xref: /freebsd/sys/kern/uipc_mbuf.c (revision fafb1ee7bdc5d8a7d07cd03b2fb0bbb76f7a9d7c)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_param.h"
36 #include "opt_mbuf_stress_test.h"
37 #include "opt_mbuf_profiling.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/limits.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/sysctl.h>
47 #include <sys/domain.h>
48 #include <sys/protosw.h>
49 #include <sys/uio.h>
50 
51 int	max_linkhdr;
52 int	max_protohdr;
53 int	max_hdr;
54 int	max_datalen;
55 #ifdef MBUF_STRESS_TEST
56 int	m_defragpackets;
57 int	m_defragbytes;
58 int	m_defraguseless;
59 int	m_defragfailure;
60 int	m_defragrandomfailures;
61 #endif
62 
63 /*
64  * sysctl(8) exported objects
65  */
66 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
67 	   &max_linkhdr, 0, "Size of largest link layer header");
68 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
69 	   &max_protohdr, 0, "Size of largest protocol layer header");
70 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
71 	   &max_hdr, 0, "Size of largest link plus protocol header");
72 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
73 	   &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
74 #ifdef MBUF_STRESS_TEST
75 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
76 	   &m_defragpackets, 0, "");
77 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
78 	   &m_defragbytes, 0, "");
79 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
80 	   &m_defraguseless, 0, "");
81 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
82 	   &m_defragfailure, 0, "");
83 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
84 	   &m_defragrandomfailures, 0, "");
85 #endif
86 
87 /*
88  * Ensure the correct size of various mbuf parameters.  It could be off due
89  * to compiler-induced padding and alignment artifacts.
90  */
91 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN);
92 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN);
93 
94 /*
95  * mbuf data storage should be 64-bit aligned regardless of architectural
96  * pointer size; check this is the case with and without a packet header.
97  */
98 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0);
99 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0);
100 
101 /*
102  * While the specific values here don't matter too much (i.e., +/- a few
103  * words), we do want to ensure that changes to these values are carefully
104  * reasoned about and properly documented.  This is especially the case as
105  * network-protocol and device-driver modules encode these layouts, and must
106  * be recompiled if the structures change.  Check these values at compile time
107  * against the ones documented in comments in mbuf.h.
108  *
109  * NB: Possibly they should be documented there via #define's and not just
110  * comments.
111  */
112 #if defined(__LP64__)
113 CTASSERT(offsetof(struct mbuf, m_dat) == 32);
114 CTASSERT(sizeof(struct pkthdr) == 56);
115 CTASSERT(sizeof(struct m_ext) == 48);
116 #else
117 CTASSERT(offsetof(struct mbuf, m_dat) == 24);
118 CTASSERT(sizeof(struct pkthdr) == 48);
119 CTASSERT(sizeof(struct m_ext) == 28);
120 #endif
121 
122 /*
123  * Assert that the queue(3) macros produce code of the same size as an old
124  * plain pointer does.
125  */
126 #ifdef INVARIANTS
127 static struct mbuf m_assertbuf;
128 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next));
129 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next));
130 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt));
131 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt));
132 #endif
133 
134 /*
135  * m_get2() allocates minimum mbuf that would fit "size" argument.
136  */
137 struct mbuf *
138 m_get2(int size, int how, short type, int flags)
139 {
140 	struct mb_args args;
141 	struct mbuf *m, *n;
142 
143 	args.flags = flags;
144 	args.type = type;
145 
146 	if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0))
147 		return (uma_zalloc_arg(zone_mbuf, &args, how));
148 	if (size <= MCLBYTES)
149 		return (uma_zalloc_arg(zone_pack, &args, how));
150 
151 	if (size > MJUMPAGESIZE)
152 		return (NULL);
153 
154 	m = uma_zalloc_arg(zone_mbuf, &args, how);
155 	if (m == NULL)
156 		return (NULL);
157 
158 	n = uma_zalloc_arg(zone_jumbop, m, how);
159 	if (n == NULL) {
160 		uma_zfree(zone_mbuf, m);
161 		return (NULL);
162 	}
163 
164 	return (m);
165 }
166 
167 /*
168  * m_getjcl() returns an mbuf with a cluster of the specified size attached.
169  * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
170  */
171 struct mbuf *
172 m_getjcl(int how, short type, int flags, int size)
173 {
174 	struct mb_args args;
175 	struct mbuf *m, *n;
176 	uma_zone_t zone;
177 
178 	if (size == MCLBYTES)
179 		return m_getcl(how, type, flags);
180 
181 	args.flags = flags;
182 	args.type = type;
183 
184 	m = uma_zalloc_arg(zone_mbuf, &args, how);
185 	if (m == NULL)
186 		return (NULL);
187 
188 	zone = m_getzone(size);
189 	n = uma_zalloc_arg(zone, m, how);
190 	if (n == NULL) {
191 		uma_zfree(zone_mbuf, m);
192 		return (NULL);
193 	}
194 	return (m);
195 }
196 
197 /*
198  * Allocate a given length worth of mbufs and/or clusters (whatever fits
199  * best) and return a pointer to the top of the allocated chain.  If an
200  * existing mbuf chain is provided, then we will append the new chain
201  * to the existing one but still return the top of the newly allocated
202  * chain.
