNDLOWAT:
682 			case SO_SNDBUF:
683 				sb = &so->so_snd;
684 				wh = SO_SND;
685 				break;
686 			case SO_RCVLOWAT:
687 			case SO_RCVBUF:
688 				sb = &so->so_rcv;
689 				wh = SO_RCV;
690 				break;
691 		}
692 		flags = &sb->sb_flags;
693 		hiwat = &sb->sb_hiwat;
694 		lowat = &sb->sb_lowat;
695 		SOCK_BUF_LOCK(so, wh);
696 	}
697 
698 	error = 0;
699 	switch (cmd) {
700 	case SO_SNDBUF:
701 	case SO_RCVBUF:
702 		if (SOLISTENING(so)) {
703 			if (cc > sb_max_adj) {
704 				error = ENOBUFS;
705 				break;
706 			}
707 			*hiwat = cc;
708 			if (*lowat > *hiwat)
709 				*lowat = *hiwat;
710 		} else {
711 			if (!sbreserve_locked(so, wh, cc, curthread))
712 				error = ENOBUFS;
713 		}
714 		if (error == 0)
715 			*flags &= ~SB_AUTOSIZE;
716 		break;
717 	case SO_SNDLOWAT:
718 	case SO_RCVLOWAT:
719 		/*
720 		 * Make sure the low-water is never greater than the
721 		 * high-water.
722 		 */
723 		*lowat = (cc > *hiwat) ? *hiwat : cc;
724 		break;
725 	}
726 
727 	if (!SOLISTENING(so))
728 		SOCK_BUF_UNLOCK(so, wh);
729 	SOCK_UNLOCK(so);
730 	return (error);
731 }
732 
733 /*
734  * Free mbufs held by a socket, and reserved mbuf space.
735  */
736 static void
737 sbrelease_internal(struct socket *so, sb_which which)
738 {
739 	struct sockbuf *sb = sobuf(so, which);
740 
741 	sbflush_internal(sb);
742 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
743 	    RLIM_INFINITY);
744 	sb->sb_mbmax = 0;
745 }
746 
747 void
748 sbrelease_locked(struct socket *so, sb_which which)
749 {
750 
751 	SOCK_BUF_LOCK_ASSERT(so, which);
752 
753 	sbrelease_internal(so, which);
754 }
755 
756 void
757 sbrelease(struct socket *so, sb_which which)
758 {
759 
760 	SOCK_BUF_LOCK(so, which);
761 	sbrelease_locked(so, which);
762 	SOCK_BUF_UNLOCK(so, which);
763 }
764 
765 void
766 sbdestroy(struct socket *so, sb_which which)
767 {
768 #ifdef KERN_TLS
769 	struct sockbuf *sb = sobuf(so, which);
770 
771 	if (sb->sb_tls_info != NULL)
772 		ktls_free(sb->sb_tls_info);
773 	sb->sb_tls_info = NULL;
774 #endif
775 	sbrelease_internal(so, which);
776 }
777 
778 /*
779  * Routines to add and remove data from an mbuf queue.
780  *
781  * The routines sbappend() or sbappendrecord() are normally called to append
782  * new mbufs to a socket buffer, after checking that adequate space is
783  * available, comparing the function sbspace() with the amount of data to be
784  * added.  sbappendrecord() differs from sbappend() in that data supplied is
785  * treated as the beginning of a new record.  To place a sender's address,
786  * optional access rights, and data in a socket receive buffer,
787  * sbappendaddr() should be used.  To place access rights and data in a
788  * socket receive buffer, sbappendrights() should be used.  In either case,
789  * the new data begins a new record.  Note that unlike sbappend() and
790  * sbappendrecord(), these routines check for the caller that there will be
791  * enough space to store the data.  Each fails if there is not enough space,
792  * or if it cannot find mbufs to store additional information in.
793  *
794  * Reliable protocols may use the socket send buffer to hold data awaiting
795  * acknowledgement.  Data is normally copied from a socket send buffer in a
796  * protocol with m_copy for output to a peer, and then removing the data from
797  * the socket buffer with sbdrop() or sbdroprecord() when the data is
798  * acknowledged by the peer.
