1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_param.h" 36 #include "opt_mbuf_stress_test.h" 37 #include "opt_mbuf_profiling.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/limits.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/sysctl.h> 47 #include <sys/domain.h> 48 #include <sys/protosw.h> 49 #include <sys/uio.h> 50 51 int max_linkhdr; 52 int max_protohdr; 53 int max_hdr; 54 int max_datalen; 55 #ifdef MBUF_STRESS_TEST 56 int m_defragpackets; 57 int m_defragbytes; 58 int m_defraguseless; 59 int m_defragfailure; 60 int m_defragrandomfailures; 61 #endif 62 63 /* 64 * sysctl(8) exported objects 65 */ 66 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD, 67 &max_linkhdr, 0, "Size of largest link layer header"); 68 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD, 69 &max_protohdr, 0, "Size of largest protocol layer header"); 70 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD, 71 &max_hdr, 0, "Size of largest link plus protocol header"); 72 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD, 73 &max_datalen, 0, "Minimum space left in mbuf after max_hdr"); 74 #ifdef MBUF_STRESS_TEST 75 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD, 76 &m_defragpackets, 0, ""); 77 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD, 78 &m_defragbytes, 0, ""); 79 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD, 80 &m_defraguseless, 0, ""); 81 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD, 82 &m_defragfailure, 0, ""); 83 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW, 84 &m_defragrandomfailures, 0, ""); 85 #endif 86 87 /* 88 * Ensure the correct size of various mbuf parameters. It could be off due 89 * to compiler-induced padding and alignment artifacts. 90 */ 91 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN); 92 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN); 93 94 /* 95 * mbuf data storage should be 64-bit aligned regardless of architectural 96 * pointer size; check this is the case with and without a packet header. 97 */ 98 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0); 99 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0); 100 101 /* 102 * While the specific values here don't matter too much (i.e., +/- a few 103 * words), we do want to ensure that changes to these values are carefully 104 * reasoned about and properly documented. This is especially the case as 105 * network-protocol and device-driver modules encode these layouts, and must 106 * be recompiled if the structures change. Check these values at compile time 107 * against the ones documented in comments in mbuf.h. 108 * 109 * NB: Possibly they should be documented there via #define's and not just 110 * comments. 111 */ 112 #if defined(__LP64__) 113 CTASSERT(offsetof(struct mbuf, m_dat) == 32); 114 CTASSERT(sizeof(struct pkthdr) == 56); 115 CTASSERT(sizeof(struct struct_m_ext) == 48); 116 #else 117 CTASSERT(offsetof(struct mbuf, m_dat) == 24); 118 CTASSERT(sizeof(struct pkthdr) == 48); 119 CTASSERT(sizeof(struct struct_m_ext) == 28); 120 #endif 121 122 /* 123 * m_get2() allocates minimum mbuf that would fit "size" argument. 124 */ 125 struct mbuf * 126 m_get2(int size, int how, short type, int flags) 127 { 128 struct mb_args args; 129 struct mbuf *m, *n; 130 131 args.flags = flags; 132 args.type = type; 133 134 if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0)) 135 return (uma_zalloc_arg(zone_mbuf, &args, how)); 136 if (size <= MCLBYTES) 137 return (uma_zalloc_arg(zone_pack, &args, how)); 138 139 if (size > MJUMPAGESIZE) 140 return (NULL); 141 142 m = uma_zalloc_arg(zone_mbuf, &args, how); 143 if (m == NULL) 144 return (NULL); 145 146 n = uma_zalloc_arg(zone_jumbop, m, how); 147 if (n == NULL) { 148 uma_zfree(zone_mbuf, m); 149 return (NULL); 150 } 151 152 return (m); 153 } 154 155 /* 156 * m_getjcl() returns an mbuf with a cluster of the specified size attached. 157 * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES. 158 */ 159 struct mbuf * 160 m_getjcl(int how, short type, int flags, int size) 161 { 162 struct mb_args args; 163 struct mbuf *m, *n; 164 uma_zone_t zone; 165 166 if (size == MCLBYTES) 167 return m_getcl(how, type, flags); 168 169 args.flags = flags; 170 args.type = type; 171 172 m = uma_zalloc_arg(zone_mbuf, &args, how); 173 if (m == NULL) 174 return (NULL); 175 176 zone = m_getzone(size); 177 n = uma_zalloc_arg(zone, m, how); 178 if (n == NULL) { 179 uma_zfree(zone_mbuf, m); 180 return (NULL); 181 } 182 return (m); 183 } 184 185 /* 186 * Allocate a given length worth of mbufs and/or clusters (whatever fits 187 * best) and return a pointer to the top of the allocated chain. If an 188 * existing mbuf chain is provided, then we will append the new chain 189 * to the existing one but still return the top of the newly allocated 190 * chain. 191 */ 192 struct mbuf * 193 m_getm2(struct mbuf *m, int len, int how, short type, int flags) 194 { 195 struct mbuf *mb, *nm = NULL, *mtail = NULL; 196 197 KASSERT(len >= 0, ("%s: len is < 0", __func__)); 198 199 /* Validate flags. */ 200 flags &= (M_PKTHDR | M_EOR); 201 202 /* Packet header mbuf must be first in chain. */ 203 if ((flags & M_PKTHDR) && m != NULL) 204 flags &= ~M_PKTHDR; 205 206 /* Loop and append maximum sized mbufs to the chain tail. */ 207 while (len > 0) { 208 if (len > MCLBYTES) 209 mb = m_getjcl(how, type, (flags & M_PKTHDR), 210 MJUMPAGESIZE); 211 else if (len >= MINCLSIZE) 212 mb = m_getcl(how, type, (flags & M_PKTHDR)); 213 else if (flags & M_PKTHDR) 214 mb = m_gethdr(how, type); 215 else 216 mb = m_get(how, type); 217 218 /* Fail the whole operation if one mbuf can't be allocated. */ 219 if (mb == NULL) { 220 if (nm != NULL) 221 m_freem(nm); 222 return (NULL); 223 } 224 225 /* Book keeping. */ 226 len -= M_SIZE(mb); 227 if (mtail != NULL) 228 mtail->m_next = mb; 229 else 230 nm = mb; 231 mtail = mb; 232 flags &= ~M_PKTHDR; /* Only valid on the first mbuf. */ 233 } 234 if (flags & M_EOR) 235 mtail->m_flags |= M_EOR; /* Only valid on the last mbuf. */ 236 237 /* If mbuf was supplied, append new chain to the end of it. */ 238 if (m != NULL) { 239 for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next) 240 ; 241 mtail->m_next = nm; 242 mtail->m_flags &= ~M_EOR; 243 } else 244 m = nm; 245 246 return (m); 247 } 248 249 /* 250 * Free an entire chain of mbufs and associated external buffers, if 251 * applicable. 252 */ 253 void 254 m_freem(struct mbuf *mb) 255 { 256 257 while (mb != NULL) 258 mb = m_free(mb); 259 } 260 261 /*- 262 * Configure a provided mbuf to refer to the provided external storage 263 * buffer and setup a reference count for said buffer. If the setting 264 * up of the reference count fails, the M_EXT bit will not be set. If 265 * successfull, the M_EXT bit is set in the mbuf's flags. 