203  */
204 struct mbuf *
205 m_getm2(struct mbuf *m, int len, int how, short type, int flags)
206 {
207 	struct mbuf *mb, *nm = NULL, *mtail = NULL;
208 
209 	KASSERT(len >= 0, ("%s: len is < 0", __func__));
210 
211 	/* Validate flags. */
212 	flags &= (M_PKTHDR | M_EOR);
213 
214 	/* Packet header mbuf must be first in chain. */
215 	if ((flags & M_PKTHDR) && m != NULL)
216 		flags &= ~M_PKTHDR;
217 
218 	/* Loop and append maximum sized mbufs to the chain tail. */
219 	while (len > 0) {
220 		if (len > MCLBYTES)
221 			mb = m_getjcl(how, type, (flags & M_PKTHDR),
222 			    MJUMPAGESIZE);
223 		else if (len >= MINCLSIZE)
224 			mb = m_getcl(how, type, (flags & M_PKTHDR));
225 		else if (flags & M_PKTHDR)
226 			mb = m_gethdr(how, type);
227 		else
228 			mb = m_get(how, type);
229 
230 		/* Fail the whole operation if one mbuf can't be allocated. */
231 		if (mb == NULL) {
232 			if (nm != NULL)
233 				m_freem(nm);
234 			return (NULL);
235 		}
236 
237 		/* Book keeping. */
238 		len -= M_SIZE(mb);
239 		if (mtail != NULL)
240 			mtail->m_next = mb;
241 		else
242 			nm = mb;
243 		mtail = mb;
244 		flags &= ~M_PKTHDR;	/* Only valid on the first mbuf. */
245 	}
246 	if (flags & M_EOR)
247 		mtail->m_flags |= M_EOR;  /* Only valid on the last mbuf. */
248 
249 	/* If mbuf was supplied, append new chain to the end of it. */
250 	if (m != NULL) {
251 		for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
252 			;
253 		mtail->m_next = nm;
254 		mtail->m_flags &= ~M_EOR;
255 	} else
256 		m = nm;
257 
258 	return (m);
259 }
260 
261 /*
262  * Free an entire chain of mbufs and associated external buffers, if
263  * applicable.
264  */
265 void
266 m_freem(struct mbuf *mb)
267 {
268 
269 	while (mb != NULL)
270 		mb = m_free(mb);
271 }
272 
273 /*-
274  * Configure a provided mbuf to refer to the provided external storage
275  * buffer and setup a reference count for said buffer.  If the setting
276  * up of the reference count fails, the M_EXT bit will not be set.  If
277  * successfull, the M_EXT bit is set in the mbuf's flags.
278  *
279  * Arguments:
280  *    mb     The existing mbuf to which to attach the provided buffer.
281  *    buf    The address of the provided external storage buffer.
282  *    size   The size of the provided buffer.
283  *    freef  A pointer to a routine that is responsible for freeing the
284  *           provided external storage buffer.
285  *    args   A pointer to an argument structure (of any type) to be passed
286  *           to the provided freef routine (may be NULL).
287  *    flags  Any other flags to be passed to the provided mbuf.
288  *    type   The type that the external storage buffer should be
289  *           labeled with.
290  *
291  * Returns:
292  *    Nothing.
293  */
294 int
295 m_extadd(struct mbuf *mb, caddr_t buf, u_int size,
296     void (*freef)(struct mbuf *, void *, void *), void *arg1, void *arg2,
297     int flags, int type, int wait)
298 {
299 	KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
300 
301 	if (type != EXT_EXTREF)
302 		mb->m_ext.ext_cnt = uma_zalloc(zone_ext_refcnt, wait);
303 
304 	if (mb->m_ext.ext_cnt == NULL)
305 		return (ENOMEM);
306 
307 	*(mb->m_ext.ext_cnt) = 1;
308 	mb->m_flags |= (M_EXT | flags);
309 	mb->m_ext.ext_buf = buf;
310 	mb->m_data = mb->m_ext.ext_buf;
311 	mb->m_ext.ext_size = size;
312 	mb->m_ext.ext_free = freef;
313 	mb->m_ext.ext_arg1 = arg1;
314 	mb->m_ext.ext_arg2 = arg2;
315 	mb->m_ext.ext_type = type;
316 	mb->m_ext.ext_flags = 0;
317 
318 	return (0);
319 }
320 
321 /*
322  * Non-directly-exported function to clean up after mbufs with M_EXT
323  * storage attached to them if the reference count hits 1.