799  */
800 #ifdef SOCKBUF_DEBUG
801 void
802 sblastrecordchk(struct sockbuf *sb, const char *file, int line)
803 {
804 	struct mbuf *m = sb->sb_mb;
805 
806 	SOCKBUF_LOCK_ASSERT(sb);
807 
808 	while (m && m->m_nextpkt)
809 		m = m->m_nextpkt;
810 
811 	if (m != sb->sb_lastrecord) {
812 		printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
813 			__func__, sb->sb_mb, sb->sb_lastrecord, m);
814 		printf("packet chain:\n");
815 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
816 			printf("\t%p\n", m);
817 		panic("%s from %s:%u", __func__, file, line);
818 	}
819 }
820 
821 void
822 sblastmbufchk(struct sockbuf *sb, const char *file, int line)
823 {
824 	struct mbuf *m = sb->sb_mb;
825 	struct mbuf *n;
826 
827 	SOCKBUF_LOCK_ASSERT(sb);
828 
829 	while (m && m->m_nextpkt)
830 		m = m->m_nextpkt;
831 
832 	while (m && m->m_next)
833 		m = m->m_next;
834 
835 	if (m != sb->sb_mbtail) {
836 		printf("%s: sb_mb %p sb_mbtail %p last %p\n",
837 			__func__, sb->sb_mb, sb->sb_mbtail, m);
838 		printf("packet tree:\n");
839 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
840 			printf("\t");
841 			for (n = m; n != NULL; n = n->m_next)
842 				printf("%p ", n);
843 			printf("\n");
844 		}
845 		panic("%s from %s:%u", __func__, file, line);
846 	}
847 
848 #ifdef KERN_TLS
849 	m = sb->sb_mtls;
850 	while (m && m->m_next)
851 		m = m->m_next;
852 
853 	if (m != sb->sb_mtlstail) {
854 		printf("%s: sb_mtls %p sb_mtlstail %p last %p\n",
855 			__func__, sb->sb_mtls, sb->sb_mtlstail, m);
856 		printf("TLS packet tree:\n");
857 		printf("\t");
858 		for (m = sb->sb_mtls; m != NULL; m = m->m_next) {
859 			printf("%p ", m);
860 		}
861 		printf("\n");
862 		panic("%s from %s:%u", __func__, file, line);
863 	}
864 #endif
865 }
866 #endif /* SOCKBUF_DEBUG */
867 
868 #define SBLINKRECORD(sb, m0) do {					\
869 	SOCKBUF_LOCK_ASSERT(sb);					\
870 	if ((sb)->sb_lastrecord != NULL)				\
871 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
872 	else								\
873 		(sb)->sb_mb = (m0);					\
874 	(sb)->sb_lastrecord = (m0);					\
875 } while (/*CONSTCOND*/0)
876 
877 /*
878  * Append mbuf chain m to the last record in the socket buffer sb.  The
879  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
880  * are discarded and mbufs are compacted where possible.
881  */
882 void
883 sbappend_locked(struct sockbuf *sb, struct mbuf *m, int flags)
884 {
885 	struct mbuf *n;
886 
887 	SOCKBUF_LOCK_ASSERT(sb);
888 
889 	if (m == NULL)
890 		return;
891 	sbm_clrprotoflags(m, flags);
892 	SBLASTRECORDCHK(sb);
893 	n = sb->sb_mb;
894 	if (n) {
895 		while (n->m_nextpkt)
896 			n = n->m_nextpkt;
897 		do {
898 			if (n->m_flags & M_EOR) {
899 				sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
900 				return;
901 			}
902 		} while (n->m_next && (n = n->m_next));
903 	} else {
904 		/*
905 		 * XXX Would like to simply use sb_mbtail here, but
906 		 * XXX I need to verify that I won't miss an EOR that
907 		 * XXX way.
908 		 */
909 		if ((n = sb->sb_lastrecord) != NULL) {
910 			do {
911 				if (n->m_flags & M_EOR) {
912 					sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
913 					return;
914 				}
915 			} while (n->m_next && (n = n->m_next));
916 		} else {
917 			/*
918 			 * If this is the first record in the socket buffer,
919 			 * it's also the last record.
920 			 */
921 			sb->sb_lastrecord = m;
922 		}
923 	}
924 	sbcompress(sb, m, n);
925 	SBLASTRECORDCHK(sb);
926 }
927 
928 /*
929  * Append mbuf chain m to the last record in the socket buffer sb.  The
930  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
931  * are discarded and mbufs are compacted where possible.
932  */
933 void
934 sbappend(struct sockbuf *sb, struct mbuf *m, int flags)
935 {
936 
937 	SOCKBUF_LOCK(sb);
938 	sbappend_locked(sb, m, flags);
939 	SOCKBUF_UNLOCK(sb);
940 }
941 
942 #ifdef KERN_TLS
943 /*
944  * Append an mbuf containing encrypted TLS data.  The data
945  * is marked M_NOTREADY until it has been decrypted and
946  * stored as a TLS record.
947  */
948 static void
949 sbappend_ktls_rx(struct sockbuf *sb, struct mbuf *m)
950 {
951 	struct ifnet *ifp;
952 	struct mbuf *n;
953 	int flags;
954 
955 	ifp = NULL;
956 	flags = M_NOTREADY;
957 
958 	SBLASTMBUFCHK(sb);
959 
960 	/* Mbuf chain must start with a packet header. */
961 	MPASS((m->m_flags & M_PKTHDR) != 0);
962 
963 	/* Remove all packet headers and mbuf tags to get a pure data chain. */
964 	for (n = m; n != NULL; n = n->m_next) {
965 		if (n->m_flags & M_PKTHDR) {
966 			ifp = m->m_pkthdr.leaf_rcvif;
967 			if ((n->m_pkthdr.csum_flags & CSUM_TLS_MASK) ==
968 			    CSUM_TLS_DECRYPTED) {
969 				/* Mark all mbufs in this packet decrypted. */
970 				flags = M_NOTREADY | M_DECRYPTED;
971 			} else {
972 				flags = M_NOTREADY;
973 			}
974 			m_demote_pkthdr(n);
975 		}
976 
977 		n->m_flags &= M_DEMOTEFLAGS;
978 		n->m_flags |= flags;
979 
980 		MPASS((n->m_flags & M_NOTREADY) != 0);
981 	}
982 
983 	sbcompress_ktls_rx(sb, m, sb->sb_mtlstail);
984 	ktls_check_rx(sb);
985 
986 	/* Check for incoming packet route changes: */
987 	if (ifp != NULL && sb->sb_tls_info->rx_ifp != NULL &&
988 	    sb->sb_tls_info->rx_ifp != ifp)
989 		ktls_input_ifp_mismatch(sb, ifp);
990 }
991 #endif
992 
993 /*
994  * This version of sbappend() should only be used when the caller absolutely
995  * knows that there will never be more than one record in the socket buffer,
996  * that is, a stream protocol (such as TCP).