266 * 267 * Arguments: 268 * mb The existing mbuf to which to attach the provided buffer. 269 * buf The address of the provided external storage buffer. 270 * size The size of the provided buffer. 271 * freef A pointer to a routine that is responsible for freeing the 272 * provided external storage buffer. 273 * args A pointer to an argument structure (of any type) to be passed 274 * to the provided freef routine (may be NULL). 275 * flags Any other flags to be passed to the provided mbuf. 276 * type The type that the external storage buffer should be 277 * labeled with. 278 * 279 * Returns: 280 * Nothing. 281 */ 282 int 283 m_extadd(struct mbuf *mb, caddr_t buf, u_int size, 284 void (*freef)(struct mbuf *, void *, void *), void *arg1, void *arg2, 285 int flags, int type, int wait) 286 { 287 KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__)); 288 289 if (type != EXT_EXTREF) 290 mb->m_ext.ext_cnt = uma_zalloc(zone_ext_refcnt, wait); 291 292 if (mb->m_ext.ext_cnt == NULL) 293 return (ENOMEM); 294 295 *(mb->m_ext.ext_cnt) = 1; 296 mb->m_flags |= (M_EXT | flags); 297 mb->m_ext.ext_buf = buf; 298 mb->m_data = mb->m_ext.ext_buf; 299 mb->m_ext.ext_size = size; 300 mb->m_ext.ext_free = freef; 301 mb->m_ext.ext_arg1 = arg1; 302 mb->m_ext.ext_arg2 = arg2; 303 mb->m_ext.ext_type = type; 304 mb->m_ext.ext_flags = 0; 305 306 return (0); 307 } 308 309 /* 310 * Non-directly-exported function to clean up after mbufs with M_EXT 311 * storage attached to them if the reference count hits 1. 312 */ 313 void 314 mb_free_ext(struct mbuf *m) 315 { 316 int freembuf; 317 318 KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m)); 319 320 /* 321 * Check if the header is embedded in the cluster. 322 */ 323 freembuf = (m->m_flags & M_NOFREE) ? 0 : 1; 324 325 switch (m->m_ext.ext_type) { 326 case EXT_SFBUF: 327 sf_ext_free(m->m_ext.ext_arg1, m->m_ext.ext_arg2); 328 break; 329 default: 330 KASSERT(m->m_ext.ext_cnt != NULL, 331 ("%s: no refcounting pointer on %p", __func__, m)); 332 /* 333 * Free attached storage if this mbuf is the only 334 * reference to it. 335 */ 336 if (*(m->m_ext.ext_cnt) != 1) { 337 if (atomic_fetchadd_int(m->m_ext.ext_cnt, -1) != 1) 338 break; 339 } 340 341 switch (m->m_ext.ext_type) { 342 case EXT_PACKET: /* The packet zone is special. */ 343 if (*(m->m_ext.ext_cnt) == 0) 344 *(m->m_ext.ext_cnt) = 1; 345 uma_zfree(zone_pack, m); 346 return; /* Job done. */ 347 case EXT_CLUSTER: 348 uma_zfree(zone_clust, m->m_ext.ext_buf); 349 break; 350 case EXT_JUMBOP: 351 uma_zfree(zone_jumbop, m->m_ext.ext_buf); 352 break; 353 case EXT_JUMBO9: 354 uma_zfree(zone_jumbo9, m->m_ext.ext_buf); 355 break; 356 case EXT_JUMBO16: 357 uma_zfree(zone_jumbo16, m->m_ext.ext_buf); 358 break; 359 case EXT_NET_DRV: 360 case EXT_MOD_TYPE: 361 case EXT_DISPOSABLE: 362 *(m->m_ext.ext_cnt) = 0; 363 uma_zfree(zone_ext_refcnt, __DEVOLATILE(u_int *, 364 m->m_ext.ext_cnt)); 365 /* FALLTHROUGH */ 366 case EXT_EXTREF: 367 KASSERT(m->m_ext.ext_free != NULL, 368 ("%s: ext_free not set", __func__)); 369 (*(m->m_ext.ext_free))(m, m->m_ext.ext_arg1, 370 m->m_ext.ext_arg2); 371 break; 372 default: 373 KASSERT(m->m_ext.ext_type == 0, 374 ("%s: unknown ext_type", __func__)); 375 } 376 } 377 378 if (freembuf) 379 uma_zfree(zone_mbuf, m); 380 } 381 382 /* 383 * Attach the cluster from *m to *n, set up m_ext in *n 384 * and bump the refcount of the cluster. 385 */ 386 static void 387 mb_dupcl(struct mbuf *n, struct mbuf *m) 388 { 389 390 KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m)); 391 KASSERT(!(n->m_flags & M_EXT), ("%s: M_EXT set on %p", __func__, n)); 392 393 switch (m->m_ext.ext_type) { 394 case EXT_SFBUF: 395 sf_ext_ref(m->m_ext.ext_arg1, m->m_ext.ext_arg2); 396 break; 397 default: 398 KASSERT(m->m_ext.ext_cnt != NULL, 399 ("%s: no refcounting pointer on %p", __func__, m)); 400 if (*(m->m_ext.ext_cnt) == 1) 401 *(m->m_ext.ext_cnt) += 1; 402 else 403 atomic_add_int(m->m_ext.ext_cnt, 1); 404 } 405 406 n->m_ext = m->m_ext; 407 n->m_flags |= M_EXT; 408 n->m_flags |= m->m_flags & M_RDONLY; 409 } 410 411 /* 412 * Clean up mbuf (chain) from any tags and packet headers. 413 * If "all" is set then the first mbuf in the chain will be 414 * cleaned too. 415 */ 416 void 417 m_demote(struct mbuf *m0, int all, int flags) 418 { 419 struct mbuf *m; 420 421 for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) { 422 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p", 423 __func__, m, m0)); 424 if (m->m_flags & M_PKTHDR) { 425 m_tag_delete_chain(m, NULL); 426 m->m_flags &= ~M_PKTHDR; 427 bzero(&m->m_pkthdr, sizeof(struct pkthdr)); 428 } 429 m->m_flags = m->m_flags & (M_EXT | M_RDONLY | M_NOFREE | flags); 430 } 431 } 432 433 /* 434 * Sanity checks on mbuf (chain) for use in KASSERT() and general 435 * debugging. 436 * Returns 0 or panics when bad and 1 on all tests passed. 437 * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they 438 * blow up later. 439 */ 440 int 441 m_sanity(struct mbuf *m0, int sanitize) 442 { 443 struct mbuf *m; 444 caddr_t a, b; 445 int pktlen = 0; 446 447 #ifdef INVARIANTS 448 #define M_SANITY_ACTION(s) panic("mbuf %p: " s, m) 449 #else 450 #define M_SANITY_ACTION(s) printf("mbuf %p: " s, m) 451 #endif 452 453 for (m = m0; m != NULL; m = m->m_next) { 454 /* 455 * Basic pointer checks. If any of these fails then some 456 * unrelated kernel memory before or after us is trashed. 457 * No way to recover from that. 458 */ 459 a = M_START(m); 460 b = a + M_SIZE(m); 461 if ((caddr_t)m->m_data < a) 462 M_SANITY_ACTION("m_data outside mbuf data range left"); 463 if ((caddr_t)m->m_data > b) 464 M_SANITY_ACTION("m_data outside mbuf data range right"); 465 if ((caddr_t)m->m_data + m->m_len > b) 466 M_SANITY_ACTION("m_data + m_len exeeds mbuf space"); 467 468 /* m->m_nextpkt may only be set on first mbuf in chain. */ 469 if (m != m0 && m->m_nextpkt != NULL) { 470 if (sanitize) { 471 m_freem(m->m_nextpkt); 472 m->m_nextpkt = (struct mbuf *)0xDEADC0DE; 473 } else 474 M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf"); 475 } 476 477 /* packet length (not mbuf length!) calculation */ 478 if (m0->m_flags & M_PKTHDR) 479 pktlen += m->m_len; 480 481 /* m_tags may only be attached to first mbuf in chain. */ 482 if (m != m0 && m->m_flags & M_PKTHDR && 483 !SLIST_EMPTY(&m->m_pkthdr.tags)) { 484 if (sanitize) { 485 m_tag_delete_chain(m, NULL); 486 /* put in 0xDEADC0DE perhaps? */ 487 } else 488 M_SANITY_ACTION("m_tags on in-chain mbuf"); 489 } 490 491 /* M_PKTHDR may only be set on first mbuf in chain */ 492 if (m != m0 && m->m_flags & M_PKTHDR) { 493 if (sanitize) { 494 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr)); 495 m->m_flags &= ~M_PKTHDR; 496 /* put in 0xDEADCODE and leave hdr flag in */ 497 } else 498 M_SANITY_ACTION("M_PKTHDR on in-chain mbuf"); 499 } 500 } 501 m = m0; 502 if (pktlen && pktlen != m->m_pkthdr.len) { 503 if (sanitize) 504 m->m_pkthdr.len = 0; 505 else 506 M_SANITY_ACTION("m_pkthdr.len != mbuf chain length"); 507 } 508 return 1; 509 510 #undef M_SANITY_ACTION 511 } 512 513 514 /* 515 * "Move" mbuf pkthdr from "from" to "to". 