324  */
325 void
326 mb_free_ext(struct mbuf *m)
327 {
328 	int freembuf;
329 
330 	KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m));
331 
332 	/*
333 	 * Check if the header is embedded in the cluster.
334 	 */
335 	freembuf = (m->m_flags & M_NOFREE) ? 0 : 1;
336 
337 	switch (m->m_ext.ext_type) {
338 	case EXT_SFBUF:
339 		sf_ext_free(m->m_ext.ext_arg1, m->m_ext.ext_arg2);
340 		break;
341 	case EXT_SFBUF_NOCACHE:
342 		sf_ext_free_nocache(m->m_ext.ext_arg1, m->m_ext.ext_arg2);
343 		break;
344 	default:
345 		KASSERT(m->m_ext.ext_cnt != NULL,
346 		    ("%s: no refcounting pointer on %p", __func__, m));
347 		/*
348 		 * Free attached storage if this mbuf is the only
349 		 * reference to it.
350 		 */
351 		if (*(m->m_ext.ext_cnt) != 1) {
352 			if (atomic_fetchadd_int(m->m_ext.ext_cnt, -1) != 1)
353 				break;
354 		}
355 
356 		switch (m->m_ext.ext_type) {
357 		case EXT_PACKET:	/* The packet zone is special. */
358 			if (*(m->m_ext.ext_cnt) == 0)
359 				*(m->m_ext.ext_cnt) = 1;
360 			uma_zfree(zone_pack, m);
361 			return;		/* Job done. */
362 		case EXT_CLUSTER:
363 			uma_zfree(zone_clust, m->m_ext.ext_buf);
364 			break;
365 		case EXT_JUMBOP:
366 			uma_zfree(zone_jumbop, m->m_ext.ext_buf);
367 			break;
368 		case EXT_JUMBO9:
369 			uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
370 			break;
371 		case EXT_JUMBO16:
372 			uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
373 			break;
374 		case EXT_NET_DRV:
375 		case EXT_MOD_TYPE:
376 		case EXT_DISPOSABLE:
377 			*(m->m_ext.ext_cnt) = 0;
378 			uma_zfree(zone_ext_refcnt, __DEVOLATILE(u_int *,
379 				m->m_ext.ext_cnt));
380 			/* FALLTHROUGH */
381 		case EXT_EXTREF:
382 			KASSERT(m->m_ext.ext_free != NULL,
383 				("%s: ext_free not set", __func__));
384 			(*(m->m_ext.ext_free))(m, m->m_ext.ext_arg1,
385 			    m->m_ext.ext_arg2);
386 			break;
387 		default:
388 			KASSERT(m->m_ext.ext_type == 0,
389 				("%s: unknown ext_type", __func__));
390 		}
391 	}
392 
393 	if (freembuf)
394 		uma_zfree(zone_mbuf, m);
395 }
396 
397 /*
398  * Attach the cluster from *m to *n, set up m_ext in *n
399  * and bump the refcount of the cluster.
400  */
401 void
402 mb_dupcl(struct mbuf *n, const struct mbuf *m)
403 {
404 
405 	KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m));
406 	KASSERT(!(n->m_flags & M_EXT), ("%s: M_EXT set on %p", __func__, n));
407 
408 	switch (m->m_ext.ext_type) {
409 	case EXT_SFBUF:
410 	case EXT_SFBUF_NOCACHE:
411 		sf_ext_ref(m->m_ext.ext_arg1, m->m_ext.ext_arg2);
412 		break;
413 	default:
414 		KASSERT(m->m_ext.ext_cnt != NULL,
415 		    ("%s: no refcounting pointer on %p", __func__, m));
416 		if (*(m->m_ext.ext_cnt) == 1)
417 			*(m->m_ext.ext_cnt) += 1;
418 		else
419 			atomic_add_int(m->m_ext.ext_cnt, 1);
420 	}
421 
422 	n->m_ext = m->m_ext;
423 	n->m_flags |= M_EXT;
424 	n->m_flags |= m->m_flags & M_RDONLY;
425 }
426 
427 void
428 m_demote_pkthdr(struct mbuf *m)
429 {
430 
431 	M_ASSERTPKTHDR(m);
432 
433 	m_tag_delete_chain(m, NULL);
434 	m->m_flags &= ~M_PKTHDR;
435 	bzero(&m->m_pkthdr, sizeof(struct pkthdr));
436 }
437 
438 /*
439  * Clean up mbuf (chain) from any tags and packet headers.
440  * If "all" is set then the first mbuf in the chain will be
441  * cleaned too.
