1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_kern_tls.h" 38 #include "opt_param.h" 39 40 #include <sys/param.h> 41 #include <sys/aio.h> /* for aio_swake proto */ 42 #include <sys/kernel.h> 43 #include <sys/ktls.h> 44 #include <sys/lock.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/mutex.h> 48 #include <sys/proc.h> 49 #include <sys/protosw.h> 50 #include <sys/resourcevar.h> 51 #include <sys/signalvar.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/sx.h> 55 #include <sys/sysctl.h> 56 57 /* 58 * Function pointer set by the AIO routines so that the socket buffer code 59 * can call back into the AIO module if it is loaded. 60 */ 61 void (*aio_swake)(struct socket *, struct sockbuf *); 62 63 /* 64 * Primitive routines for operating on socket buffers 65 */ 66 67 u_long sb_max = SB_MAX; 68 u_long sb_max_adj = 69 (quad_t)SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */ 70 71 static u_long sb_efficiency = 8; /* parameter for sbreserve() */ 72 73 static struct mbuf *sbcut_internal(struct sockbuf *sb, int len); 74 static void sbflush_internal(struct sockbuf *sb); 75 76 /* 77 * Our own version of m_clrprotoflags(), that can preserve M_NOTREADY. 78 */ 79 static void 80 sbm_clrprotoflags(struct mbuf *m, int flags) 81 { 82 int mask; 83 84 mask = ~M_PROTOFLAGS; 85 if (flags & PRUS_NOTREADY) 86 mask |= M_NOTREADY; 87 while (m) { 88 m->m_flags &= mask; 89 m = m->m_next; 90 } 91 } 92 93 /* 94 * Compress M_NOTREADY mbufs after they have been readied by sbready(). 95 * 96 * sbcompress() skips M_NOTREADY mbufs since the data is not available to 97 * be copied at the time of sbcompress(). This function combines small 98 * mbufs similar to sbcompress() once mbufs are ready. 'm0' is the first 99 * mbuf sbready() marked ready, and 'end' is the first mbuf still not 100 * ready. 101 */ 102 static void 103 sbready_compress(struct sockbuf *sb, struct mbuf *m0, struct mbuf *end) 104 { 105 struct mbuf *m, *n; 106 int ext_size; 107 108 SOCKBUF_LOCK_ASSERT(sb); 109 110 if ((sb->sb_flags & SB_NOCOALESCE) != 0) 111 return; 112 113 for (m = m0; m != end; m = m->m_next) { 114 MPASS((m->m_flags & M_NOTREADY) == 0); 115 116 /* Compress small unmapped mbufs into plain mbufs. */ 117 if ((m->m_flags & M_NOMAP) && m->m_len <= MLEN && 118 !mbuf_has_tls_session(m)) { 119 MPASS(m->m_flags & M_EXT); 120 ext_size = m->m_ext.ext_size; 121 if (mb_unmapped_compress(m) == 0) { 122 sb->sb_mbcnt -= ext_size; 123 sb->sb_ccnt -= 1; 124 } 125 } 126 127 /* 128 * NB: In sbcompress(), 'n' is the last mbuf in the 129 * socket buffer and 'm' is the new mbuf being copied 130 * into the trailing space of 'n'. Here, the roles 131 * are reversed and 'n' is the next mbuf after 'm' 132 * that is being copied into the trailing space of 133 * 'm'. 134 */ 135 n = m->m_next; 136 while ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 && 137 M_WRITABLE(m) && 138 (m->m_flags & M_NOMAP) == 0 && 139 !mbuf_has_tls_session(n) && 140 !mbuf_has_tls_session(m) && 141 n->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ 142 n->m_len <= M_TRAILINGSPACE(m) && 143 m->m_type == n->m_type) { 144 KASSERT(sb->sb_lastrecord != n, 145 ("%s: merging start of record (%p) into previous mbuf (%p)", 146 __func__, n, m)); 147 m_copydata(n, 0, n->m_len, mtodo(m, m->m_len)); 148 m->m_len += n->m_len; 149 m->m_next = n->m_next; 150 m->m_flags |= n->m_flags & M_EOR; 151 if (sb->sb_mbtail == n) 152 sb->sb_mbtail = m; 153 154 sb->sb_mbcnt -= MSIZE; 155 sb->sb_mcnt -= 1; 156 if (n->m_flags & M_EXT) { 157 sb->sb_mbcnt -= n->m_ext.ext_size; 158 sb->sb_ccnt -= 1; 159 } 160 m_free(n); 161 n = m->m_next; 162 } 163 } 164 SBLASTRECORDCHK(sb); 165 SBLASTMBUFCHK(sb); 166 } 167 168 /* 169 * Mark ready "count" units of I/O starting with "m". Most mbufs 170 * count as a single unit of I/O except for EXT_PGS-backed mbufs which 171 * can be backed by multiple pages. 172 */ 173 int 174 sbready(struct sockbuf *sb, struct mbuf *m0, int count) 175 { 176 struct mbuf *m; 177 u_int blocker; 178 179 SOCKBUF_LOCK_ASSERT(sb); 180 KASSERT(sb->sb_fnrdy != NULL, ("%s: sb %p NULL fnrdy", __func__, sb)); 181 KASSERT(count > 0, ("%s: invalid count %d", __func__, count)); 182 183 m = m0; 184 blocker = (sb->sb_fnrdy == m) ? M_BLOCKED : 0; 185 186 while (count > 0) { 187 KASSERT(m->m_flags & M_NOTREADY, 188 ("%s: m %p !M_NOTREADY", __func__, m)); 189 if ((m->m_flags & M_EXT) != 0 && 190 m->m_ext.ext_type == EXT_PGS) { 191 if (count < m->m_ext.ext_pgs->nrdy) { 192 m->m_ext.ext_pgs->nrdy -= count; 193 count = 0; 194 break; 195 } 196 count -= m->m_ext.ext_pgs->nrdy; 197 m->m_ext.ext_pgs->nrdy = 0; 198 } else 199 count--; 200 201 m->m_flags &= ~(M_NOTREADY | blocker); 202 if (blocker) 203 sb->sb_acc += m->m_len; 204 m = m->m_next; 205 } 206 207 /* 208 * If the first mbuf is still not fully ready because only 209 * some of its backing pages were readied, no further progress 210 * can be made. 211 */ 212 if (m0 == m) { 213 MPASS(m->m_flags & M_NOTREADY); 214 return (EINPROGRESS); 215 } 216 217 if (!blocker) { 218 sbready_compress(sb, m0, m); 219 return (EINPROGRESS); 220 } 221 222 /* This one was blocking all the queue. */ 223 for (; m && (m->m_flags & M_NOTREADY) == 0; m = m->m_next) { 224 KASSERT(m->m_flags & M_BLOCKED, 225 ("%s: m %p !M_BLOCKED", __func__, m)); 226 m->m_flags &= ~M_BLOCKED; 227 sb->sb_acc += m->m_len; 228 } 229 230 sb->sb_fnrdy = m; 231 sbready_compress(sb, m0, m); 232 233 return (0); 234 } 235 236 /* 237 * Adjust sockbuf state reflecting allocation of m. 238 */ 239 void 240 sballoc(struct sockbuf *sb, struct mbuf *m) 241 { 242 243 SOCKBUF_LOCK_ASSERT(sb); 244 245 sb->sb_ccc += m->m_len; 246 247 if (sb->sb_fnrdy == NULL) { 248 if (m->m_flags & M_NOTREADY) 249 sb->sb_fnrdy = m; 250 else 251 sb->sb_acc += m->m_len; 252 } else 253 m->m_flags |= M_BLOCKED; 254 255 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA) 256 sb->sb_ctl += m->m_len; 257 258 sb->sb_mbcnt += MSIZE; 259 sb->sb_mcnt += 1; 260 261 if (m->m_flags & M_EXT) { 262 sb->sb_mbcnt += m->m_ext.ext_size; 263 sb->sb_ccnt += 1; 264 } 265 } 266 267 /* 268 * Adjust sockbuf state reflecting freeing of m. 269 */ 270 void 271 sbfree(struct sockbuf *sb, struct mbuf *m) 272 { 273 274 #if 0 /* XXX: not yet: soclose() call path comes here w/o lock. */ 275 SOCKBUF_LOCK_ASSERT(sb); 276 #endif 277 278 sb->sb_ccc -= m->m_len; 279 280 if (!(m->m_flags & M_NOTAVAIL)) 281 sb->sb_acc -= m->m_len; 282 283 if (m == sb->sb_fnrdy) { 284 struct mbuf *n; 285 286 KASSERT(m->m_flags & M_NOTREADY, 287 ("%s: m %p !M_NOTREADY", __func__, m)); 288 289 n = m->m_next; 290 while (n != NULL && !(n->m_flags & M_NOTREADY)) { 291 n->m_flags &= ~M_BLOCKED; 292 sb->sb_acc += n->m_len; 293 n = n->m_next; 294 } 295 sb->sb_fnrdy = n; 296 } 297 298 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA) 299 sb->sb_ctl -= m->m_len; 300 301 sb->sb_mbcnt -= MSIZE; 302 sb->sb_mcnt -= 1; 303 if (m->m_flags & M_EXT) { 304 sb->sb_mbcnt -= m->m_ext.ext_size; 305 sb->sb_ccnt -= 1; 306 } 307 308 if (sb->sb_sndptr == m) { 309 sb->sb_sndptr = NULL; 310 sb->sb_sndptroff = 0; 311 } 312 if (sb->sb_sndptroff != 0) 313 sb->sb_sndptroff -= m->m_len; 314 } 315 316 /* 317 * Socantsendmore indicates that no more data will be sent on the socket; it 318 * would normally be applied to a socket when the user informs the system 319 * that no more data is to be sent, by the protocol code (in case 320 * PRU_SHUTDOWN). Socantrcvmore indicates that no more data will be 321 * received, and will normally be applied to the socket by a protocol when it 322 * detects that the peer will send no more data. Data queued for reading in 323 * the socket may yet be read. 324 */ 325 void 326 socantsendmore_locked(struct socket *so) 327 { 328 329 SOCKBUF_LOCK_ASSERT(&so->so_snd); 330 331 so->so_snd.sb_state |= SBS_CANTSENDMORE; 332 sowwakeup_locked(so); 333 mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED); 334 } 335 336 void 337 socantsendmore(struct socket *so) 338 { 339 340 SOCKBUF_LOCK(&so->so_snd); 341 socantsendmore_locked(so); 342 mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED); 343 } 344 345 void 346 socantrcvmore_locked(struct socket *so) 347 { 348 349 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 350 351 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 352 sorwakeup_locked(so); 353 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED); 354 } 355 356 void 357 socantrcvmore(struct socket *so) 358 { 359 360 SOCKBUF_LOCK(&so->so_rcv); 361 socantrcvmore_locked(so); 362 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED); 363 } 364 365 /* 366 * Wait for data to arrive at/drain from a socket buffer. 367 */ 368 int 369 sbwait(struct sockbuf *sb) 370 { 371 372 SOCKBUF_LOCK_ASSERT(sb); 373 374 sb->sb_flags |= SB_WAIT; 375 return (msleep_sbt(&sb->sb_acc, &sb->sb_mtx, 376 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", 377 sb->sb_timeo, 0, 0)); 378 } 379 380 int 381 sblock(struct sockbuf *sb, int flags) 382 { 383 384 KASSERT((flags & SBL_VALID) == flags, 385 ("sblock: flags invalid (0x%x)", flags)); 386 387 if (flags & SBL_WAIT) { 388 if ((sb->sb_flags & SB_NOINTR) || 389 (flags & SBL_NOINTR)) { 390 sx_xlock(&sb->sb_sx); 391 return (0); 392 } 393 return (sx_xlock_sig(&sb->sb_sx)); 394 } else { 395 if (sx_try_xlock(&sb->sb_sx) == 0) 396 return (EWOULDBLOCK); 397 return (0); 398 } 399 } 400 401 void 402 sbunlock(struct sockbuf *sb) 403 { 404 405 sx_xunlock(&sb->sb_sx); 406 } 407 408 /* 409 * Wakeup processes waiting on a socket buffer. Do asynchronous notification 410 * via SIGIO if the socket has the SS_ASYNC flag set. 411 * 412 * Called with the socket buffer lock held; will release the lock by the end 413 * of the function. This allows the caller to acquire the socket buffer lock 414 * while testing for the need for various sorts of wakeup and hold it through 415 * to the point where it's no longer required. We currently hold the lock 416 * through calls out to other subsystems (with the exception of kqueue), and 417 * then release it to avoid lock order issues. It's not clear that's 418 * correct. 