516 * "from" must have M_PKTHDR set, and "to" must be empty. 517 */ 518 void 519 m_move_pkthdr(struct mbuf *to, struct mbuf *from) 520 { 521 522 #if 0 523 /* see below for why these are not enabled */ 524 M_ASSERTPKTHDR(to); 525 /* Note: with MAC, this may not be a good assertion. */ 526 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), 527 ("m_move_pkthdr: to has tags")); 528 #endif 529 #ifdef MAC 530 /* 531 * XXXMAC: It could be this should also occur for non-MAC? 532 */ 533 if (to->m_flags & M_PKTHDR) 534 m_tag_delete_chain(to, NULL); 535 #endif 536 to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); 537 if ((to->m_flags & M_EXT) == 0) 538 to->m_data = to->m_pktdat; 539 to->m_pkthdr = from->m_pkthdr; /* especially tags */ 540 SLIST_INIT(&from->m_pkthdr.tags); /* purge tags from src */ 541 from->m_flags &= ~M_PKTHDR; 542 } 543 544 /* 545 * Duplicate "from"'s mbuf pkthdr in "to". 546 * "from" must have M_PKTHDR set, and "to" must be empty. 547 * In particular, this does a deep copy of the packet tags. 548 */ 549 int 550 m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how) 551 { 552 553 #if 0 554 /* 555 * The mbuf allocator only initializes the pkthdr 556 * when the mbuf is allocated with m_gethdr(). Many users 557 * (e.g. m_copy*, m_prepend) use m_get() and then 558 * smash the pkthdr as needed causing these 559 * assertions to trip. For now just disable them. 560 */ 561 M_ASSERTPKTHDR(to); 562 /* Note: with MAC, this may not be a good assertion. */ 563 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags")); 564 #endif 565 MBUF_CHECKSLEEP(how); 566 #ifdef MAC 567 if (to->m_flags & M_PKTHDR) 568 m_tag_delete_chain(to, NULL); 569 #endif 570 to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); 571 if ((to->m_flags & M_EXT) == 0) 572 to->m_data = to->m_pktdat; 573 to->m_pkthdr = from->m_pkthdr; 574 SLIST_INIT(&to->m_pkthdr.tags); 575 return (m_tag_copy_chain(to, from, how)); 576 } 577 578 /* 579 * Lesser-used path for M_PREPEND: 580 * allocate new mbuf to prepend to chain, 581 * copy junk along. 582 */ 583 struct mbuf * 584 m_prepend(struct mbuf *m, int len, int how) 585 { 586 struct mbuf *mn; 587 588 if (m->m_flags & M_PKTHDR) 589 mn = m_gethdr(how, m->m_type); 590 else 591 mn = m_get(how, m->m_type); 592 if (mn == NULL) { 593 m_freem(m); 594 return (NULL); 595 } 596 if (m->m_flags & M_PKTHDR) 597 m_move_pkthdr(mn, m); 598 mn->m_next = m; 599 m = mn; 600 if (len < M_SIZE(m)) 601 M_ALIGN(m, len); 602 m->m_len = len; 603 return (m); 604 } 605 606 /* 607 * Make a copy of an mbuf chain starting "off0" bytes from the beginning, 608 * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf. 609 * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller. 610 * Note that the copy is read-only, because clusters are not copied, 611 * only their reference counts are incremented. 612 */ 613 struct mbuf * 614 m_copym(struct mbuf *m, int off0, int len, int wait) 615 { 616 struct mbuf *n, **np; 617 int off = off0; 618 struct mbuf *top; 619 int copyhdr = 0; 620 621 KASSERT(off >= 0, ("m_copym, negative off %d", off)); 622 KASSERT(len >= 0, ("m_copym, negative len %d", len)); 623 MBUF_CHECKSLEEP(wait); 624 if (off == 0 && m->m_flags & M_PKTHDR) 625 copyhdr = 1; 626 while (off > 0) { 627 KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain")); 628 if (off < m->m_len) 629 break; 630 off -= m->m_len; 631 m = m->m_next; 632 } 633 np = ⊤ 634 top = 0; 635 while (len > 0) { 636 if (m == NULL) { 637 KASSERT(len == M_COPYALL, 638 ("m_copym, length > size of mbuf chain")); 639 break; 640 } 641 if (copyhdr) 642 n = m_gethdr(wait, m->m_type); 643 else 644 n = m_get(wait, m->m_type); 645 *np = n; 646 if (n == NULL) 647 goto nospace; 648 if (copyhdr) { 649 if (!m_dup_pkthdr(n, m, wait)) 650 goto nospace; 651 if (len == M_COPYALL) 652 n->m_pkthdr.len -= off0; 653 else 654 n->m_pkthdr.len = len; 655 copyhdr = 0; 656 } 657 n->m_len = min(len, m->m_len - off); 658 if (m->m_flags & M_EXT) { 659 n->m_data = m->m_data + off; 660 mb_dupcl(n, m); 661 } else 662 bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t), 663 (u_int)n->m_len); 664 if (len != M_COPYALL) 665 len -= n->m_len; 666 off = 0; 667 m = m->m_next; 668 np = &n->m_next; 669 } 670 671 return (top); 672 nospace: 673 m_freem(top); 674 return (NULL); 675 } 676 677 /* 678 * Copy an entire packet, including header (which must be present). 679 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'. 680 * Note that the copy is read-only, because clusters are not copied, 681 * only their reference counts are incremented. 682 * Preserve alignment of the first mbuf so if the creator has left 683 * some room at the beginning (e.g. for inserting protocol headers) 684 * the copies still have the room available. 685 */ 686 struct mbuf * 687 m_copypacket(struct mbuf *m, int how) 688 { 689 struct mbuf *top, *n, *o; 690 691 MBUF_CHECKSLEEP(how); 692 n = m_get(how, m->m_type); 693 top = n; 694 if (n == NULL) 695 goto nospace; 696 697 if (!m_dup_pkthdr(n, m, how)) 698 goto nospace; 699 n->m_len = m->m_len; 700 if (m->m_flags & M_EXT) { 701 n->m_data = m->m_data; 702 mb_dupcl(n, m); 703 } else { 704 n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat ); 705 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 706 } 707 708 m = m->m_next; 709 while (m) { 710 o = m_get(how, m->m_type); 711 if (o == NULL) 712 goto nospace; 713 714 n->m_next = o; 715 n = n->m_next; 716 717 n->m_len = m->m_len; 718 if (m->m_flags & M_EXT) { 719 n->m_data = m->m_data; 720 mb_dupcl(n, m); 721 } else { 722 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 723 } 724 725 m = m->m_next; 726 } 727 return top; 728 nospace: 729 m_freem(top); 730 return (NULL); 731 } 732 733 /* 734 * Copy data from an mbuf chain starting "off" bytes from the beginning, 735 * continuing for "len" bytes, into the indicated buffer. 736 */ 737 void 738 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp) 739 { 740 u_int count; 741 742 KASSERT(off >= 0, ("m_copydata, negative off %d", off)); 743 KASSERT(len >= 0, ("m_copydata, negative len %d", len)); 744 while (off > 0) { 745 KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain")); 746 if (off < m->m_len) 747 break; 748 off -= m->m_len; 749 m = m->m_next; 750 } 751 while (len > 0) { 752 KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain")); 753 count = min(m->m_len - off, len); 754 bcopy(mtod(m, caddr_t) + off, cp, count); 755 len -= count; 756 cp += count; 757 off = 0; 758 m = m->m_next; 759 } 760 } 761 762 /* 763 * Copy a packet header mbuf chain into a completely new chain, including 764 * copying any mbuf clusters. Use this instead of m_copypacket() when 765 * you need a writable copy of an mbuf chain. 