997  */
998 void
999 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags)
1000 {
1001 	SOCKBUF_LOCK_ASSERT(sb);
1002 
1003 	KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
1004 
1005 #ifdef KERN_TLS
1006 	/*
1007 	 * Decrypted TLS records are appended as records via
1008 	 * sbappendrecord().  TCP passes encrypted TLS records to this
1009 	 * function which must be scheduled for decryption.
1010 	 */
1011 	if (sb->sb_flags & SB_TLS_RX) {
1012 		sbappend_ktls_rx(sb, m);
1013 		return;
1014 	}
1015 #endif
1016 
1017 	KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
1018 
1019 	SBLASTMBUFCHK(sb);
1020 
1021 #ifdef KERN_TLS
1022 	if (sb->sb_tls_info != NULL)
1023 		ktls_seq(sb, m);
1024 #endif
1025 
1026 	/* Remove all packet headers and mbuf tags to get a pure data chain. */
1027 	m_demote(m, 1, flags & PRUS_NOTREADY ? M_NOTREADY : 0);
1028 
1029 	sbcompress(sb, m, sb->sb_mbtail);
1030 
1031 	sb->sb_lastrecord = sb->sb_mb;
1032 	SBLASTRECORDCHK(sb);
1033 }
1034 
1035 /*
1036  * This version of sbappend() should only be used when the caller absolutely
1037  * knows that there will never be more than one record in the socket buffer,
1038  * that is, a stream protocol (such as TCP).
1039  */
1040 void
1041 sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags)
1042 {
1043 
1044 	SOCKBUF_LOCK(sb);
1045 	sbappendstream_locked(sb, m, flags);
1046 	SOCKBUF_UNLOCK(sb);
1047 }
1048 
1049 #ifdef SOCKBUF_DEBUG
1050 void
1051 sbcheck(struct sockbuf *sb, const char *file, int line)
1052 {
1053 	struct mbuf *m, *n, *fnrdy;
1054 	u_long acc, ccc, mbcnt;
1055 #ifdef KERN_TLS
1056 	u_long tlscc;
1057 #endif
1058 
1059 	SOCKBUF_LOCK_ASSERT(sb);
1060 
1061 	acc = ccc = mbcnt = 0;
1062 	fnrdy = NULL;
1063 
1064 	for (m = sb->sb_mb; m; m = n) {
1065 	    n = m->m_nextpkt;
1066 	    for (; m; m = m->m_next) {
1067 		if (m->m_len == 0) {
1068 			printf("sb %p empty mbuf %p\n", sb, m);
1069 			goto fail;
1070 		}
1071 		if ((m->m_flags & M_NOTREADY) && fnrdy == NULL) {
1072 			if (m != sb->sb_fnrdy) {
1073 				printf("sb %p: fnrdy %p != m %p\n",
1074 				    sb, sb->sb_fnrdy, m);
1075 				goto fail;
1076 			}
1077 			fnrdy = m;
1078 		}
1079 		if (fnrdy) {
1080 			if (!(m->m_flags & M_NOTAVAIL)) {
1081 				printf("sb %p: fnrdy %p, m %p is avail\n",
1082 				    sb, sb->sb_fnrdy, m);
1083 				goto fail;
1084 			}
1085 		} else
1086 			acc += m->m_len;
1087 		ccc += m->m_len;
1088 		mbcnt += MSIZE;
1089 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1090 			mbcnt += m->m_ext.ext_size;
1091 	    }
1092 	}
1093 #ifdef KERN_TLS
1094 	/*
1095 	 * Account for mbufs "detached" by ktls_detach_record() while
1096 	 * they are decrypted by ktls_decrypt().  tlsdcc gives a count
1097 	 * of the detached bytes that are included in ccc.  The mbufs
1098 	 * and clusters are not included in the socket buffer
1099 	 * accounting.