419 */ 420 void 421 sowakeup(struct socket *so, struct sockbuf *sb) 422 { 423 int ret; 424 425 SOCKBUF_LOCK_ASSERT(sb); 426 427 selwakeuppri(sb->sb_sel, PSOCK); 428 if (!SEL_WAITING(sb->sb_sel)) 429 sb->sb_flags &= ~SB_SEL; 430 if (sb->sb_flags & SB_WAIT) { 431 sb->sb_flags &= ~SB_WAIT; 432 wakeup(&sb->sb_acc); 433 } 434 KNOTE_LOCKED(&sb->sb_sel->si_note, 0); 435 if (sb->sb_upcall != NULL) { 436 ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT); 437 if (ret == SU_ISCONNECTED) { 438 KASSERT(sb == &so->so_rcv, 439 ("SO_SND upcall returned SU_ISCONNECTED")); 440 soupcall_clear(so, SO_RCV); 441 } 442 } else 443 ret = SU_OK; 444 if (sb->sb_flags & SB_AIO) 445 sowakeup_aio(so, sb); 446 SOCKBUF_UNLOCK(sb); 447 if (ret == SU_ISCONNECTED) 448 soisconnected(so); 449 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL) 450 pgsigio(&so->so_sigio, SIGIO, 0); 451 mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED); 452 } 453 454 /* 455 * Socket buffer (struct sockbuf) utility routines. 456 * 457 * Each socket contains two socket buffers: one for sending data and one for 458 * receiving data. Each buffer contains a queue of mbufs, information about 459 * the number of mbufs and amount of data in the queue, and other fields 460 * allowing select() statements and notification on data availability to be 461 * implemented. 462 * 463 * Data stored in a socket buffer is maintained as a list of records. Each 464 * record is a list of mbufs chained together with the m_next field. Records 465 * are chained together with the m_nextpkt field. The upper level routine 466 * soreceive() expects the following conventions to be observed when placing 467 * information in the receive buffer: 468 * 469 * 1. If the protocol requires each message be preceded by the sender's name, 470 * then a record containing that name must be present before any 471 * associated data (mbuf's must be of type MT_SONAME). 472 * 2. If the protocol supports the exchange of ``access rights'' (really just 473 * additional data associated with the message), and there are ``rights'' 474 * to be received, then a record containing this data should be present 475 * (mbuf's must be of type MT_RIGHTS). 476 * 3. If a name or rights record exists, then it must be followed by a data 477 * record, perhaps of zero length. 478 * 479 * Before using a new socket structure it is first necessary to reserve 480 * buffer space to the socket, by calling sbreserve(). This should commit 481 * some of the available buffer space in the system buffer pool for the 482 * socket (currently, it does nothing but enforce limits). The space should 483 * be released by calling sbrelease() when the socket is destroyed. 484 */ 485 int 486 soreserve(struct socket *so, u_long sndcc, u_long rcvcc) 487 { 488 struct thread *td = curthread; 489 490 SOCKBUF_LOCK(&so->so_snd); 491 SOCKBUF_LOCK(&so->so_rcv); 492 if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0) 493 goto bad; 494 if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0) 495 goto bad2; 496 if (so->so_rcv.sb_lowat == 0) 497 so->so_rcv.sb_lowat = 1; 498 if (so->so_snd.sb_lowat == 0) 499 so->so_snd.sb_lowat = MCLBYTES; 500 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 501 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 502 SOCKBUF_UNLOCK(&so->so_rcv); 503 SOCKBUF_UNLOCK(&so->so_snd); 504 return (0); 505 bad2: 506 sbrelease_locked(&so->so_snd, so); 507 bad: 508 SOCKBUF_UNLOCK(&so->so_rcv); 509 SOCKBUF_UNLOCK(&so->so_snd); 510 return (ENOBUFS); 511 } 512 513 static int 514 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS) 515 { 516 int error = 0; 517 u_long tmp_sb_max = sb_max; 518 519 error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req); 520 if (error || !req->newptr) 521 return (error); 522 if (tmp_sb_max < MSIZE + MCLBYTES) 523 return (EINVAL); 524 sb_max = tmp_sb_max; 525 sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES); 526 return (0); 527 } 528 529 /* 530 * Allot mbufs to a sockbuf. Attempt to scale mbmax so that mbcnt doesn't 531 * become limiting if buffering efficiency is near the normal case. 532 */ 533 int 534 sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so, 535 struct thread *td) 536 { 537 rlim_t sbsize_limit; 538 539 SOCKBUF_LOCK_ASSERT(sb); 540 541 /* 542 * When a thread is passed, we take into account the thread's socket 543 * buffer size limit. The caller will generally pass curthread, but 544 * in the TCP input path, NULL will be passed to indicate that no 545 * appropriate thread resource limits are available. In that case, 546 * we don't apply a process limit. 