766 */ 767 struct mbuf * 768 m_dup(struct mbuf *m, int how) 769 { 770 struct mbuf **p, *top = NULL; 771 int remain, moff, nsize; 772 773 MBUF_CHECKSLEEP(how); 774 /* Sanity check */ 775 if (m == NULL) 776 return (NULL); 777 M_ASSERTPKTHDR(m); 778 779 /* While there's more data, get a new mbuf, tack it on, and fill it */ 780 remain = m->m_pkthdr.len; 781 moff = 0; 782 p = ⊤ 783 while (remain > 0 || top == NULL) { /* allow m->m_pkthdr.len == 0 */ 784 struct mbuf *n; 785 786 /* Get the next new mbuf */ 787 if (remain >= MINCLSIZE) { 788 n = m_getcl(how, m->m_type, 0); 789 nsize = MCLBYTES; 790 } else { 791 n = m_get(how, m->m_type); 792 nsize = MLEN; 793 } 794 if (n == NULL) 795 goto nospace; 796 797 if (top == NULL) { /* First one, must be PKTHDR */ 798 if (!m_dup_pkthdr(n, m, how)) { 799 m_free(n); 800 goto nospace; 801 } 802 if ((n->m_flags & M_EXT) == 0) 803 nsize = MHLEN; 804 } 805 n->m_len = 0; 806 807 /* Link it into the new chain */ 808 *p = n; 809 p = &n->m_next; 810 811 /* Copy data from original mbuf(s) into new mbuf */ 812 while (n->m_len < nsize && m != NULL) { 813 int chunk = min(nsize - n->m_len, m->m_len - moff); 814 815 bcopy(m->m_data + moff, n->m_data + n->m_len, chunk); 816 moff += chunk; 817 n->m_len += chunk; 818 remain -= chunk; 819 if (moff == m->m_len) { 820 m = m->m_next; 821 moff = 0; 822 } 823 } 824 825 /* Check correct total mbuf length */ 826 KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL), 827 ("%s: bogus m_pkthdr.len", __func__)); 828 } 829 return (top); 830 831 nospace: 832 m_freem(top); 833 return (NULL); 834 } 835 836 /* 837 * Concatenate mbuf chain n to m. 838 * Both chains must be of the same type (e.g. MT_DATA). 839 * Any m_pkthdr is not updated. 840 */ 841 void 842 m_cat(struct mbuf *m, struct mbuf *n) 843 { 844 while (m->m_next) 845 m = m->m_next; 846 while (n) { 847 if (!M_WRITABLE(m) || 848 M_TRAILINGSPACE(m) < n->m_len) { 849 /* just join the two chains */ 850 m->m_next = n; 851 return; 852 } 853 /* splat the data from one into the other */ 854 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 855 (u_int)n->m_len); 856 m->m_len += n->m_len; 857 n = m_free(n); 858 } 859 } 860 861 /* 862 * Concatenate two pkthdr mbuf chains. 863 */ 864 void 865 m_catpkt(struct mbuf *m, struct mbuf *n) 866 { 867 868 M_ASSERTPKTHDR(m); 869 M_ASSERTPKTHDR(n); 870 871 m->m_pkthdr.len += n->m_pkthdr.len; 872 m_demote(n, 1, 0); 873 874 m_cat(m, n); 875 } 876 877 void 878 m_adj(struct mbuf *mp, int req_len) 879 { 880 int len = req_len; 881 struct mbuf *m; 882 int count; 883 884 if ((m = mp) == NULL) 885 return; 886 if (len >= 0) { 887 /* 888 * Trim from head. 889 */ 890 while (m != NULL && len > 0) { 891 if (m->m_len <= len) { 892 len -= m->m_len; 893 m->m_len = 0; 894 m = m->m_next; 895 } else { 896 m->m_len -= len; 897 m->m_data += len; 898 len = 0; 899 } 900 } 901 if (mp->m_flags & M_PKTHDR) 902 mp->m_pkthdr.len -= (req_len - len); 903 } else { 904 /* 905 * Trim from tail. Scan the mbuf chain, 906 * calculating its length and finding the last mbuf. 907 * If the adjustment only affects this mbuf, then just 908 * adjust and return. Otherwise, rescan and truncate 909 * after the remaining size. 910 */ 911 len = -len; 912 count = 0; 913 for (;;) { 914 count += m->m_len; 915 if (m->m_next == (struct mbuf *)0) 916 break; 917 m = m->m_next; 918 } 919 if (m->m_len >= len) { 920 m->m_len -= len; 921 if (mp->m_flags & M_PKTHDR) 922 mp->m_pkthdr.len -= len; 923 return; 924 } 925 count -= len; 926 if (count < 0) 927 count = 0; 928 /* 929 * Correct length for chain is "count". 930 * Find the mbuf with last data, adjust its length, 931 * and toss data from remaining mbufs on chain. 932 */ 933 m = mp; 934 if (m->m_flags & M_PKTHDR) 935 m->m_pkthdr.len = count; 936 for (; m; m = m->m_next) { 937 if (m->m_len >= count) { 938 m->m_len = count; 939 if (m->m_next != NULL) { 940 m_freem(m->m_next); 941 m->m_next = NULL; 942 } 943 break; 944 } 945 count -= m->m_len; 946 } 947 } 948 } 949 950 /* 951 * Rearange an mbuf chain so that len bytes are contiguous 952 * and in the data area of an mbuf (so that mtod will work 953 * for a structure of size len). Returns the resulting 954 * mbuf chain on success, frees it and returns null on failure. 955 * If there is room, it will add up to max_protohdr-len extra bytes to the 956 * contiguous region in an attempt to avoid being called next time. 957 */ 958 struct mbuf * 959 m_pullup(struct mbuf *n, int len) 960 { 961 struct mbuf *m; 962 int count; 963 int space; 964 965 /* 966 * If first mbuf has no cluster, and has room for len bytes 967 * without shifting current data, pullup into it, 968 * otherwise allocate a new mbuf to prepend to the chain. 969 */ 970 if ((n->m_flags & M_EXT) == 0 && 971 n->m_data + len < &n->m_dat[MLEN] && n->m_next) { 972 if (n->m_len >= len) 973 return (n); 974 m = n; 975 n = n->m_next; 976 len -= m->m_len; 977 } else { 978 if (len > MHLEN) 979 goto bad; 980 m = m_get(M_NOWAIT, n->m_type); 981 if (m == NULL) 982 goto bad; 983 if (n->m_flags & M_PKTHDR) 984 m_move_pkthdr(m, n); 985 } 986 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 987 do { 988 count = min(min(max(len, max_protohdr), space), n->m_len); 989 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 990 (u_int)count); 991 len -= count; 992 m->m_len += count; 993 n->m_len -= count; 994 space -= count; 995 if (n->m_len) 996 n->m_data += count; 997 else 998 n = m_free(n); 999 } while (len > 0 && n); 1000 if (len > 0) { 1001 (void) m_free(m); 1002 goto bad; 1003 } 1004 m->m_next = n; 1005 return (m); 1006 bad: 1007 m_freem(n); 1008 return (NULL); 1009 } 1010 1011 /* 1012 * Like m_pullup(), except a new mbuf is always allocated, and we allow 1013 * the amount of empty space before the data in the new mbuf to be specified 1014 * (in the event that the caller expects to prepend later). 