442  */
443 void
444 m_demote(struct mbuf *m0, int all, int flags)
445 {
446 	struct mbuf *m;
447 
448 	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
449 		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p",
450 		    __func__, m, m0));
451 		if (m->m_flags & M_PKTHDR)
452 			m_demote_pkthdr(m);
453 		m->m_flags = m->m_flags & (M_EXT | M_RDONLY | M_NOFREE | flags);
454 	}
455 }
456 
457 /*
458  * Sanity checks on mbuf (chain) for use in KASSERT() and general
459  * debugging.
460  * Returns 0 or panics when bad and 1 on all tests passed.
461  * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
462  * blow up later.
463  */
464 int
465 m_sanity(struct mbuf *m0, int sanitize)
466 {
467 	struct mbuf *m;
468 	caddr_t a, b;
469 	int pktlen = 0;
470 
471 #ifdef INVARIANTS
472 #define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
473 #else
474 #define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
475 #endif
476 
477 	for (m = m0; m != NULL; m = m->m_next) {
478 		/*
479 		 * Basic pointer checks.  If any of these fails then some
480 		 * unrelated kernel memory before or after us is trashed.
481 		 * No way to recover from that.
482 		 */
483 		a = M_START(m);
484 		b = a + M_SIZE(m);
485 		if ((caddr_t)m->m_data < a)
486 			M_SANITY_ACTION("m_data outside mbuf data range left");
487 		if ((caddr_t)m->m_data > b)
488 			M_SANITY_ACTION("m_data outside mbuf data range right");
489 		if ((caddr_t)m->m_data + m->m_len > b)
490 			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
491 
492 		/* m->m_nextpkt may only be set on first mbuf in chain. */
493 		if (m != m0 && m->m_nextpkt != NULL) {
494 			if (sanitize) {
495 				m_freem(m->m_nextpkt);
496 				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
497 			} else
498 				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
499 		}
500 
501 		/* packet length (not mbuf length!) calculation */
502 		if (m0->m_flags & M_PKTHDR)
503 			pktlen += m->m_len;
504 
505 		/* m_tags may only be attached to first mbuf in chain. */
506 		if (m != m0 && m->m_flags & M_PKTHDR &&
507 		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
508 			if (sanitize) {
509 				m_tag_delete_chain(m, NULL);
510 				/* put in 0xDEADC0DE perhaps? */
511 			} else
512 				M_SANITY_ACTION("m_tags on in-chain mbuf");
513 		}
514 
515 		/* M_PKTHDR may only be set on first mbuf in chain */
516 		if (m != m0 && m->m_flags & M_PKTHDR) {
517 			if (sanitize) {
518 				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
519 				m->m_flags &= ~M_PKTHDR;
520 				/* put in 0xDEADCODE and leave hdr flag in */
521 			} else
522 				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
523 		}
524 	}
525 	m = m0;
526 	if (pktlen && pktlen != m->m_pkthdr.len) {
527 		if (sanitize)
528 			m->m_pkthdr.len = 0;
529 		else
530 			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
531 	}
532 	return 1;
533 
534 #undef	M_SANITY_ACTION
535 }
536 
537 
538 /*
539  * "Move" mbuf pkthdr from "from" to "to".
540  * "from" must have M_PKTHDR set, and "to" must be empty.
541  */
542 void
543 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
544 {
545 
546 #if 0
547 	/* see below for why these are not enabled */
548 	M_ASSERTPKTHDR(to);
549 	/* Note: with MAC, this may not be a good assertion. */
550 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
551 	    ("m_move_pkthdr: to has tags"));
552 #endif
553 #ifdef MAC
554 	/*
555 	 * XXXMAC: It could be this should also occur for non-MAC?
556 	 */
557 	if (to->m_flags & M_PKTHDR)
558 		m_tag_delete_chain(to, NULL);
559 #endif
560 	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
561 	if ((to->m_flags & M_EXT) == 0)
562 		to->m_data = to->m_pktdat;
563 	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
564 	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
565 	from->m_flags &= ~M_PKTHDR;
566 }
567 
568 /*
569  * Duplicate "from"'s mbuf pkthdr in "to".
570  * "from" must have M_PKTHDR set, and "to" must be empty.
571  * In particular, this does a deep copy of the packet tags.
572  */
573 int
574 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how)
575 {
576 
577 #if 0
578 	/*
579 	 * The mbuf allocator only initializes the pkthdr
580 	 * when the mbuf is allocated with m_gethdr(). Many users
581 	 * (e.g. m_copy*, m_prepend) use m_get() and then
582 	 * smash the pkthdr as needed causing these
583 	 * assertions to trip.  For now just disable them.