547 */ 548 if (cc > sb_max_adj) 549 return (0); 550 if (td != NULL) { 551 sbsize_limit = lim_cur(td, RLIMIT_SBSIZE); 552 } else 553 sbsize_limit = RLIM_INFINITY; 554 if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc, 555 sbsize_limit)) 556 return (0); 557 sb->sb_mbmax = min(cc * sb_efficiency, sb_max); 558 if (sb->sb_lowat > sb->sb_hiwat) 559 sb->sb_lowat = sb->sb_hiwat; 560 return (1); 561 } 562 563 int 564 sbsetopt(struct socket *so, int cmd, u_long cc) 565 { 566 struct sockbuf *sb; 567 short *flags; 568 u_int *hiwat, *lowat; 569 int error; 570 571 sb = NULL; 572 SOCK_LOCK(so); 573 if (SOLISTENING(so)) { 574 switch (cmd) { 575 case SO_SNDLOWAT: 576 case SO_SNDBUF: 577 lowat = &so->sol_sbsnd_lowat; 578 hiwat = &so->sol_sbsnd_hiwat; 579 flags = &so->sol_sbsnd_flags; 580 break; 581 case SO_RCVLOWAT: 582 case SO_RCVBUF: 583 lowat = &so->sol_sbrcv_lowat; 584 hiwat = &so->sol_sbrcv_hiwat; 585 flags = &so->sol_sbrcv_flags; 586 break; 587 } 588 } else { 589 switch (cmd) { 590 case SO_SNDLOWAT: 591 case SO_SNDBUF: 592 sb = &so->so_snd; 593 break; 594 case SO_RCVLOWAT: 595 case SO_RCVBUF: 596 sb = &so->so_rcv; 597 break; 598 } 599 flags = &sb->sb_flags; 600 hiwat = &sb->sb_hiwat; 601 lowat = &sb->sb_lowat; 602 SOCKBUF_LOCK(sb); 603 } 604 605 error = 0; 606 switch (cmd) { 607 case SO_SNDBUF: 608 case SO_RCVBUF: 609 if (SOLISTENING(so)) { 610 if (cc > sb_max_adj) { 611 error = ENOBUFS; 612 break; 613 } 614 *hiwat = cc; 615 if (*lowat > *hiwat) 616 *lowat = *hiwat; 617 } else { 618 if (!sbreserve_locked(sb, cc, so, curthread)) 619 error = ENOBUFS; 620 } 621 if (error == 0) 622 *flags &= ~SB_AUTOSIZE; 623 break; 624 case SO_SNDLOWAT: 625 case SO_RCVLOWAT: 626 /* 627 * Make sure the low-water is never greater than the 628 * high-water. 629 */ 630 *lowat = (cc > *hiwat) ? *hiwat : cc; 631 break; 632 } 633 634 if (!SOLISTENING(so)) 635 SOCKBUF_UNLOCK(sb); 636 SOCK_UNLOCK(so); 637 return (error); 638 } 639 640 /* 641 * Free mbufs held by a socket, and reserved mbuf space. 642 */ 643 void 644 sbrelease_internal(struct sockbuf *sb, struct socket *so) 645 { 646 647 sbflush_internal(sb); 648 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0, 649 RLIM_INFINITY); 650 sb->sb_mbmax = 0; 651 } 652 653 void 654 sbrelease_locked(struct sockbuf *sb, struct socket *so) 655 { 656 657 SOCKBUF_LOCK_ASSERT(sb); 658 659 sbrelease_internal(sb, so); 660 } 661 662 void 663 sbrelease(struct sockbuf *sb, struct socket *so) 664 { 665 666 SOCKBUF_LOCK(sb); 667 sbrelease_locked(sb, so); 668 SOCKBUF_UNLOCK(sb); 669 } 670 671 void 672 sbdestroy(struct sockbuf *sb, struct socket *so) 673 { 674 675 sbrelease_internal(sb, so); 676 #ifdef KERN_TLS 677 if (sb->sb_tls_info != NULL) 678 ktls_free(sb->sb_tls_info); 679 sb->sb_tls_info = NULL; 680 #endif 681 } 682 683 /* 684 * Routines to add and remove data from an mbuf queue. 685 * 686 * The routines sbappend() or sbappendrecord() are normally called to append 687 * new mbufs to a socket buffer, after checking that adequate space is 688 * available, comparing the function sbspace() with the amount of data to be 689 * added. sbappendrecord() differs from sbappend() in that data supplied is 690 * treated as the beginning of a new record. To place a sender's address, 691 * optional access rights, and data in a socket receive buffer, 692 * sbappendaddr() should be used. To place access rights and data in a 693 * socket receive buffer, sbappendrights() should be used. In either case, 694 * the new data begins a new record. Note that unlike sbappend() and 695 * sbappendrecord(), these routines check for the caller that there will be 696 * enough space to store the data. Each fails if there is not enough space, 697 * or if it cannot find mbufs to store additional information in. 698 * 699 * Reliable protocols may use the socket send buffer to hold data awaiting 700 * acknowledgement. Data is normally copied from a socket send buffer in a 701 * protocol with m_copy for output to a peer, and then removing the data from 702 * the socket buffer with sbdrop() or sbdroprecord() when the data is 703 * acknowledged by the peer. 704 */ 705 #ifdef SOCKBUF_DEBUG 706 void 707 sblastrecordchk(struct sockbuf *sb, const char *file, int line) 708 { 709 struct mbuf *m = sb->sb_mb; 710 711 SOCKBUF_LOCK_ASSERT(sb); 712 713 while (m && m->m_nextpkt) 714 m = m->m_nextpkt; 715 716 if (m != sb->sb_lastrecord) { 717 printf("%s: sb_mb %p sb_lastrecord %p last %p\n", 718 __func__, sb->sb_mb, sb->sb_lastrecord, m); 719 printf("packet chain:\n"); 720 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) 721 printf("\t%p\n", m); 722 panic("%s from %s:%u", __func__, file, line); 723 } 724 } 725 726 void 727 sblastmbufchk(struct sockbuf *sb, const char *file, int line) 728 { 729 struct mbuf *m = sb->sb_mb; 730 struct mbuf *n; 731 732 SOCKBUF_LOCK_ASSERT(sb); 733 734 while (m && m->m_nextpkt) 735 m = m->m_nextpkt; 736 737 while (m && m->m_next) 738 m = m->m_next; 739 740 if (m != sb->sb_mbtail) { 741 printf("%s: sb_mb %p sb_mbtail %p last %p\n", 742 __func__, sb->sb_mb, sb->sb_mbtail, m); 743 printf("packet tree:\n"); 744 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) { 745 printf("\t"); 746 for (n = m; n != NULL; n = n->m_next) 747 printf("%p ", n); 748 printf("\n"); 749 } 750 panic("%s from %s:%u", __func__, file, line); 751 } 752 } 753 #endif /* SOCKBUF_DEBUG */ 754 755 #define SBLINKRECORD(sb, m0) do { \ 756 SOCKBUF_LOCK_ASSERT(sb); \ 757 if ((sb)->sb_lastrecord != NULL) \ 758 (sb)->sb_lastrecord->m_nextpkt = (m0); \ 759 else \ 760 (sb)->sb_mb = (m0); \ 761 (sb)->sb_lastrecord = (m0); \ 762 } while (/*CONSTCOND*/0) 763 764 /* 765 * Append mbuf chain m to the last record in the socket buffer sb. The 766 * additional space associated the mbuf chain is recorded in sb. Empty mbufs 767 * are discarded and mbufs are compacted where possible. 