1015 */ 1016 int MSFail; 1017 1018 struct mbuf * 1019 m_copyup(struct mbuf *n, int len, int dstoff) 1020 { 1021 struct mbuf *m; 1022 int count, space; 1023 1024 if (len > (MHLEN - dstoff)) 1025 goto bad; 1026 m = m_get(M_NOWAIT, n->m_type); 1027 if (m == NULL) 1028 goto bad; 1029 if (n->m_flags & M_PKTHDR) 1030 m_move_pkthdr(m, n); 1031 m->m_data += dstoff; 1032 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 1033 do { 1034 count = min(min(max(len, max_protohdr), space), n->m_len); 1035 memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t), 1036 (unsigned)count); 1037 len -= count; 1038 m->m_len += count; 1039 n->m_len -= count; 1040 space -= count; 1041 if (n->m_len) 1042 n->m_data += count; 1043 else 1044 n = m_free(n); 1045 } while (len > 0 && n); 1046 if (len > 0) { 1047 (void) m_free(m); 1048 goto bad; 1049 } 1050 m->m_next = n; 1051 return (m); 1052 bad: 1053 m_freem(n); 1054 MSFail++; 1055 return (NULL); 1056 } 1057 1058 /* 1059 * Partition an mbuf chain in two pieces, returning the tail -- 1060 * all but the first len0 bytes. In case of failure, it returns NULL and 1061 * attempts to restore the chain to its original state. 1062 * 1063 * Note that the resulting mbufs might be read-only, because the new 1064 * mbuf can end up sharing an mbuf cluster with the original mbuf if 1065 * the "breaking point" happens to lie within a cluster mbuf. Use the 1066 * M_WRITABLE() macro to check for this case. 1067 */ 1068 struct mbuf * 1069 m_split(struct mbuf *m0, int len0, int wait) 1070 { 1071 struct mbuf *m, *n; 1072 u_int len = len0, remain; 1073 1074 MBUF_CHECKSLEEP(wait); 1075 for (m = m0; m && len > m->m_len; m = m->m_next) 1076 len -= m->m_len; 1077 if (m == NULL) 1078 return (NULL); 1079 remain = m->m_len - len; 1080 if (m0->m_flags & M_PKTHDR && remain == 0) { 1081 n = m_gethdr(wait, m0->m_type); 1082 if (n == NULL) 1083 return (NULL); 1084 n->m_next = m->m_next; 1085 m->m_next = NULL; 1086 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; 1087 n->m_pkthdr.len = m0->m_pkthdr.len - len0; 1088 m0->m_pkthdr.len = len0; 1089 return (n); 1090 } else if (m0->m_flags & M_PKTHDR) { 1091 n = m_gethdr(wait, m0->m_type); 1092 if (n == NULL) 1093 return (NULL); 1094 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; 1095 n->m_pkthdr.len = m0->m_pkthdr.len - len0; 1096 m0->m_pkthdr.len = len0; 1097 if (m->m_flags & M_EXT) 1098 goto extpacket; 1099 if (remain > MHLEN) { 1100 /* m can't be the lead packet */ 1101 M_ALIGN(n, 0); 1102 n->m_next = m_split(m, len, wait); 1103 if (n->m_next == NULL) { 1104 (void) m_free(n); 1105 return (NULL); 1106 } else { 1107 n->m_len = 0; 1108 return (n); 1109 } 1110 } else 1111 M_ALIGN(n, remain); 1112 } else if (remain == 0) { 1113 n = m->m_next; 1114 m->m_next = NULL; 1115 return (n); 1116 } else { 1117 n = m_get(wait, m->m_type); 1118 if (n == NULL) 1119 return (NULL); 1120 M_ALIGN(n, remain); 1121 } 1122 extpacket: 1123 if (m->m_flags & M_EXT) { 1124 n->m_data = m->m_data + len; 1125 mb_dupcl(n, m); 1126 } else { 1127 bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain); 1128 } 1129 n->m_len = remain; 1130 m->m_len = len; 1131 n->m_next = m->m_next; 1132 m->m_next = NULL; 1133 return (n); 1134 } 1135 /* 1136 * Routine to copy from device local memory into mbufs. 1137 * Note that `off' argument is offset into first mbuf of target chain from 1138 * which to begin copying the data to. 1139 */ 1140 struct mbuf * 1141 m_devget(char *buf, int totlen, int off, struct ifnet *ifp, 1142 void (*copy)(char *from, caddr_t to, u_int len)) 1143 { 1144 struct mbuf *m; 1145 struct mbuf *top = NULL, **mp = ⊤ 1146 int len; 1147 1148 if (off < 0 || off > MHLEN) 1149 return (NULL); 1150 1151 while (totlen > 0) { 1152 if (top == NULL) { /* First one, must be PKTHDR */ 1153 if (totlen + off >= MINCLSIZE) { 1154 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1155 len = MCLBYTES; 1156 } else { 1157 m = m_gethdr(M_NOWAIT, MT_DATA); 1158 len = MHLEN; 1159 1160 /* Place initial small packet/header at end of mbuf */ 1161 if (m && totlen + off + max_linkhdr <= MLEN) { 1162 m->m_data += max_linkhdr; 1163 len -= max_linkhdr; 1164 } 1165 } 1166 if (m == NULL) 1167 return NULL; 1168 m->m_pkthdr.rcvif = ifp; 1169 m->m_pkthdr.len = totlen; 1170 } else { 1171 if (totlen + off >= MINCLSIZE) { 1172 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1173 len = MCLBYTES; 1174 } else { 1175 m = m_get(M_NOWAIT, MT_DATA); 1176 len = MLEN; 1177 } 1178 if (m == NULL) { 1179 m_freem(top); 1180 return NULL; 1181 } 1182 } 1183 if (off) { 1184 m->m_data += off; 1185 len -= off; 1186 off = 0; 1187 } 1188 m->m_len = len = min(totlen, len); 1189 if (copy) 1190 copy(buf, mtod(m, caddr_t), (u_int)len); 1191 else 1192 bcopy(buf, mtod(m, caddr_t), (u_int)len); 1193 buf += len; 1194 *mp = m; 1195 mp = &m->m_next; 1196 totlen -= len; 1197 } 1198 return (top); 1199 } 1200 1201 /* 1202 * Copy data from a buffer back into the indicated mbuf chain, 1203 * starting "off" bytes from the beginning, extending the mbuf 1204 * chain if necessary. 1205 */ 1206 void 1207 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp) 1208 { 1209 int mlen; 1210 struct mbuf *m = m0, *n; 1211 int totlen = 0; 1212 1213 if (m0 == NULL) 1214 return; 1215 while (off > (mlen = m->m_len)) { 1216 off -= mlen; 1217 totlen += mlen; 1218 if (m->m_next == NULL) { 1219 n = m_get(M_NOWAIT, m->m_type); 1220 if (n == NULL) 1221 goto out; 1222 bzero(mtod(n, caddr_t), MLEN); 1223 n->m_len = min(MLEN, len + off); 1224 m->m_next = n; 1225 } 1226 m = m->m_next; 1227 } 1228 while (len > 0) { 1229 if (m->m_next == NULL && (len > m->m_len - off)) { 1230 m->m_len += min(len - (m->m_len - off), 1231 M_TRAILINGSPACE(m)); 1232 } 1233 mlen = min (m->m_len - off, len); 1234 bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen); 1235 cp += mlen; 1236 len -= mlen; 1237 mlen += off; 1238 off = 0; 1239 totlen += mlen; 1240 if (len == 0) 1241 break; 1242 if (m->m_next == NULL) { 1243 n = m_get(M_NOWAIT, m->m_type); 1244 if (n == NULL) 1245 break; 1246 n->m_len = min(MLEN, len); 1247 m->m_next = n; 1248 } 1249 m = m->m_next; 1250 } 1251 out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) 1252 m->m_pkthdr.len = totlen; 1253 } 1254 1255 /* 1256 * Append the specified data to the indicated mbuf chain, 1257 * Extend the mbuf chain if the new data does not fit in 1258 * existing space. 1259 * 1260 * Return 1 if able to complete the job; otherwise 0. 1261 */ 1262 int 1263 m_append(struct mbuf *m0, int len, c_caddr_t cp) 1264 { 1265 struct mbuf *m, *n; 1266 int remainder, space; 1267 1268 for (m = m0; m->m_next != NULL; m = m->m_next) 1269 ; 1270 remainder = len; 1271 space = M_TRAILINGSPACE(m); 1272 if (space > 0) { 1273 /* 1274 * Copy into available space. 1275 */ 1276 if (space > remainder) 1277 space = remainder; 1278 bcopy(cp, mtod(m, caddr_t) + m->m_len, space); 1279 m->m_len += space; 1280 cp += space, remainder -= space; 1281 } 1282 while (remainder > 0) { 1283 /* 1284 * Allocate a new mbuf; could check space 1285 * and allocate a cluster instead. 