584 	 */
585 	M_ASSERTPKTHDR(to);
586 	/* Note: with MAC, this may not be a good assertion. */
587 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
588 #endif
589 	MBUF_CHECKSLEEP(how);
590 #ifdef MAC
591 	if (to->m_flags & M_PKTHDR)
592 		m_tag_delete_chain(to, NULL);
593 #endif
594 	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
595 	if ((to->m_flags & M_EXT) == 0)
596 		to->m_data = to->m_pktdat;
597 	to->m_pkthdr = from->m_pkthdr;
598 	SLIST_INIT(&to->m_pkthdr.tags);
599 	return (m_tag_copy_chain(to, from, how));
600 }
601 
602 /*
603  * Lesser-used path for M_PREPEND:
604  * allocate new mbuf to prepend to chain,
605  * copy junk along.
606  */
607 struct mbuf *
608 m_prepend(struct mbuf *m, int len, int how)
609 {
610 	struct mbuf *mn;
611 
612 	if (m->m_flags & M_PKTHDR)
613 		mn = m_gethdr(how, m->m_type);
614 	else
615 		mn = m_get(how, m->m_type);
616 	if (mn == NULL) {
617 		m_freem(m);
618 		return (NULL);
619 	}
620 	if (m->m_flags & M_PKTHDR)
621 		m_move_pkthdr(mn, m);
622 	mn->m_next = m;
623 	m = mn;
624 	if (len < M_SIZE(m))
625 		M_ALIGN(m, len);
626 	m->m_len = len;
627 	return (m);
628 }
629 
630 /*
631  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
632  * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
633  * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
634  * Note that the copy is read-only, because clusters are not copied,
635  * only their reference counts are incremented.
636  */
637 struct mbuf *
638 m_copym(const struct mbuf *m, int off0, int len, int wait)
639 {
640 	struct mbuf *n, **np;
641 	int off = off0;
642 	struct mbuf *top;
643 	int copyhdr = 0;
644 
645 	KASSERT(off >= 0, ("m_copym, negative off %d", off));
646 	KASSERT(len >= 0, ("m_copym, negative len %d", len));
647 	MBUF_CHECKSLEEP(wait);
648 	if (off == 0 && m->m_flags & M_PKTHDR)
649 		copyhdr = 1;
650 	while (off > 0) {
651 		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
652 		if (off < m->m_len)
653 			break;
654 		off -= m->m_len;
655 		m = m->m_next;
656 	}
657 	np = &top;
658 	top = 0;
659 	while (len > 0) {
660 		if (m == NULL) {
661 			KASSERT(len == M_COPYALL,
662 			    ("m_copym, length > size of mbuf chain"));
663 			break;
664 		}
665 		if (copyhdr)
666 			n = m_gethdr(wait, m->m_type);
667 		else
668 			n = m_get(wait, m->m_type);
669 		*np = n;
670 		if (n == NULL)
671 			goto nospace;
672 		if (copyhdr) {
673 			if (!m_dup_pkthdr(n, m, wait))
674 				goto nospace;
675 			if (len == M_COPYALL)
676 				n->m_pkthdr.len -= off0;
677 			else
678 				n->m_pkthdr.len = len;
679 			copyhdr = 0;
680 		}
681 		n->m_len = min(len, m->m_len - off);
682 		if (m->m_flags & M_EXT) {
683 			n->m_data = m->m_data + off;
684 			mb_dupcl(n, m);
685 		} else
686 			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
687 			    (u_int)n->m_len);
688 		if (len != M_COPYALL)
689 			len -= n->m_len;
690 		off = 0;
691 		m = m->m_next;
692 		np = &n->m_next;
693 	}
694 
695 	return (top);
696 nospace:
697 	m_freem(top);
698 	return (NULL);
699 }
700 
701 /*
702  * Copy an entire packet, including header (which must be present).
703  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
704  * Note that the copy is read-only, because clusters are not copied,
705  * only their reference counts are incremented.
706  * Preserve alignment of the first mbuf so if the creator has left
707  * some room at the beginning (e.g. for inserting protocol headers)
708  * the copies still have the room available.
709  */
710 struct mbuf *
711 m_copypacket(struct mbuf *m, int how)
712 {
713 	struct mbuf *top, *n, *o;
714 
715 	MBUF_CHECKSLEEP(how);
716 	n = m_get(how, m->m_type);
717 	top = n;
718 	if (n == NULL)
719 		goto nospace;
720 
721 	if (!m_dup_pkthdr(n, m, how))
722 		goto nospace;
723 	n->m_len = m->m_len;
724 	if (m->m_flags & M_EXT) {
725 		n->m_data = m->m_data;
726 		mb_dupcl(n, m);
727 	} else {
728 		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
729 		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
730 	}
731 
732 	m = m->m_next;
733 	while (m) {
734 		o = m_get(how, m->m_type);
735 		if (o == NULL)
736 			goto nospace;
737 
738 		n->m_next = o;
739 		n = n->m_next;
740 
741 		n->m_len = m->m_len;
742 		if (m->m_flags & M_EXT) {
743 			n->m_data = m->m_data;
744 			mb_dupcl(n, m);
745 		} else {
746 			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
747 		}
748 
749 		m = m->m_next;
750 	}
751 	return top;
752 nospace:
753 	m_freem(top);
754 	return (NULL);
755 }
756 
757 /*
758  * Copy data from an mbuf chain starting "off" bytes from the beginning,
759  * continuing for "len" bytes, into the indicated buffer.