768 */ 769 void 770 sbappend_locked(struct sockbuf *sb, struct mbuf *m, int flags) 771 { 772 struct mbuf *n; 773 774 SOCKBUF_LOCK_ASSERT(sb); 775 776 if (m == NULL) 777 return; 778 sbm_clrprotoflags(m, flags); 779 SBLASTRECORDCHK(sb); 780 n = sb->sb_mb; 781 if (n) { 782 while (n->m_nextpkt) 783 n = n->m_nextpkt; 784 do { 785 if (n->m_flags & M_EOR) { 786 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */ 787 return; 788 } 789 } while (n->m_next && (n = n->m_next)); 790 } else { 791 /* 792 * XXX Would like to simply use sb_mbtail here, but 793 * XXX I need to verify that I won't miss an EOR that 794 * XXX way. 795 */ 796 if ((n = sb->sb_lastrecord) != NULL) { 797 do { 798 if (n->m_flags & M_EOR) { 799 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */ 800 return; 801 } 802 } while (n->m_next && (n = n->m_next)); 803 } else { 804 /* 805 * If this is the first record in the socket buffer, 806 * it's also the last record. 807 */ 808 sb->sb_lastrecord = m; 809 } 810 } 811 sbcompress(sb, m, n); 812 SBLASTRECORDCHK(sb); 813 } 814 815 /* 816 * Append mbuf chain m to the last record in the socket buffer sb. The 817 * additional space associated the mbuf chain is recorded in sb. Empty mbufs 818 * are discarded and mbufs are compacted where possible. 819 */ 820 void 821 sbappend(struct sockbuf *sb, struct mbuf *m, int flags) 822 { 823 824 SOCKBUF_LOCK(sb); 825 sbappend_locked(sb, m, flags); 826 SOCKBUF_UNLOCK(sb); 827 } 828 829 /* 830 * This version of sbappend() should only be used when the caller absolutely 831 * knows that there will never be more than one record in the socket buffer, 832 * that is, a stream protocol (such as TCP). 833 */ 834 void 835 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags) 836 { 837 SOCKBUF_LOCK_ASSERT(sb); 838 839 KASSERT(m->m_nextpkt == NULL,("sbappendstream 0")); 840 KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1")); 841 842 SBLASTMBUFCHK(sb); 843 844 #ifdef KERN_TLS 845 if (sb->sb_tls_info != NULL) 846 ktls_seq(sb, m); 847 #endif 848 849 /* Remove all packet headers and mbuf tags to get a pure data chain. */ 850 m_demote(m, 1, flags & PRUS_NOTREADY ? M_NOTREADY : 0); 851 852 sbcompress(sb, m, sb->sb_mbtail); 853 854 sb->sb_lastrecord = sb->sb_mb; 855 SBLASTRECORDCHK(sb); 856 } 857 858 /* 859 * This version of sbappend() should only be used when the caller absolutely 860 * knows that there will never be more than one record in the socket buffer, 861 * that is, a stream protocol (such as TCP). 862 */ 863 void 864 sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags) 865 { 866 867 SOCKBUF_LOCK(sb); 868 sbappendstream_locked(sb, m, flags); 869 SOCKBUF_UNLOCK(sb); 870 } 871 872 #ifdef SOCKBUF_DEBUG 873 void 874 sbcheck(struct sockbuf *sb, const char *file, int line) 875 { 876 struct mbuf *m, *n, *fnrdy; 877 u_long acc, ccc, mbcnt; 878 879 SOCKBUF_LOCK_ASSERT(sb); 880 881 acc = ccc = mbcnt = 0; 882 fnrdy = NULL; 883 884 for (m = sb->sb_mb; m; m = n) { 885 n = m->m_nextpkt; 886 for (; m; m = m->m_next) { 887 if (m->m_len == 0) { 888 printf("sb %p empty mbuf %p\n", sb, m); 889 goto fail; 890 } 891 if ((m->m_flags & M_NOTREADY) && fnrdy == NULL) { 892 if (m != sb->sb_fnrdy) { 893 printf("sb %p: fnrdy %p != m %p\n", 894 sb, sb->sb_fnrdy, m); 895 goto fail; 896 } 897 fnrdy = m; 898 } 899 if (fnrdy) { 900 if (!(m->m_flags & M_NOTAVAIL)) { 901 printf("sb %p: fnrdy %p, m %p is avail\n", 902 sb, sb->sb_fnrdy, m); 903 goto fail; 904 } 905 } else 906 acc += m->m_len; 907 ccc += m->m_len; 908 mbcnt += MSIZE; 909 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ 910 mbcnt += m->m_ext.ext_size; 911 } 912 } 913 if (acc != sb->sb_acc || ccc != sb->sb_ccc || mbcnt != sb->sb_mbcnt) { 914 printf("acc %ld/%u ccc %ld/%u mbcnt %ld/%u\n", 915 acc, sb->sb_acc, ccc, sb->sb_ccc, mbcnt, sb->sb_mbcnt); 916 goto fail; 917 } 918 return; 919 fail: 920 panic("%s from %s:%u", __func__, file, line); 921 } 922 #endif 923 924 /* 925 * As above, except the mbuf chain begins a new record. 926 */ 927 void 928 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0) 929 { 930 struct mbuf *m; 931 932 SOCKBUF_LOCK_ASSERT(sb); 933 934 if (m0 == NULL) 935 return; 936 m_clrprotoflags(m0); 937 /* 938 * Put the first mbuf on the queue. Note this permits zero length 939 * records. 940 */ 941 sballoc(sb, m0); 942 SBLASTRECORDCHK(sb); 943 SBLINKRECORD(sb, m0); 944 sb->sb_mbtail = m0; 945 m = m0->m_next; 946 m0->m_next = 0; 947 if (m && (m0->m_flags & M_EOR)) { 948 m0->m_flags &= ~M_EOR; 949 m->m_flags |= M_EOR; 950 } 951 /* always call sbcompress() so it can do SBLASTMBUFCHK() */ 952 sbcompress(sb, m, m0); 953 } 954 955 /* 956 * As above, except the mbuf chain begins a new record. 