1286 */ 1287 n = m_get(M_NOWAIT, m->m_type); 1288 if (n == NULL) 1289 break; 1290 n->m_len = min(MLEN, remainder); 1291 bcopy(cp, mtod(n, caddr_t), n->m_len); 1292 cp += n->m_len, remainder -= n->m_len; 1293 m->m_next = n; 1294 m = n; 1295 } 1296 if (m0->m_flags & M_PKTHDR) 1297 m0->m_pkthdr.len += len - remainder; 1298 return (remainder == 0); 1299 } 1300 1301 /* 1302 * Apply function f to the data in an mbuf chain starting "off" bytes from 1303 * the beginning, continuing for "len" bytes. 1304 */ 1305 int 1306 m_apply(struct mbuf *m, int off, int len, 1307 int (*f)(void *, void *, u_int), void *arg) 1308 { 1309 u_int count; 1310 int rval; 1311 1312 KASSERT(off >= 0, ("m_apply, negative off %d", off)); 1313 KASSERT(len >= 0, ("m_apply, negative len %d", len)); 1314 while (off > 0) { 1315 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1316 if (off < m->m_len) 1317 break; 1318 off -= m->m_len; 1319 m = m->m_next; 1320 } 1321 while (len > 0) { 1322 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1323 count = min(m->m_len - off, len); 1324 rval = (*f)(arg, mtod(m, caddr_t) + off, count); 1325 if (rval) 1326 return (rval); 1327 len -= count; 1328 off = 0; 1329 m = m->m_next; 1330 } 1331 return (0); 1332 } 1333 1334 /* 1335 * Return a pointer to mbuf/offset of location in mbuf chain. 1336 */ 1337 struct mbuf * 1338 m_getptr(struct mbuf *m, int loc, int *off) 1339 { 1340 1341 while (loc >= 0) { 1342 /* Normal end of search. */ 1343 if (m->m_len > loc) { 1344 *off = loc; 1345 return (m); 1346 } else { 1347 loc -= m->m_len; 1348 if (m->m_next == NULL) { 1349 if (loc == 0) { 1350 /* Point at the end of valid data. */ 1351 *off = m->m_len; 1352 return (m); 1353 } 1354 return (NULL); 1355 } 1356 m = m->m_next; 1357 } 1358 } 1359 return (NULL); 1360 } 1361 1362 void 1363 m_print(const struct mbuf *m, int maxlen) 1364 { 1365 int len; 1366 int pdata; 1367 const struct mbuf *m2; 1368 1369 if (m == NULL) { 1370 printf("mbuf: %p\n", m); 1371 return; 1372 } 1373 1374 if (m->m_flags & M_PKTHDR) 1375 len = m->m_pkthdr.len; 1376 else 1377 len = -1; 1378 m2 = m; 1379 while (m2 != NULL && (len == -1 || len)) { 1380 pdata = m2->m_len; 1381 if (maxlen != -1 && pdata > maxlen) 1382 pdata = maxlen; 1383 printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len, 1384 m2->m_next, m2->m_flags, "\20\20freelist\17skipfw" 1385 "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly" 1386 "\3eor\2pkthdr\1ext", pdata ? "" : "\n"); 1387 if (pdata) 1388 printf(", %*D\n", pdata, (u_char *)m2->m_data, "-"); 1389 if (len != -1) 1390 len -= m2->m_len; 1391 m2 = m2->m_next; 1392 } 1393 if (len > 0) 1394 printf("%d bytes unaccounted for.\n", len); 1395 return; 1396 } 1397 1398 u_int 1399 m_fixhdr(struct mbuf *m0) 1400 { 1401 u_int len; 1402 1403 len = m_length(m0, NULL); 1404 m0->m_pkthdr.len = len; 1405 return (len); 1406 } 1407 1408 u_int 1409 m_length(struct mbuf *m0, struct mbuf **last) 1410 { 1411 struct mbuf *m; 1412 u_int len; 1413 1414 len = 0; 1415 for (m = m0; m != NULL; m = m->m_next) { 1416 len += m->m_len; 1417 if (m->m_next == NULL) 1418 break; 1419 } 1420 if (last != NULL) 1421 *last = m; 1422 return (len); 1423 } 1424 1425 /* 1426 * Defragment a mbuf chain, returning the shortest possible 1427 * chain of mbufs and clusters. If allocation fails and 1428 * this cannot be completed, NULL will be returned, but 1429 * the passed in chain will be unchanged. Upon success, 1430 * the original chain will be freed, and the new chain 1431 * will be returned. 1432 * 1433 * If a non-packet header is passed in, the original 1434 * mbuf (chain?) will be returned unharmed. 1435 */ 1436 struct mbuf * 1437 m_defrag(struct mbuf *m0, int how) 1438 { 1439 struct mbuf *m_new = NULL, *m_final = NULL; 1440 int progress = 0, length; 1441 1442 MBUF_CHECKSLEEP(how); 1443 if (!(m0->m_flags & M_PKTHDR)) 1444 return (m0); 1445 1446 m_fixhdr(m0); /* Needed sanity check */ 1447 1448 #ifdef MBUF_STRESS_TEST 1449 if (m_defragrandomfailures) { 1450 int temp = arc4random() & 0xff; 1451 if (temp == 0xba) 1452 goto nospace; 1453 } 1454 #endif 1455 1456 if (m0->m_pkthdr.len > MHLEN) 1457 m_final = m_getcl(how, MT_DATA, M_PKTHDR); 1458 else 1459 m_final = m_gethdr(how, MT_DATA); 1460 1461 if (m_final == NULL) 1462 goto nospace; 1463 1464 if (m_dup_pkthdr(m_final, m0, how) == 0) 1465 goto nospace; 1466 1467 m_new = m_final; 1468 1469 while (progress < m0->m_pkthdr.len) { 1470 length = m0->m_pkthdr.len - progress; 1471 if (length > MCLBYTES) 1472 length = MCLBYTES; 1473 1474 if (m_new == NULL) { 1475 if (length > MLEN) 1476 m_new = m_getcl(how, MT_DATA, 0); 1477 else 1478 m_new = m_get(how, MT_DATA); 1479 if (m_new == NULL) 1480 goto nospace; 1481 } 1482 1483 m_copydata(m0, progress, length, mtod(m_new, caddr_t)); 1484 progress += length; 1485 m_new->m_len = length; 1486 if (m_new != m_final) 1487 m_cat(m_final, m_new); 1488 m_new = NULL; 1489 } 1490 #ifdef MBUF_STRESS_TEST 1491 if (m0->m_next == NULL) 1492 m_defraguseless++; 1493 #endif 1494 m_freem(m0); 1495 m0 = m_final; 1496 #ifdef MBUF_STRESS_TEST 1497 m_defragpackets++; 1498 m_defragbytes += m0->m_pkthdr.len; 1499 #endif 1500 return (m0); 1501 nospace: 1502 #ifdef MBUF_STRESS_TEST 1503 m_defragfailure++; 1504 #endif 1505 if (m_final) 1506 m_freem(m_final); 1507 return (NULL); 1508 } 1509 1510 /* 1511 * Defragment an mbuf chain, returning at most maxfrags separate 1512 * mbufs+clusters. If this is not possible NULL is returned and 1513 * the original mbuf chain is left in it's present (potentially 1514 * modified) state. We use two techniques: collapsing consecutive 1515 * mbufs and replacing consecutive mbufs by a cluster. 1516 * 1517 * NB: this should really be named m_defrag but that name is taken 1518 */ 1519 struct mbuf * 1520 m_collapse(struct mbuf *m0, int how, int maxfrags) 1521 { 1522 struct mbuf *m, *n, *n2, **prev; 1523 u_int curfrags; 1524 1525 /* 1526 * Calculate the current number of frags. 1527 */ 1528 curfrags = 0; 1529 for (m = m0; m != NULL; m = m->m_next) 1530 curfrags++; 1531 /* 1532 * First, try to collapse mbufs. Note that we always collapse 1533 * towards the front so we don't need to deal with moving the 1534 * pkthdr. This may be suboptimal if the first mbuf has much 1535 * less data than the following. 1536 */ 1537 m = m0; 1538 again: 1539 for (;;) { 1540 n = m->m_next; 1541 if (n == NULL) 1542 break; 1543 if (M_WRITABLE(m) && 1544 n->m_len < M_TRAILINGSPACE(m)) { 1545 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len, 1546 n->m_len); 1547 m->m_len += n->m_len; 1548 m->m_next = n->m_next; 1549 m_free(n); 1550 if (--curfrags <= maxfrags) 1551 return m0; 1552 } else 1553 m = n; 1554 } 1555 KASSERT(maxfrags > 1, 1556 ("maxfrags %u, but normal collapse failed", maxfrags)); 1557 /* 1558 * Collapse consecutive mbufs to a cluster. 