1100 	 */
1101 	ccc += sb->sb_tlsdcc;
1102 
1103 	tlscc = 0;
1104 	for (m = sb->sb_mtls; m; m = m->m_next) {
1105 		if (m->m_nextpkt != NULL) {
1106 			printf("sb %p TLS mbuf %p with nextpkt\n", sb, m);
1107 			goto fail;
1108 		}
1109 		if ((m->m_flags & M_NOTREADY) == 0) {
1110 			printf("sb %p TLS mbuf %p ready\n", sb, m);
1111 			goto fail;
1112 		}
1113 		tlscc += m->m_len;
1114 		ccc += m->m_len;
1115 		mbcnt += MSIZE;
1116 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1117 			mbcnt += m->m_ext.ext_size;
1118 	}
1119 
1120 	if (sb->sb_tlscc != tlscc) {
1121 		printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
1122 		    sb->sb_tlsdcc);
1123 		goto fail;
1124 	}
1125 #endif
1126 	if (acc != sb->sb_acc || ccc != sb->sb_ccc || mbcnt != sb->sb_mbcnt) {
1127 		printf("acc %ld/%u ccc %ld/%u mbcnt %ld/%u\n",
1128 		    acc, sb->sb_acc, ccc, sb->sb_ccc, mbcnt, sb->sb_mbcnt);
1129 #ifdef KERN_TLS
1130 		printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
1131 		    sb->sb_tlsdcc);
1132 #endif
1133 		goto fail;
1134 	}
1135 	return;
1136 fail:
1137 	panic("%s from %s:%u", __func__, file, line);
1138 }
1139 #endif
1140 
1141 /*
1142  * As above, except the mbuf chain begins a new record.
1143  */
1144 void
1145 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
1146 {
1147 	struct mbuf *m;
1148 
1149 	SOCKBUF_LOCK_ASSERT(sb);
1150 
1151 	if (m0 == NULL)
1152 		return;
1153 	m_clrprotoflags(m0);
1154 	/*
1155 	 * Put the first mbuf on the queue.  Note this permits zero length
1156 	 * records.
1157 	 */
1158 	sballoc(sb, m0);
1159 	SBLASTRECORDCHK(sb);
1160 	SBLINKRECORD(sb, m0);
1161 	sb->sb_mbtail = m0;
1162 	m = m0->m_next;
1163 	m0->m_next = 0;
1164 	if (m && (m0->m_flags & M_EOR)) {
1165 		m0->m_flags &= ~M_EOR;
1166 		m->m_flags |= M_EOR;
1167 	}
1168 	/* always call sbcompress() so it can do SBLASTMBUFCHK() */
1169 	sbcompress(sb, m, m0);
1170 }
1171 
1172 /*
1173  * As above, except the mbuf chain begins a new record.
1174  */
1175 void
1176 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
1177 {
1178 
1179 	SOCKBUF_LOCK(sb);
1180 	sbappendrecord_locked(sb, m0);
1181 	SOCKBUF_UNLOCK(sb);
1182 }
1183 
1184 /* Helper routine that appends data, control, and address to a sockbuf. */
1185 static int
1186 sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa,
1187     struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last)
1188 {
1189 	struct mbuf *m, *n, *nlast;
1190 #if MSIZE <= 256
1191 	if (asa->sa_len > MLEN)
1192 		return (0);
1193 #endif
1194 	m = m_get(M_NOWAIT, MT_SONAME);
1195 	if (m == NULL)
1196 		return (0);
1197 	m->m_len = asa->sa_len;
1198 	bcopy(asa, mtod(m, caddr_t), asa->sa_len);
1199 	if (m0) {
1200 		M_ASSERT_NO_SND_TAG(m0);
1201 		m_clrprotoflags(m0);
1202 		m_tag_delete_chain(m0, NULL);
1203 		/*
1204 		 * Clear some persistent info from pkthdr.
1205 		 * We don't use m_demote(), because some netgraph consumers
1206 		 * expect M_PKTHDR presence.
1207 		 */
1208 		m0->m_pkthdr.rcvif = NULL;
1209 		m0->m_pkthdr.flowid = 0;
1210 		m0->m_pkthdr.csum_flags = 0;
1211 		m0->m_pkthdr.fibnum = 0;
1212 		m0->m_pkthdr.rsstype = 0;
1213 	}
1214 	if (ctrl_last)
1215 		ctrl_last->m_next = m0;	/* concatenate data to control */
1216 	else
1217 		control = m0;
1218 	m->m_next = control;
1219 	for (n = m; n->m_next != NULL; n = n->m_next)
1220 		sballoc(sb, n);
1221 	sballoc(sb, n);
1222 	nlast = n;
1223 	SBLINKRECORD(sb, m);
1224 
1225 	sb->sb_mbtail = nlast;
1226 	SBLASTMBUFCHK(sb);
1227 
1228 	SBLASTRECORDCHK(sb);
1229 	return (1);
1230 }
1231 
1232 /*
1233  * Append address and data, and optionally, control (ancillary) data to the
1234  * receive queue of a socket.  If present, m0 must include a packet header
1235  * with total length.  Returns 0 if no space in sockbuf or insufficient
1236  * mbufs.
1237  */
1238 int
1239 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
1240     struct mbuf *m0, struct mbuf *control)
1241 {
1242 	struct mbuf *ctrl_last;
1243 	int space = asa->sa_len;
1244 
1245 	SOCKBUF_LOCK_ASSERT(sb);
1246 
1247 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1248 		panic("sbappendaddr_locked");
1249 	if (m0)
1250 		space += m0->m_pkthdr.len;
1251 	space += m_length(control, &ctrl_last);
1252 
1253 	if (space > sbspace(sb))
1254 		return (0);
1255 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1256 }
1257 
1258 /*
1259  * Append address and data, and optionally, control (ancillary) data to the
1260  * receive queue of a socket.  If present, m0 must include a packet header
1261  * with total length.  Returns 0 if insufficient mbufs.  Does not validate space
1262  * on the receiving sockbuf.