957 */ 958 void 959 sbappendrecord(struct sockbuf *sb, struct mbuf *m0) 960 { 961 962 SOCKBUF_LOCK(sb); 963 sbappendrecord_locked(sb, m0); 964 SOCKBUF_UNLOCK(sb); 965 } 966 967 /* Helper routine that appends data, control, and address to a sockbuf. */ 968 static int 969 sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa, 970 struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last) 971 { 972 struct mbuf *m, *n, *nlast; 973 #if MSIZE <= 256 974 if (asa->sa_len > MLEN) 975 return (0); 976 #endif 977 m = m_get(M_NOWAIT, MT_SONAME); 978 if (m == NULL) 979 return (0); 980 m->m_len = asa->sa_len; 981 bcopy(asa, mtod(m, caddr_t), asa->sa_len); 982 if (m0) { 983 m_clrprotoflags(m0); 984 m_tag_delete_chain(m0, NULL); 985 /* 986 * Clear some persistent info from pkthdr. 987 * We don't use m_demote(), because some netgraph consumers 988 * expect M_PKTHDR presence. 989 */ 990 m0->m_pkthdr.rcvif = NULL; 991 m0->m_pkthdr.flowid = 0; 992 m0->m_pkthdr.csum_flags = 0; 993 m0->m_pkthdr.fibnum = 0; 994 m0->m_pkthdr.rsstype = 0; 995 } 996 if (ctrl_last) 997 ctrl_last->m_next = m0; /* concatenate data to control */ 998 else 999 control = m0; 1000 m->m_next = control; 1001 for (n = m; n->m_next != NULL; n = n->m_next) 1002 sballoc(sb, n); 1003 sballoc(sb, n); 1004 nlast = n; 1005 SBLINKRECORD(sb, m); 1006 1007 sb->sb_mbtail = nlast; 1008 SBLASTMBUFCHK(sb); 1009 1010 SBLASTRECORDCHK(sb); 1011 return (1); 1012 } 1013 1014 /* 1015 * Append address and data, and optionally, control (ancillary) data to the 1016 * receive queue of a socket. If present, m0 must include a packet header 1017 * with total length. Returns 0 if no space in sockbuf or insufficient 1018 * mbufs. 1019 */ 1020 int 1021 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa, 1022 struct mbuf *m0, struct mbuf *control) 1023 { 1024 struct mbuf *ctrl_last; 1025 int space = asa->sa_len; 1026 1027 SOCKBUF_LOCK_ASSERT(sb); 1028 1029 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 1030 panic("sbappendaddr_locked"); 1031 if (m0) 1032 space += m0->m_pkthdr.len; 1033 space += m_length(control, &ctrl_last); 1034 1035 if (space > sbspace(sb)) 1036 return (0); 1037 return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last)); 1038 } 1039 1040 /* 1041 * Append address and data, and optionally, control (ancillary) data to the 1042 * receive queue of a socket. If present, m0 must include a packet header 1043 * with total length. Returns 0 if insufficient mbufs. Does not validate space 1044 * on the receiving sockbuf. 1045 */ 1046 int 1047 sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa, 1048 struct mbuf *m0, struct mbuf *control) 1049 { 1050 struct mbuf *ctrl_last; 1051 1052 SOCKBUF_LOCK_ASSERT(sb); 1053 1054 ctrl_last = (control == NULL) ? NULL : m_last(control); 1055 return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last)); 1056 } 1057 1058 /* 1059 * Append address and data, and optionally, control (ancillary) data to the 1060 * receive queue of a socket. If present, m0 must include a packet header 1061 * with total length. Returns 0 if no space in sockbuf or insufficient 1062 * mbufs. 1063 */ 1064 int 1065 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, 1066 struct mbuf *m0, struct mbuf *control) 1067 { 1068 int retval; 1069 1070 SOCKBUF_LOCK(sb); 1071 retval = sbappendaddr_locked(sb, asa, m0, control); 1072 SOCKBUF_UNLOCK(sb); 1073 return (retval); 1074 } 1075 1076 void 1077 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0, 1078 struct mbuf *control) 1079 { 1080 struct mbuf *m, *mlast; 1081 1082 m_clrprotoflags(m0); 1083 m_last(control)->m_next = m0; 1084 1085 SBLASTRECORDCHK(sb); 1086 1087 for (m = control; m->m_next; m = m->m_next) 1088 sballoc(sb, m); 1089 sballoc(sb, m); 1090 mlast = m; 1091 SBLINKRECORD(sb, control); 1092 1093 sb->sb_mbtail = mlast; 1094 SBLASTMBUFCHK(sb); 1095 1096 SBLASTRECORDCHK(sb); 1097 } 1098 1099 void 1100 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control) 1101 { 1102 1103 SOCKBUF_LOCK(sb); 1104 sbappendcontrol_locked(sb, m0, control); 1105 SOCKBUF_UNLOCK(sb); 1106 } 1107 1108 /* 1109 * Append the data in mbuf chain (m) into the socket buffer sb following mbuf 1110 * (n). If (n) is NULL, the buffer is presumed empty. 1111 * 1112 * When the data is compressed, mbufs in the chain may be handled in one of 1113 * three ways: 1114 * 1115 * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no 1116 * record boundary, and no change in data type). 1117 * 1118 * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into 1119 * an mbuf already in the socket buffer. This can occur if an 1120 * appropriate mbuf exists, there is room, both mbufs are not marked as 1121 * not ready, and no merging of data types will occur. 1122 * 1123 * (3) The mbuf may be appended to the end of the existing mbuf chain. 1124 * 1125 * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as 1126 * end-of-record. 