760  */
761 void
762 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
763 {
764 	u_int count;
765 
766 	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
767 	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
768 	while (off > 0) {
769 		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
770 		if (off < m->m_len)
771 			break;
772 		off -= m->m_len;
773 		m = m->m_next;
774 	}
775 	while (len > 0) {
776 		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
777 		count = min(m->m_len - off, len);
778 		bcopy(mtod(m, caddr_t) + off, cp, count);
779 		len -= count;
780 		cp += count;
781 		off = 0;
782 		m = m->m_next;
783 	}
784 }
785 
786 /*
787  * Copy a packet header mbuf chain into a completely new chain, including
788  * copying any mbuf clusters.  Use this instead of m_copypacket() when
789  * you need a writable copy of an mbuf chain.
790  */
791 struct mbuf *
792 m_dup(const struct mbuf *m, int how)
793 {
794 	struct mbuf **p, *top = NULL;
795 	int remain, moff, nsize;
796 
797 	MBUF_CHECKSLEEP(how);
798 	/* Sanity check */
799 	if (m == NULL)
800 		return (NULL);
801 	M_ASSERTPKTHDR(m);
802 
803 	/* While there's more data, get a new mbuf, tack it on, and fill it */
804 	remain = m->m_pkthdr.len;
805 	moff = 0;
806 	p = &top;
807 	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
808 		struct mbuf *n;
809 
810 		/* Get the next new mbuf */
811 		if (remain >= MINCLSIZE) {
812 			n = m_getcl(how, m->m_type, 0);
813 			nsize = MCLBYTES;
814 		} else {
815 			n = m_get(how, m->m_type);
816 			nsize = MLEN;
817 		}
818 		if (n == NULL)
819 			goto nospace;
820 
821 		if (top == NULL) {		/* First one, must be PKTHDR */
822 			if (!m_dup_pkthdr(n, m, how)) {
823 				m_free(n);
824 				goto nospace;
825 			}
826 			if ((n->m_flags & M_EXT) == 0)
827 				nsize = MHLEN;
828 			n->m_flags &= ~M_RDONLY;
829 		}
830 		n->m_len = 0;
831 
832 		/* Link it into the new chain */
833 		*p = n;
834 		p = &n->m_next;
835 
836 		/* Copy data from original mbuf(s) into new mbuf */
837 		while (n->m_len < nsize && m != NULL) {
838 			int chunk = min(nsize - n->m_len, m->m_len - moff);
839 
840 			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
841 			moff += chunk;
842 			n->m_len += chunk;
843 			remain -= chunk;
844 			if (moff == m->m_len) {
845 				m = m->m_next;
846 				moff = 0;
847 			}
848 		}
849 
850 		/* Check correct total mbuf length */
851 		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
852 		    	("%s: bogus m_pkthdr.len", __func__));
853 	}
854 	return (top);
855 
856 nospace:
857 	m_freem(top);
858 	return (NULL);
859 }
860 
861 /*
862  * Concatenate mbuf chain n to m.
863  * Both chains must be of the same type (e.g. MT_DATA).
864  * Any m_pkthdr is not updated.
865  */
866 void
867 m_cat(struct mbuf *m, struct mbuf *n)
868 {
869 	while (m->m_next)
870 		m = m->m_next;
871 	while (n) {
872 		if (!M_WRITABLE(m) ||
873 		    M_TRAILINGSPACE(m) < n->m_len) {
874 			/* just join the two chains */
875 			m->m_next = n;
876 			return;
877 		}
878 		/* splat the data from one into the other */
879 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
880 		    (u_int)n->m_len);
881 		m->m_len += n->m_len;
882 		n = m_free(n);
883 	}
884 }
885 
886 /*
887  * Concatenate two pkthdr mbuf chains.
888  */
889 void
890 m_catpkt(struct mbuf *m, struct mbuf *n)
891 {
892 
893 	M_ASSERTPKTHDR(m);
894 	M_ASSERTPKTHDR(n);
895 
896 	m->m_pkthdr.len += n->m_pkthdr.len;
897 	m_demote(n, 1, 0);
898 
899 	m_cat(m, n);
900 }
901 
902 void
903 m_adj(struct mbuf *mp, int req_len)
904 {
905 	int len = req_len;
906 	struct mbuf *m;
907 	int count;
908 
909 	if ((m = mp) == NULL)
910 		return;
911 	if (len >= 0) {
912 		/*
913 		 * Trim from head.