1263  */
1264 int
1265 sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa,
1266     struct mbuf *m0, struct mbuf *control)
1267 {
1268 	struct mbuf *ctrl_last;
1269 
1270 	SOCKBUF_LOCK_ASSERT(sb);
1271 
1272 	ctrl_last = (control == NULL) ? NULL : m_last(control);
1273 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1274 }
1275 
1276 /*
1277  * Append address and data, and optionally, control (ancillary) data to the
1278  * receive queue of a socket.  If present, m0 must include a packet header
1279  * with total length.  Returns 0 if no space in sockbuf or insufficient
1280  * mbufs.
1281  */
1282 int
1283 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
1284     struct mbuf *m0, struct mbuf *control)
1285 {
1286 	int retval;
1287 
1288 	SOCKBUF_LOCK(sb);
1289 	retval = sbappendaddr_locked(sb, asa, m0, control);
1290 	SOCKBUF_UNLOCK(sb);
1291 	return (retval);
1292 }
1293 
1294 void
1295 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
1296     struct mbuf *control, int flags)
1297 {
1298 	struct mbuf *m, *mlast;
1299 
1300 	sbm_clrprotoflags(m0, flags);
1301 	m_last(control)->m_next = m0;
1302 
1303 	SBLASTRECORDCHK(sb);
1304 
1305 	for (m = control; m->m_next; m = m->m_next)
1306 		sballoc(sb, m);
1307 	sballoc(sb, m);
1308 	mlast = m;
1309 	SBLINKRECORD(sb, control);
1310 
1311 	sb->sb_mbtail = mlast;
1312 	SBLASTMBUFCHK(sb);
1313 
1314 	SBLASTRECORDCHK(sb);
1315 }
1316 
1317 void
1318 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control,
1319     int flags)
1320 {
1321 
1322 	SOCKBUF_LOCK(sb);
1323 	sbappendcontrol_locked(sb, m0, control, flags);
1324 	SOCKBUF_UNLOCK(sb);
1325 }
1326 
1327 /*
1328  * Append the data in mbuf chain (m) into the socket buffer sb following mbuf
1329  * (n).  If (n) is NULL, the buffer is presumed empty.
1330  *
1331  * When the data is compressed, mbufs in the chain may be handled in one of
1332  * three ways:
1333  *
1334  * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
1335  *     record boundary, and no change in data type).
1336  *
1337  * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
1338  *     an mbuf already in the socket buffer.  This can occur if an
1339  *     appropriate mbuf exists, there is room, both mbufs are not marked as
1340  *     not ready, and no merging of data types will occur.
1341  *
1342  * (3) The mbuf may be appended to the end of the existing mbuf chain.
1343  *
1344  * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
1345  * end-of-record.
1346  */
1347 void
1348 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1349 {
1350 	int eor = 0;
1351 	struct mbuf *o;
1352 
1353 	SOCKBUF_LOCK_ASSERT(sb);
1354 
1355 	while (m) {
1356 		eor |= m->m_flags & M_EOR;
1357 		if (m->m_len == 0 &&
1358 		    (eor == 0 ||
1359 		     (((o = m->m_next) || (o = n)) &&
1360 		      o->m_type == m->m_type))) {
1361 			if (sb->sb_lastrecord == m)
1362 				sb->sb_lastrecord = m->m_next;
1363 			m = m_free(m);
1364 			continue;
1365 		}
1366 		if (n && (n->m_flags & M_EOR) == 0 &&
1367 		    M_WRITABLE(n) &&
1368 		    ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
1369 		    !(m->m_flags & M_NOTREADY) &&
1370 		    !(n->m_flags & (M_NOTREADY | M_EXTPG)) &&
1371 		    !mbuf_has_tls_session(m) &&
1372 		    !mbuf_has_tls_session(n) &&
1373 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1374 		    m->m_len <= M_TRAILINGSPACE(n) &&
1375 		    n->m_type == m->m_type) {
1376 			m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1377 			n->m_len += m->m_len;
1378 			sb->sb_ccc += m->m_len;
1379 			if (sb->sb_fnrdy == NULL)
1380 				sb->sb_acc += m->m_len;
1381 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1382 				/* XXX: Probably don't need.*/
1383 				sb->sb_ctl += m->m_len;
1384 			m = m_free(m);
1385 			continue;
1386 		}
1387 		if (m->m_len <= MLEN && (m->m_flags & M_EXTPG) &&
1388 		    (m->m_flags & M_NOTREADY) == 0 &&
1389 		    !mbuf_has_tls_session(m))
1390 			(void)mb_unmapped_compress(m);
1391 		if (n)
1392 			n->m_next = m;
1393 		else
1394 			sb->sb_mb = m;
1395 		sb->sb_mbtail = m;
1396 		sballoc(sb, m);
1397 		n = m;
1398 		m->m_flags &= ~M_EOR;
1399 		m = m->m_next;
1400 		n->m_next = 0;
1401 	}
1402 	if (eor) {
1403 		KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
1404 		n->m_flags |= eor;
1405 	}
1406 	SBLASTMBUFCHK(sb);
1407 }
1408 
1409 #ifdef KERN_TLS
1410 /*
1411  * A version of sbcompress() for encrypted TLS RX mbufs.  These mbufs
1412  * are appended to the 'sb_mtls' chain instead of 'sb_mb' and are also
1413  * a bit simpler (no EOR markers, always MT_DATA, etc.).