1127 */ 1128 void 1129 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n) 1130 { 1131 int eor = 0; 1132 struct mbuf *o; 1133 1134 SOCKBUF_LOCK_ASSERT(sb); 1135 1136 while (m) { 1137 eor |= m->m_flags & M_EOR; 1138 if (m->m_len == 0 && 1139 (eor == 0 || 1140 (((o = m->m_next) || (o = n)) && 1141 o->m_type == m->m_type))) { 1142 if (sb->sb_lastrecord == m) 1143 sb->sb_lastrecord = m->m_next; 1144 m = m_free(m); 1145 continue; 1146 } 1147 if (n && (n->m_flags & M_EOR) == 0 && 1148 M_WRITABLE(n) && 1149 ((sb->sb_flags & SB_NOCOALESCE) == 0) && 1150 !(m->m_flags & M_NOTREADY) && 1151 !(n->m_flags & (M_NOTREADY | M_NOMAP)) && 1152 !mbuf_has_tls_session(m) && 1153 !mbuf_has_tls_session(n) && 1154 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ 1155 m->m_len <= M_TRAILINGSPACE(n) && 1156 n->m_type == m->m_type) { 1157 m_copydata(m, 0, m->m_len, mtodo(n, n->m_len)); 1158 n->m_len += m->m_len; 1159 sb->sb_ccc += m->m_len; 1160 if (sb->sb_fnrdy == NULL) 1161 sb->sb_acc += m->m_len; 1162 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA) 1163 /* XXX: Probably don't need.*/ 1164 sb->sb_ctl += m->m_len; 1165 m = m_free(m); 1166 continue; 1167 } 1168 if (m->m_len <= MLEN && (m->m_flags & M_NOMAP) && 1169 (m->m_flags & M_NOTREADY) == 0 && 1170 !mbuf_has_tls_session(m)) 1171 (void)mb_unmapped_compress(m); 1172 if (n) 1173 n->m_next = m; 1174 else 1175 sb->sb_mb = m; 1176 sb->sb_mbtail = m; 1177 sballoc(sb, m); 1178 n = m; 1179 m->m_flags &= ~M_EOR; 1180 m = m->m_next; 1181 n->m_next = 0; 1182 } 1183 if (eor) { 1184 KASSERT(n != NULL, ("sbcompress: eor && n == NULL")); 1185 n->m_flags |= eor; 1186 } 1187 SBLASTMBUFCHK(sb); 1188 } 1189 1190 /* 1191 * Free all mbufs in a sockbuf. Check that all resources are reclaimed. 1192 */ 1193 static void 1194 sbflush_internal(struct sockbuf *sb) 1195 { 1196 1197 while (sb->sb_mbcnt) { 1198 /* 1199 * Don't call sbcut(sb, 0) if the leading mbuf is non-empty: 1200 * we would loop forever. Panic instead. 1201 */ 1202 if (sb->sb_ccc == 0 && (sb->sb_mb == NULL || sb->sb_mb->m_len)) 1203 break; 1204 m_freem(sbcut_internal(sb, (int)sb->sb_ccc)); 1205 } 1206 KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0, 1207 ("%s: ccc %u mb %p mbcnt %u", __func__, 1208 sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt)); 1209 } 1210 1211 void 1212 sbflush_locked(struct sockbuf *sb) 1213 { 1214 1215 SOCKBUF_LOCK_ASSERT(sb); 1216 sbflush_internal(sb); 1217 } 1218 1219 void 1220 sbflush(struct sockbuf *sb) 1221 { 1222 1223 SOCKBUF_LOCK(sb); 1224 sbflush_locked(sb); 1225 SOCKBUF_UNLOCK(sb); 1226 } 1227 1228 /* 1229 * Cut data from (the front of) a sockbuf. 1230 */ 1231 static struct mbuf * 1232 sbcut_internal(struct sockbuf *sb, int len) 1233 { 1234 struct mbuf *m, *next, *mfree; 1235 1236 KASSERT(len >= 0, ("%s: len is %d but it is supposed to be >= 0", 1237 __func__, len)); 1238 KASSERT(len <= sb->sb_ccc, ("%s: len: %d is > ccc: %u", 1239 __func__, len, sb->sb_ccc)); 1240 1241 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 1242 mfree = NULL; 1243 1244 while (len > 0) { 1245 if (m == NULL) { 1246 KASSERT(next, ("%s: no next, len %d", __func__, len)); 1247 m = next; 1248 next = m->m_nextpkt; 1249 } 1250 if (m->m_len > len) { 1251 KASSERT(!(m->m_flags & M_NOTAVAIL), 1252 ("%s: m %p M_NOTAVAIL", __func__, m)); 1253 m->m_len -= len; 1254 m->m_data += len; 1255 sb->sb_ccc -= len; 1256 sb->sb_acc -= len; 1257 if (sb->sb_sndptroff != 0) 1258 sb->sb_sndptroff -= len; 1259 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA) 1260 sb->sb_ctl -= len; 1261 break; 1262 } 1263 len -= m->m_len; 1264 sbfree(sb, m); 1265 /* 1266 * Do not put M_NOTREADY buffers to the free list, they 1267 * are referenced from outside. 1268 */ 1269 if (m->m_flags & M_NOTREADY) 1270 m = m->m_next; 1271 else { 1272 struct mbuf *n; 1273 1274 n = m->m_next; 1275 m->m_next = mfree; 1276 mfree = m; 1277 m = n; 1278 } 1279 } 1280 /* 1281 * Free any zero-length mbufs from the buffer. 1282 * For SOCK_DGRAM sockets such mbufs represent empty records. 1283 * XXX: For SOCK_STREAM sockets such mbufs can appear in the buffer, 1284 * when sosend_generic() needs to send only control data. 1285 */ 1286 while (m && m->m_len == 0) { 1287 struct mbuf *n; 1288 1289 sbfree(sb, m); 1290 n = m->m_next; 1291 m->m_next = mfree; 1292 mfree = m; 1293 m = n; 1294 } 1295 if (m) { 1296 sb->sb_mb = m; 1297 m->m_nextpkt = next; 1298 } else 1299 sb->sb_mb = next; 1300 /* 1301 * First part is an inline SB_EMPTY_FIXUP(). Second part makes sure 1302 * sb_lastrecord is up-to-date if we dropped part of the last record. 1303 */ 1304 m = sb->sb_mb; 1305 if (m == NULL) { 1306 sb->sb_mbtail = NULL; 1307 sb->sb_lastrecord = NULL; 1308 } else if (m->m_nextpkt == NULL) { 1309 sb->sb_lastrecord = m; 1310 } 1311 1312 return (mfree); 1313 } 1314 1315 /* 1316 * Drop data from (the front of) a sockbuf. 1317 */ 1318 void 1319 sbdrop_locked(struct sockbuf *sb, int len) 1320 { 1321 1322 SOCKBUF_LOCK_ASSERT(sb); 1323 m_freem(sbcut_internal(sb, len)); 1324 } 1325 1326 /* 1327 * Drop data from (the front of) a sockbuf, 1328 * and return it to caller. 