914 		 */
915 		while (m != NULL && len > 0) {
916 			if (m->m_len <= len) {
917 				len -= m->m_len;
918 				m->m_len = 0;
919 				m = m->m_next;
920 			} else {
921 				m->m_len -= len;
922 				m->m_data += len;
923 				len = 0;
924 			}
925 		}
926 		if (mp->m_flags & M_PKTHDR)
927 			mp->m_pkthdr.len -= (req_len - len);
928 	} else {
929 		/*
930 		 * Trim from tail.  Scan the mbuf chain,
931 		 * calculating its length and finding the last mbuf.
932 		 * If the adjustment only affects this mbuf, then just
933 		 * adjust and return.  Otherwise, rescan and truncate
934 		 * after the remaining size.
935 		 */
936 		len = -len;
937 		count = 0;
938 		for (;;) {
939 			count += m->m_len;
940 			if (m->m_next == (struct mbuf *)0)
941 				break;
942 			m = m->m_next;
943 		}
944 		if (m->m_len >= len) {
945 			m->m_len -= len;
946 			if (mp->m_flags & M_PKTHDR)
947 				mp->m_pkthdr.len -= len;
948 			return;
949 		}
950 		count -= len;
951 		if (count < 0)
952 			count = 0;
953 		/*
954 		 * Correct length for chain is "count".
955 		 * Find the mbuf with last data, adjust its length,
956 		 * and toss data from remaining mbufs on chain.
957 		 */
958 		m = mp;
959 		if (m->m_flags & M_PKTHDR)
960 			m->m_pkthdr.len = count;
961 		for (; m; m = m->m_next) {
962 			if (m->m_len >= count) {
963 				m->m_len = count;
964 				if (m->m_next != NULL) {
965 					m_freem(m->m_next);
966 					m->m_next = NULL;
967 				}
968 				break;
969 			}
970 			count -= m->m_len;
971 		}
972 	}
973 }
974 
975 /*
976  * Rearange an mbuf chain so that len bytes are contiguous
977  * and in the data area of an mbuf (so that mtod will work
978  * for a structure of size len).  Returns the resulting
979  * mbuf chain on success, frees it and returns null on failure.
980  * If there is room, it will add up to max_protohdr-len extra bytes to the
981  * contiguous region in an attempt to avoid being called next time.
982  */
983 struct mbuf *
984 m_pullup(struct mbuf *n, int len)
985 {
986 	struct mbuf *m;
987 	int count;
988 	int space;
989 
990 	/*
991 	 * If first mbuf has no cluster, and has room for len bytes
992 	 * without shifting current data, pullup into it,
993 	 * otherwise allocate a new mbuf to prepend to the chain.
994 	 */
995 	if ((n->m_flags & M_EXT) == 0 &&
996 	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
997 		if (n->m_len >= len)
998 			return (n);
999 		m = n;
1000 		n = n->m_next;
1001 		len -= m->m_len;
1002 	} else {
1003 		if (len > MHLEN)
1004 			goto bad;
1005 		m = m_get(M_NOWAIT, n->m_type);
1006 		if (m == NULL)
1007 			goto bad;
1008 		if (n->m_flags & M_PKTHDR)
1009 			m_move_pkthdr(m, n);
1010 	}
1011 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1012 	do {
1013 		count = min(min(max(len, max_protohdr), space), n->m_len);
1014 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1015 		  (u_int)count);
1016 		len -= count;
1017 		m->m_len += count;
1018 		n->m_len -= count;
1019 		space -= count;
1020 		if (n->m_len)
1021 			n->m_data += count;
1022 		else
1023 			n = m_free(n);
1024 	} while (len > 0 && n);
1025 	if (len > 0) {
1026 		(void) m_free(m);
1027 		goto bad;
1028 	}
1029 	m->m_next = n;
1030 	return (m);
1031 bad:
1032 	m_freem(n);
1033 	return (NULL);
1034 }
1035 
1036 /*
1037  * Like m_pullup(), except a new mbuf is always allocated, and we allow
1038  * the amount of empty space before the data in the new mbuf to be specified
1039  * (in the event that the caller expects to prepend later).