1414  */
1415 static void
1416 sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1417 {
1418 
1419 	SOCKBUF_LOCK_ASSERT(sb);
1420 
1421 	while (m) {
1422 		KASSERT((m->m_flags & M_EOR) == 0,
1423 		    ("TLS RX mbuf %p with EOR", m));
1424 		KASSERT(m->m_type == MT_DATA,
1425 		    ("TLS RX mbuf %p is not MT_DATA", m));
1426 		KASSERT((m->m_flags & M_NOTREADY) != 0,
1427 		    ("TLS RX mbuf %p ready", m));
1428 		KASSERT((m->m_flags & M_EXTPG) == 0,
1429 		    ("TLS RX mbuf %p unmapped", m));
1430 
1431 		if (m->m_len == 0) {
1432 			m = m_free(m);
1433 			continue;
1434 		}
1435 
1436 		/*
1437 		 * Even though both 'n' and 'm' are NOTREADY, it's ok
1438 		 * to coalesce the data.
1439 		 */
1440 		if (n &&
1441 		    M_WRITABLE(n) &&
1442 		    ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
1443 		    !((m->m_flags ^ n->m_flags) & M_DECRYPTED) &&
1444 		    !(n->m_flags & M_EXTPG) &&
1445 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1446 		    m->m_len <= M_TRAILINGSPACE(n)) {
1447 			m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1448 			n->m_len += m->m_len;
1449 			sb->sb_ccc += m->m_len;
1450 			sb->sb_tlscc += m->m_len;
1451 			m = m_free(m);
1452 			continue;
1453 		}
1454 		if (n)
1455 			n->m_next = m;
1456 		else
1457 			sb->sb_mtls = m;
1458 		sb->sb_mtlstail = m;
1459 		sballoc_ktls_rx(sb, m);
1460 		n = m;
1461 		m = m->m_next;
1462 		n->m_next = NULL;
1463 	}
1464 	SBLASTMBUFCHK(sb);
1465 }
1466 #endif
1467 
1468 /*
1469  * Free all mbufs in a sockbuf.  Check that all resources are reclaimed.
1470  */
1471 static void
1472 sbflush_internal(struct sockbuf *sb)
1473 {
1474 
1475 	while (sb->sb_mbcnt || sb->sb_tlsdcc) {
1476 		/*
1477 		 * Don't call sbcut(sb, 0) if the leading mbuf is non-empty:
1478 		 * we would loop forever. Panic instead.
1479 		 */
1480 		if (sb->sb_ccc == 0 && (sb->sb_mb == NULL || sb->sb_mb->m_len))
1481 			break;
1482 		m_freem(sbcut_internal(sb, (int)sb->sb_ccc));
1483 	}
1484 	KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
1485 	    ("%s: ccc %u mb %p mbcnt %u", __func__,
1486 	    sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
1487 }
1488 
1489 void
1490 sbflush_locked(struct sockbuf *sb)
1491 {
1492 
1493 	SOCKBUF_LOCK_ASSERT(sb);
1494 	sbflush_internal(sb);
1495 }
1496 
1497 void
1498 sbflush(struct sockbuf *sb)
1499 {
1500 
1501 	SOCKBUF_LOCK(sb);
1502 	sbflush_locked(sb);
1503 	SOCKBUF_UNLOCK(sb);
1504 }
1505 
1506 /*
1507  * Cut data from (the front of) a sockbuf.
1508  */
1509 static struct mbuf *
1510 sbcut_internal(struct sockbuf *sb, int len)
1511 {
1512 	struct mbuf *m, *next, *mfree;
1513 	bool is_tls;
1514 
1515 	KASSERT(len >= 0, ("%s: len is %d but it is supposed to be >= 0",
1516 	    __func__, len));
1517 	KASSERT(len <= sb->sb_ccc, ("%s: len: %d is > ccc: %u",
1518 	    __func__, len, sb->sb_ccc));
1519 
1520 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1521 	is_tls = false;
1522 	mfree = NULL;
1523 
1524 	while (len > 0) {
1525 		if (m == NULL) {
1526 #ifdef KERN_TLS
1527 			if (next == NULL && !is_tls) {
1528 				if (sb->sb_tlsdcc != 0) {
1529 					MPASS(len >= sb->sb_tlsdcc);
1530 					len -= sb->sb_tlsdcc;
1531 					sb->sb_ccc -= sb->sb_tlsdcc;
1532 					sb->sb_tlsdcc = 0;
1533 					if (len == 0)
1534 						break;
1535 				}
1536 				next = sb->sb_mtls;
1537 				is_tls = true;
1538 			}
1539 #endif
1540 			KASSERT(next, ("%s: no next, len %d", __func__, len));
1541 			m = next;
1542 			next = m->m_nextpkt;
1543 		}
1544 		if (m->m_len > len) {
1545 			KASSERT(!(m->m_flags & M_NOTAVAIL),
1546 			    ("%s: m %p M_NOTAVAIL", __func__, m));
1547 			m->m_len -= len;
1548 			m->m_data += len;
1549 			sb->sb_ccc -= len;
1550 			sb->sb_acc -= len;
1551 			if (sb->sb_sndptroff != 0)
1552 				sb->sb_sndptroff -= len;
1553 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1554 				sb->sb_ctl -= len;
1555 			break;
1556 		}
1557 		len -= m->m_len;
1558 #ifdef KERN_TLS
1559 		if (is_tls)
1560 			sbfree_ktls_rx(sb, m);
1561 		else
1562 #endif
1563 			sbfree(sb, m);
1564 		/*
1565 		 * Do not put M_NOTREADY buffers to the free list, they
1566 		 * are referenced from outside.