1329 */ 1330 struct mbuf * 1331 sbcut_locked(struct sockbuf *sb, int len) 1332 { 1333 1334 SOCKBUF_LOCK_ASSERT(sb); 1335 return (sbcut_internal(sb, len)); 1336 } 1337 1338 void 1339 sbdrop(struct sockbuf *sb, int len) 1340 { 1341 struct mbuf *mfree; 1342 1343 SOCKBUF_LOCK(sb); 1344 mfree = sbcut_internal(sb, len); 1345 SOCKBUF_UNLOCK(sb); 1346 1347 m_freem(mfree); 1348 } 1349 1350 struct mbuf * 1351 sbsndptr_noadv(struct sockbuf *sb, uint32_t off, uint32_t *moff) 1352 { 1353 struct mbuf *m; 1354 1355 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__)); 1356 if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) { 1357 *moff = off; 1358 if (sb->sb_sndptr == NULL) { 1359 sb->sb_sndptr = sb->sb_mb; 1360 sb->sb_sndptroff = 0; 1361 } 1362 return (sb->sb_mb); 1363 } else { 1364 m = sb->sb_sndptr; 1365 off -= sb->sb_sndptroff; 1366 } 1367 *moff = off; 1368 return (m); 1369 } 1370 1371 void 1372 sbsndptr_adv(struct sockbuf *sb, struct mbuf *mb, uint32_t len) 1373 { 1374 /* 1375 * A small copy was done, advance forward the sb_sbsndptr to cover 1376 * it. 1377 */ 1378 struct mbuf *m; 1379 1380 if (mb != sb->sb_sndptr) { 1381 /* Did not copyout at the same mbuf */ 1382 return; 1383 } 1384 m = mb; 1385 while (m && (len > 0)) { 1386 if (len >= m->m_len) { 1387 len -= m->m_len; 1388 if (m->m_next) { 1389 sb->sb_sndptroff += m->m_len; 1390 sb->sb_sndptr = m->m_next; 1391 } 1392 m = m->m_next; 1393 } else { 1394 len = 0; 1395 } 1396 } 1397 } 1398 1399 /* 1400 * Return the first mbuf and the mbuf data offset for the provided 1401 * send offset without changing the "sb_sndptroff" field. 1402 */ 1403 struct mbuf * 1404 sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff) 1405 { 1406 struct mbuf *m; 1407 1408 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__)); 1409 1410 /* 1411 * If the "off" is below the stored offset, which happens on 1412 * retransmits, just use "sb_mb": 1413 */ 1414 if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) { 1415 m = sb->sb_mb; 1416 } else { 1417 m = sb->sb_sndptr; 1418 off -= sb->sb_sndptroff; 1419 } 1420 while (off > 0 && m != NULL) { 1421 if (off < m->m_len) 1422 break; 1423 off -= m->m_len; 1424 m = m->m_next; 1425 } 1426 *moff = off; 1427 return (m); 1428 } 1429 1430 /* 1431 * Drop a record off the front of a sockbuf and move the next record to the 1432 * front. 1433 */ 1434 void 1435 sbdroprecord_locked(struct sockbuf *sb) 1436 { 1437 struct mbuf *m; 1438 1439 SOCKBUF_LOCK_ASSERT(sb); 1440 1441 m = sb->sb_mb; 1442 if (m) { 1443 sb->sb_mb = m->m_nextpkt; 1444 do { 1445 sbfree(sb, m); 1446 m = m_free(m); 1447 } while (m); 1448 } 1449 SB_EMPTY_FIXUP(sb); 1450 } 1451 1452 /* 1453 * Drop a record off the front of a sockbuf and move the next record to the 1454 * front. 1455 */ 1456 void 1457 sbdroprecord(struct sockbuf *sb) 1458 { 1459 1460 SOCKBUF_LOCK(sb); 1461 sbdroprecord_locked(sb); 1462 SOCKBUF_UNLOCK(sb); 1463 } 1464 1465 /* 1466 * Create a "control" mbuf containing the specified data with the specified 1467 * type for presentation on a socket buffer. 1468 */ 1469 struct mbuf * 1470 sbcreatecontrol(caddr_t p, int size, int type, int level) 1471 { 1472 struct cmsghdr *cp; 1473 struct mbuf *m; 1474 1475 if (CMSG_SPACE((u_int)size) > MCLBYTES) 1476 return ((struct mbuf *) NULL); 1477 if (CMSG_SPACE((u_int)size) > MLEN) 1478 m = m_getcl(M_NOWAIT, MT_CONTROL, 0); 1479 else 1480 m = m_get(M_NOWAIT, MT_CONTROL); 1481 if (m == NULL) 1482 return ((struct mbuf *) NULL); 1483 cp = mtod(m, struct cmsghdr *); 1484 m->m_len = 0; 1485 KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m), 1486 ("sbcreatecontrol: short mbuf")); 1487 /* 1488 * Don't leave the padding between the msg header and the 1489 * cmsg data and the padding after the cmsg data un-initialized. 1490 */ 1491 bzero(cp, CMSG_SPACE((u_int)size)); 1492 if (p != NULL) 1493 (void)memcpy(CMSG_DATA(cp), p, size); 1494 m->m_len = CMSG_SPACE(size); 1495 cp->cmsg_len = CMSG_LEN(size); 1496 cp->cmsg_level = level; 1497 cp->cmsg_type = type; 1498 return (m); 1499 } 1500 1501 /* 1502 * This does the same for socket buffers that sotoxsocket does for sockets: 1503 * generate an user-format data structure describing the socket buffer. Note 1504 * that the xsockbuf structure, since it is always embedded in a socket, does 1505 * not include a self pointer nor a length. We make this entry point public 1506 * in case some other mechanism needs it. 1507 */ 1508 void 1509 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb) 1510 { 1511 1512 xsb->sb_cc = sb->sb_ccc; 1513 xsb->sb_hiwat = sb->sb_hiwat; 1514 xsb->sb_mbcnt = sb->sb_mbcnt; 1515 xsb->sb_mcnt = sb->sb_mcnt; 1516 xsb->sb_ccnt = sb->sb_ccnt; 1517 xsb->sb_mbmax = sb->sb_mbmax; 1518 xsb->sb_lowat = sb->sb_lowat; 1519 xsb->sb_flags = sb->sb_flags; 1520 xsb->sb_timeo = sb->sb_timeo; 1521 } 1522 1523 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */ 1524 static int dummy; 1525 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW | CTLFLAG_SKIP, &dummy, 0, ""); 1526 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_ULONG|CTLFLAG_RW, 1527 &sb_max, 0, sysctl_handle_sb_max, "LU", "Maximum socket buffer size"); 1528 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW, 1529 &sb_efficiency, 0, "Socket buffer size waste factor"); 1530