1559 */ 1560 prev = &m0->m_next; /* NB: not the first mbuf */ 1561 while ((n = *prev) != NULL) { 1562 if ((n2 = n->m_next) != NULL && 1563 n->m_len + n2->m_len < MCLBYTES) { 1564 m = m_getcl(how, MT_DATA, 0); 1565 if (m == NULL) 1566 goto bad; 1567 bcopy(mtod(n, void *), mtod(m, void *), n->m_len); 1568 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len, 1569 n2->m_len); 1570 m->m_len = n->m_len + n2->m_len; 1571 m->m_next = n2->m_next; 1572 *prev = m; 1573 m_free(n); 1574 m_free(n2); 1575 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */ 1576 return m0; 1577 /* 1578 * Still not there, try the normal collapse 1579 * again before we allocate another cluster. 1580 */ 1581 goto again; 1582 } 1583 prev = &n->m_next; 1584 } 1585 /* 1586 * No place where we can collapse to a cluster; punt. 1587 * This can occur if, for example, you request 2 frags 1588 * but the packet requires that both be clusters (we 1589 * never reallocate the first mbuf to avoid moving the 1590 * packet header). 1591 */ 1592 bad: 1593 return NULL; 1594 } 1595 1596 #ifdef MBUF_STRESS_TEST 1597 1598 /* 1599 * Fragment an mbuf chain. There's no reason you'd ever want to do 1600 * this in normal usage, but it's great for stress testing various 1601 * mbuf consumers. 1602 * 1603 * If fragmentation is not possible, the original chain will be 1604 * returned. 1605 * 1606 * Possible length values: 1607 * 0 no fragmentation will occur 1608 * > 0 each fragment will be of the specified length 1609 * -1 each fragment will be the same random value in length 1610 * -2 each fragment's length will be entirely random 1611 * (Random values range from 1 to 256) 1612 */ 1613 struct mbuf * 1614 m_fragment(struct mbuf *m0, int how, int length) 1615 { 1616 struct mbuf *m_new = NULL, *m_final = NULL; 1617 int progress = 0; 1618 1619 if (!(m0->m_flags & M_PKTHDR)) 1620 return (m0); 1621 1622 if ((length == 0) || (length < -2)) 1623 return (m0); 1624 1625 m_fixhdr(m0); /* Needed sanity check */ 1626 1627 m_final = m_getcl(how, MT_DATA, M_PKTHDR); 1628 1629 if (m_final == NULL) 1630 goto nospace; 1631 1632 if (m_dup_pkthdr(m_final, m0, how) == 0) 1633 goto nospace; 1634 1635 m_new = m_final; 1636 1637 if (length == -1) 1638 length = 1 + (arc4random() & 255); 1639 1640 while (progress < m0->m_pkthdr.len) { 1641 int fraglen; 1642 1643 if (length > 0) 1644 fraglen = length; 1645 else 1646 fraglen = 1 + (arc4random() & 255); 1647 if (fraglen > m0->m_pkthdr.len - progress) 1648 fraglen = m0->m_pkthdr.len - progress; 1649 1650 if (fraglen > MCLBYTES) 1651 fraglen = MCLBYTES; 1652 1653 if (m_new == NULL) { 1654 m_new = m_getcl(how, MT_DATA, 0); 1655 if (m_new == NULL) 1656 goto nospace; 1657 } 1658 1659 m_copydata(m0, progress, fraglen, mtod(m_new, caddr_t)); 1660 progress += fraglen; 1661 m_new->m_len = fraglen; 1662 if (m_new != m_final) 1663 m_cat(m_final, m_new); 1664 m_new = NULL; 1665 } 1666 m_freem(m0); 1667 m0 = m_final; 1668 return (m0); 1669 nospace: 1670 if (m_final) 1671 m_freem(m_final); 1672 /* Return the original chain on failure */ 1673 return (m0); 1674 } 1675 1676 #endif 1677 1678 /* 1679 * Copy the contents of uio into a properly sized mbuf chain. 1680 */ 1681 struct mbuf * 1682 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags) 1683 { 1684 struct mbuf *m, *mb; 1685 int error, length; 1686 ssize_t total; 1687 int progress = 0; 1688 1689 /* 1690 * len can be zero or an arbitrary large value bound by 1691 * the total data supplied by the uio. 1692 */ 1693 if (len > 0) 1694 total = min(uio->uio_resid, len); 1695 else 1696 total = uio->uio_resid; 1697 1698 /* 1699 * The smallest unit returned by m_getm2() is a single mbuf 1700 * with pkthdr. We can't align past it. 1701 */ 1702 if (align >= MHLEN) 1703 return (NULL); 1704 1705 /* 1706 * Give us the full allocation or nothing. 1707 * If len is zero return the smallest empty mbuf. 1708 */ 1709 m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags); 1710 if (m == NULL) 1711 return (NULL); 1712 m->m_data += align; 1713 1714 /* Fill all mbufs with uio data and update header information. */ 1715 for (mb = m; mb != NULL; mb = mb->m_next) { 1716 length = min(M_TRAILINGSPACE(mb), total - progress); 1717 1718 error = uiomove(mtod(mb, void *), length, uio); 1719 if (error) { 1720 m_freem(m); 1721 return (NULL); 1722 } 1723 1724 mb->m_len = length; 1725 progress += length; 1726 if (flags & M_PKTHDR) 1727 m->m_pkthdr.len += length; 1728 } 1729 KASSERT(progress == total, ("%s: progress != total", __func__)); 1730 1731 return (m); 1732 } 1733 1734 /* 1735 * Copy an mbuf chain into a uio limited by len if set. 1736 */ 1737 int 1738 m_mbuftouio(struct uio *uio, struct mbuf *m, int len) 1739 { 1740 int error, length, total; 1741 int progress = 0; 1742 1743 if (len > 0) 1744 total = min(uio->uio_resid, len); 1745 else 1746 total = uio->uio_resid; 1747 1748 /* Fill the uio with data from the mbufs. */ 1749 for (; m != NULL; m = m->m_next) { 1750 length = min(m->m_len, total - progress); 1751 1752 error = uiomove(mtod(m, void *), length, uio); 1753 if (error) 1754 return (error); 1755 1756 progress += length; 1757 } 1758 1759 return (0); 1760 } 1761 1762 /* 1763 * Create a writable copy of the mbuf chain. While doing this 1764 * we compact the chain with a goal of producing a chain with 1765 * at most two mbufs. The second mbuf in this chain is likely 1766 * to be a cluster. The primary purpose of this work is to create 1767 * a writable packet for encryption, compression, etc. The 1768 * secondary goal is to linearize the data so the data can be 1769 * passed to crypto hardware in the most efficient manner possible. 1770 */ 1771 struct mbuf * 1772 m_unshare(struct mbuf *m0, int how) 1773 { 1774 struct mbuf *m, *mprev; 1775 struct mbuf *n, *mfirst, *mlast; 1776 int len, off; 1777 1778 mprev = NULL; 1779 for (m = m0; m != NULL; m = mprev->m_next) { 1780 /* 1781 * Regular mbufs are ignored unless there's a cluster 1782 * in front of it that we can use to coalesce. We do 1783 * the latter mainly so later clusters can be coalesced 1784 * also w/o having to handle them specially (i.e. convert 1785 * mbuf+cluster -> cluster). This optimization is heavily 1786 * influenced by the assumption that we're running over 1787 * Ethernet where MCLBYTES is large enough that the max 1788 * packet size will permit lots of coalescing into a 1789 * single cluster. This in turn permits efficient 1790 * crypto operations, especially when using hardware. 1791 */ 1792 if ((m->m_flags & M_EXT) == 0) { 1793 if (mprev && (mprev->m_flags & M_EXT) && 1794 m->m_len <= M_TRAILINGSPACE(mprev)) { 1795 /* XXX: this ignores mbuf types */ 1796 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 1797 mtod(m, caddr_t), m->m_len); 1798 mprev->m_len += m->m_len; 1799 mprev->m_next = m->m_next; /* unlink from chain */ 1800 m_free(m); /* reclaim mbuf */ 1801 #if 0 1802 newipsecstat.ips_mbcoalesced++; 1803 #endif 1804 } else { 1805 mprev = m; 1806 } 1807 continue; 1808 } 1809 /* 1810 * Writable mbufs are left alone (for now). 