1567 		 */
1568 		if (m->m_flags & M_NOTREADY && !is_tls)
1569 			m = m->m_next;
1570 		else {
1571 			struct mbuf *n;
1572 
1573 			n = m->m_next;
1574 			m->m_next = mfree;
1575 			mfree = m;
1576 			m = n;
1577 		}
1578 	}
1579 	/*
1580 	 * Free any zero-length mbufs from the buffer.
1581 	 * For SOCK_DGRAM sockets such mbufs represent empty records.
1582 	 * XXX: For SOCK_STREAM sockets such mbufs can appear in the buffer,
1583 	 * when sosend_generic() needs to send only control data.
1584 	 */
1585 	while (m && m->m_len == 0) {
1586 		struct mbuf *n;
1587 
1588 		sbfree(sb, m);
1589 		n = m->m_next;
1590 		m->m_next = mfree;
1591 		mfree = m;
1592 		m = n;
1593 	}
1594 #ifdef KERN_TLS
1595 	if (is_tls) {
1596 		sb->sb_mb = NULL;
1597 		sb->sb_mtls = m;
1598 		if (m == NULL)
1599 			sb->sb_mtlstail = NULL;
1600 	} else
1601 #endif
1602 	if (m) {
1603 		sb->sb_mb = m;
1604 		m->m_nextpkt = next;
1605 	} else
1606 		sb->sb_mb = next;
1607 	/*
1608 	 * First part is an inline SB_EMPTY_FIXUP().  Second part makes sure
1609 	 * sb_lastrecord is up-to-date if we dropped part of the last record.
1610 	 */
1611 	m = sb->sb_mb;
1612 	if (m == NULL) {
1613 		sb->sb_mbtail = NULL;
1614 		sb->sb_lastrecord = NULL;
1615 	} else if (m->m_nextpkt == NULL) {
1616 		sb->sb_lastrecord = m;
1617 	}
1618 
1619 	return (mfree);
1620 }
1621 
1622 /*
1623  * Drop data from (the front of) a sockbuf.
1624  */
1625 void
1626 sbdrop_locked(struct sockbuf *sb, int len)
1627 {
1628 
1629 	SOCKBUF_LOCK_ASSERT(sb);
1630 	m_freem(sbcut_internal(sb, len));
1631 }
1632 
1633 /*
1634  * Drop data from (the front of) a sockbuf,
1635  * and return it to caller.
1636  */
1637 struct mbuf *
1638 sbcut_locked(struct sockbuf *sb, int len)
1639 {
1640 
1641 	SOCKBUF_LOCK_ASSERT(sb);
1642 	return (sbcut_internal(sb, len));
1643 }
1644 
1645 void
1646 sbdrop(struct sockbuf *sb, int len)
1647 {
1648 	struct mbuf *mfree;
1649 
1650 	SOCKBUF_LOCK(sb);
1651 	mfree = sbcut_internal(sb, len);
1652 	SOCKBUF_UNLOCK(sb);
1653 
1654 	m_freem(mfree);
1655 }
1656 
1657 struct mbuf *
1658 sbsndptr_noadv(struct sockbuf *sb, uint32_t off, uint32_t *moff)
1659 {
1660 	struct mbuf *m;
1661 
1662 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1663 	if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1664 		*moff = off;
1665 		if (sb->sb_sndptr == NULL) {
1666 			sb->sb_sndptr = sb->sb_mb;
1667 			sb->sb_sndptroff = 0;
1668 		}
1669 		return (sb->sb_mb);
1670 	} else {
1671 		m = sb->sb_sndptr;
1672 		off -= sb->sb_sndptroff;
1673 	}
1674 	*moff = off;
1675 	return (m);
1676 }
1677 
1678 void
1679 sbsndptr_adv(struct sockbuf *sb, struct mbuf *mb, uint32_t len)
1680 {
1681 	/*
1682 	 * A small copy was done, advance forward the sb_sbsndptr to cover
1683 	 * it.
1684 	 */
1685 	struct mbuf *m;
1686 
1687 	if (mb != sb->sb_sndptr) {
1688 		/* Did not copyout at the same mbuf */
1689 		return;
1690 	}
1691 	m = mb;
1692 	while (m && (len > 0)) {
1693 		if (len >= m->m_len) {
1694 			len -= m->m_len;
1695 			if (m->m_next) {
1696 				sb->sb_sndptroff += m->m_len;
1697 				sb->sb_sndptr = m->m_next;
1698 			}
1699 			m = m->m_next;
1700 		} else {
1701 			len = 0;
1702 		}
1703 	}
1704 }
1705 
1706 /*
1707  * Return the first mbuf and the mbuf data offset for the provided
1708  * send offset without changing the "sb_sndptroff" field.
1709  */
1710 struct mbuf *
1711 sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff)
1712 {
1713 	struct mbuf *m;
1714 
1715 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1716 
1717 	/*
1718 	 * If the "off" is below the stored offset, which happens on
1719 	 * retransmits, just use "sb_mb":
1720 	 */
1721 	if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1722 		m = sb->sb_mb;
1723 	} else {
1724 		m = sb->sb_sndptr;
1725 		off -= sb->sb_sndptroff;
1726 	}
1727 	while (off > 0 && m != NULL) {
1728 		if (off < m->m_len)
1729 			break;
1730 		off -= m->m_len;
1731 		m = m->m_next;
1732 	}
1733 	*moff = off;
1734 	return (m);
1735 }
1736 
1737 /*
1738  * Drop a record off the front of a sockbuf and move the next record to the
1739  * front.
1740  */
1741 void
1742 sbdroprecord_locked(struct sockbuf *sb)
1743 {
1744 	struct mbuf *m;
1745 
1746 	SOCKBUF_LOCK_ASSERT(sb);
1747 
1748 	m = sb->sb_mb;
1749 	if (m) {
1750 		sb->sb_mb = m->m_nextpkt;
1751 		do {
1752 			sbfree(sb, m);
1753 			m = m_free(m);
1754 		} while (m);
1755 	}
1756 	SB_EMPTY_FIXUP(sb);
1757 }
1758 
1759 /*
1760  * Drop a record off the front of a sockbuf and move the next record to the
1761  * front.
1762  */
1763 void
1764 sbdroprecord(struct sockbuf *sb)
1765 {
1766 
1767 	SOCKBUF_LOCK(sb);
1768 	sbdroprecord_locked(sb);
1769 	SOCKBUF_UNLOCK(sb);
1770 }
1771 
1772 /*
1773  * Create a "control" mbuf containing the specified data with the specified
1774  * type for presentation on a socket buffer.
1775  */
1776 struct mbuf *
1777 sbcreatecontrol(const void *p, u_int size, int type, int level, int wait)
1778 {
1779 	struct cmsghdr *cp;
1780 	struct mbuf *m;
1781 
1782 	MBUF_CHECKSLEEP(wait);
1783 
1784 	if (wait == M_NOWAIT) {
1785 		if (CMSG_SPACE(size) > MCLBYTES)
1786 			return (NULL);
1787 	} else
1788 		KASSERT(CMSG_SPACE(size) <= MCLBYTES,
1789 		    ("%s: passed CMSG_SPACE(%u) > MCLBYTES", __func__, size));
1790 
1791 	if (CMSG_SPACE(size) > MLEN)
1792 		m = m_getcl(wait, MT_CONTROL, 0);
1793 	else
1794 		m = m_get(wait, MT_CONTROL);
1795 	if (m == NULL)
1796 		return (NULL);
1797 
1798 	KASSERT(CMSG_SPACE(size) <= M_TRAILINGSPACE(m),
1799 	    ("sbcreatecontrol: short mbuf"));
1800 	/*
1801 	 * Don't leave the padding between the msg header and the
1802 	 * cmsg data and the padding after the cmsg data un-initialized.
1803 	 */
1804 	cp = mtod(m, struct cmsghdr *);
1805 	bzero(cp, CMSG_SPACE(size));
1806 	if (p != NULL)
1807 		(void)memcpy(CMSG_DATA(cp), p, size);
1808 	m->m_len = CMSG_SPACE(size);
1809 	cp->cmsg_len = CMSG_LEN(size);
1810 	cp->cmsg_level = level;
1811 	cp->cmsg_type = type;
1812 	return (m);
1813 }
1814 
1815 /*
1816  * This does the same for socket buffers that sotoxsocket does for sockets:
1817  * generate an user-format data structure describing the socket buffer.  Note
1818  * that the xsockbuf structure, since it is always embedded in a socket, does
1819  * not include a self pointer nor a length.  We make this entry point public
1820  * in case some other mechanism needs it.
1821  */
1822 void
1823 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1824 {
1825 
1826 	xsb->sb_cc = sb->sb_ccc;
1827 	xsb->sb_hiwat = sb->sb_hiwat;
1828 	xsb->sb_mbcnt = sb->sb_mbcnt;
1829 	xsb->sb_mbmax = sb->sb_mbmax;
1830 	xsb->sb_lowat = sb->sb_lowat;
1831 	xsb->sb_flags = sb->sb_flags;
1832 	xsb->sb_timeo = sb->sb_timeo;
1833 }
1834 
1835 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1836 static int dummy;
1837 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW | CTLFLAG_SKIP, &dummy, 0, "");
1838 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf,
1839     CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, &sb_max, 0,
1840     sysctl_handle_sb_max, "LU",
1841     "Maximum socket buffer size");
1842 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1843     &sb_efficiency, 0, "Socket buffer size waste factor");
1844