1811 */ 1812 if (M_WRITABLE(m)) { 1813 mprev = m; 1814 continue; 1815 } 1816 1817 /* 1818 * Not writable, replace with a copy or coalesce with 1819 * the previous mbuf if possible (since we have to copy 1820 * it anyway, we try to reduce the number of mbufs and 1821 * clusters so that future work is easier). 1822 */ 1823 KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags)); 1824 /* NB: we only coalesce into a cluster or larger */ 1825 if (mprev != NULL && (mprev->m_flags & M_EXT) && 1826 m->m_len <= M_TRAILINGSPACE(mprev)) { 1827 /* XXX: this ignores mbuf types */ 1828 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 1829 mtod(m, caddr_t), m->m_len); 1830 mprev->m_len += m->m_len; 1831 mprev->m_next = m->m_next; /* unlink from chain */ 1832 m_free(m); /* reclaim mbuf */ 1833 #if 0 1834 newipsecstat.ips_clcoalesced++; 1835 #endif 1836 continue; 1837 } 1838 1839 /* 1840 * Allocate new space to hold the copy and copy the data. 1841 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by 1842 * splitting them into clusters. We could just malloc a 1843 * buffer and make it external but too many device drivers 1844 * don't know how to break up the non-contiguous memory when 1845 * doing DMA. 1846 */ 1847 n = m_getcl(how, m->m_type, m->m_flags); 1848 if (n == NULL) { 1849 m_freem(m0); 1850 return (NULL); 1851 } 1852 len = m->m_len; 1853 off = 0; 1854 mfirst = n; 1855 mlast = NULL; 1856 for (;;) { 1857 int cc = min(len, MCLBYTES); 1858 memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc); 1859 n->m_len = cc; 1860 if (mlast != NULL) 1861 mlast->m_next = n; 1862 mlast = n; 1863 #if 0 1864 newipsecstat.ips_clcopied++; 1865 #endif 1866 1867 len -= cc; 1868 if (len <= 0) 1869 break; 1870 off += cc; 1871 1872 n = m_getcl(how, m->m_type, m->m_flags); 1873 if (n == NULL) { 1874 m_freem(mfirst); 1875 m_freem(m0); 1876 return (NULL); 1877 } 1878 } 1879 n->m_next = m->m_next; 1880 if (mprev == NULL) 1881 m0 = mfirst; /* new head of chain */ 1882 else 1883 mprev->m_next = mfirst; /* replace old mbuf */ 1884 m_free(m); /* release old mbuf */ 1885 mprev = mfirst; 1886 } 1887 return (m0); 1888 } 1889 1890 #ifdef MBUF_PROFILING 1891 1892 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/ 1893 struct mbufprofile { 1894 uintmax_t wasted[MP_BUCKETS]; 1895 uintmax_t used[MP_BUCKETS]; 1896 uintmax_t segments[MP_BUCKETS]; 1897 } mbprof; 1898 1899 #define MP_MAXDIGITS 21 /* strlen("16,000,000,000,000,000,000") == 21 */ 1900 #define MP_NUMLINES 6 1901 #define MP_NUMSPERLINE 16 1902 #define MP_EXTRABYTES 64 /* > strlen("used:\nwasted:\nsegments:\n") */ 1903 /* work out max space needed and add a bit of spare space too */ 1904 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE) 1905 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES) 1906 1907 char mbprofbuf[MP_BUFSIZE]; 1908 1909 void 1910 m_profile(struct mbuf *m) 1911 { 1912 int segments = 0; 1913 int used = 0; 1914 int wasted = 0; 1915 1916 while (m) { 1917 segments++; 1918 used += m->m_len; 1919 if (m->m_flags & M_EXT) { 1920 wasted += MHLEN - sizeof(m->m_ext) + 1921 m->m_ext.ext_size - m->m_len; 1922 } else { 1923 if (m->m_flags & M_PKTHDR) 1924 wasted += MHLEN - m->m_len; 1925 else 1926 wasted += MLEN - m->m_len; 1927 } 1928 m = m->m_next; 1929 } 1930 /* be paranoid.. it helps */ 1931 if (segments > MP_BUCKETS - 1) 1932 segments = MP_BUCKETS - 1; 1933 if (used > 100000) 1934 used = 100000; 1935 if (wasted > 100000) 1936 wasted = 100000; 1937 /* store in the appropriate bucket */ 1938 /* don't bother locking. if it's slightly off, so what? */ 1939 mbprof.segments[segments]++; 1940 mbprof.used[fls(used)]++; 1941 mbprof.wasted[fls(wasted)]++; 1942 } 1943 1944 static void 1945 mbprof_textify(void) 1946 { 1947 int offset; 1948 char *c; 1949 uint64_t *p; 1950 1951 p = &mbprof.wasted[0]; 1952 c = mbprofbuf; 1953 offset = snprintf(c, MP_MAXLINE + 10, 1954 "wasted:\n" 1955 "%ju %ju %ju %ju %ju %ju %ju %ju " 1956 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 1957 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 1958 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 1959 #ifdef BIG_ARRAY 1960 p = &mbprof.wasted[16]; 1961 c += offset; 1962 offset = snprintf(c, MP_MAXLINE, 1963 "%ju %ju %ju %ju %ju %ju %ju %ju " 1964 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 1965 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 1966 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 1967 #endif 1968 p = &mbprof.used[0]; 1969 c += offset; 1970 offset = snprintf(c, MP_MAXLINE + 10, 1971 "used:\n" 1972 "%ju %ju %ju %ju %ju %ju %ju %ju " 1973 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 1974 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 1975 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 1976 #ifdef BIG_ARRAY 1977 p = &mbprof.used[16]; 1978 c += offset; 1979 offset = snprintf(c, MP_MAXLINE, 1980 "%ju %ju %ju %ju %ju %ju %ju %ju " 1981 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 1982 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 1983 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 1984 #endif 1985 p = &mbprof.segments[0]; 1986 c += offset; 1987 offset = snprintf(c, MP_MAXLINE + 10, 1988 "segments:\n" 1989 "%ju %ju %ju %ju %ju %ju %ju %ju " 1990 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 1991 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 1992 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 1993 #ifdef BIG_ARRAY 1994 p = &mbprof.segments[16]; 1995 c += offset; 1996 offset = snprintf(c, MP_MAXLINE, 1997 "%ju %ju %ju %ju %ju %ju %ju %ju " 1998 "%ju %ju %ju %ju %ju %ju %ju %jju", 1999 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2000 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2001 #endif 2002 } 2003 2004 static int 2005 mbprof_handler(SYSCTL_HANDLER_ARGS) 2006 { 2007 int error; 2008 2009 mbprof_textify(); 2010 error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1); 2011 return (error); 2012 } 2013 2014 static int 2015 mbprof_clr_handler(SYSCTL_HANDLER_ARGS) 2016 { 2017 int clear, error; 2018 2019 clear = 0; 2020 error = sysctl_handle_int(oidp, &clear, 0, req); 2021 if (error || !req->newptr) 2022 return (error); 2023 2024 if (clear) { 2025 bzero(&mbprof, sizeof(mbprof)); 2026 } 2027 2028 return (error); 2029 } 2030 2031 2032 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD, 2033 NULL, 0, mbprof_handler, "A", "mbuf profiling statistics"); 2034 2035 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW, 2036 NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics"); 2037 #endif 2038 2039