1040  */
1041 struct mbuf *
1042 m_copyup(struct mbuf *n, int len, int dstoff)
1043 {
1044 	struct mbuf *m;
1045 	int count, space;
1046 
1047 	if (len > (MHLEN - dstoff))
1048 		goto bad;
1049 	m = m_get(M_NOWAIT, n->m_type);
1050 	if (m == NULL)
1051 		goto bad;
1052 	if (n->m_flags & M_PKTHDR)
1053 		m_move_pkthdr(m, n);
1054 	m->m_data += dstoff;
1055 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1056 	do {
1057 		count = min(min(max(len, max_protohdr), space), n->m_len);
1058 		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
1059 		    (unsigned)count);
1060 		len -= count;
1061 		m->m_len += count;
1062 		n->m_len -= count;
1063 		space -= count;
1064 		if (n->m_len)
1065 			n->m_data += count;
1066 		else
1067 			n = m_free(n);
1068 	} while (len > 0 && n);
1069 	if (len > 0) {
1070 		(void) m_free(m);
1071 		goto bad;
1072 	}
1073 	m->m_next = n;
1074 	return (m);
1075  bad:
1076 	m_freem(n);
1077 	return (NULL);
1078 }
1079 
1080 /*
1081  * Partition an mbuf chain in two pieces, returning the tail --
1082  * all but the first len0 bytes.  In case of failure, it returns NULL and
1083  * attempts to restore the chain to its original state.
1084  *
1085  * Note that the resulting mbufs might be read-only, because the new
1086  * mbuf can end up sharing an mbuf cluster with the original mbuf if
1087  * the "breaking point" happens to lie within a cluster mbuf. Use the
1088  * M_WRITABLE() macro to check for this case.
1089  */
1090 struct mbuf *
1091 m_split(struct mbuf *m0, int len0, int wait)
1092 {
1093 	struct mbuf *m, *n;
1094 	u_int len = len0, remain;
1095 
1096 	MBUF_CHECKSLEEP(wait);
1097 	for (m = m0; m && len > m->m_len; m = m->m_next)
1098 		len -= m->m_len;
1099 	if (m == NULL)
1100 		return (NULL);
1101 	remain = m->m_len - len;
1102 	if (m0->m_flags & M_PKTHDR && remain == 0) {
1103 		n = m_gethdr(wait, m0->m_type);
1104 		if (n == NULL)
1105 			return (NULL);
1106 		n->m_next = m->m_next;
1107 		m->m_next = NULL;
1108 		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1109 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1110 		m0->m_pkthdr.len = len0;
1111 		return (n);
1112 	} else if (m0->m_flags & M_PKTHDR) {
1113 		n = m_gethdr(wait, m0->m_type);
1114 		if (n == NULL)
1115 			return (NULL);
1116 		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1117 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1118 		m0->m_pkthdr.len = len0;
1119 		if (m->m_flags & M_EXT)
1120 			goto extpacket;
1121 		if (remain > MHLEN) {
1122 			/* m can't be the lead packet */
1123 			M_ALIGN(n, 0);
1124 			n->m_next = m_split(m, len, wait);
1125 			if (n->m_next == NULL) {
1126 				(void) m_free(n);
1127 				return (NULL);
1128 			} else {
1129 				n->m_len = 0;
1130 				return (n);
1131 			}
1132 		} else
1133 			M_ALIGN(n, remain);
1134 	} else if (remain == 0) {
1135 		n = m->m_next;
1136 		m->m_next = NULL;
1137 		return (n);
1138 	} else {
1139 		n = m_get(wait, m->m_type);
1140 		if (n == NULL)
1141 			return (NULL);
1142 		M_ALIGN(n, remain);
1143 	}
1144 extpacket:
1145 	if (m->m_flags & M_EXT) {
1146 		n->m_data = m->m_data + len;
1147 		mb_dupcl(n, m);
1148 	} else {
1149 		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1150 	}
1151 	n->m_len = remain;
1152 	m->m_len = len;
1153 	n->m_next = m->m_next;
1154 	m->m_next = NULL;
1155 	return (n);
1156 }
1157 /*
1158  * Routine to copy from device local memory into mbufs.
1159  * Note that `off' argument is offset into first mbuf of target chain from
1160  * which to begin copying the data to.
1161  */
1162 struct mbuf *
1163 m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1164     void (*copy)(char *from, caddr_t to, u_int len))
1165 {
1166 	struct mbuf *m;
1167 	struct mbuf *top = NULL, **mp = &top;
1168 	int len;
1169 
1170 	if (off < 0 || off > MHLEN)
1171 		return (NULL);
1172 
1173 	while (totlen > 0) {
1174 		if (top == NULL) {	/* First one, must be PKTHDR */
1175 			if (totlen + off >= MINCLSIZE) {
1176 				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1177 				len = MCLBYTES;
1178 			} else {
1179 				m = m_gethdr(M_NOWAIT, MT_DATA);
1180 				len = MHLEN;
1181 
1182 				/* Place initial small packet/header at end of mbuf */
1183 				if (m && totlen + off + max_linkhdr <= MLEN) {
1184 					m->m_data += max_linkhdr;
1185 					len -= max_linkhdr;
1186 				}
1187 			}
1188 			if (m == NULL)
1189 				return NULL;
1190 			m->m_pkthdr.rcvif = ifp;
1191 			m->m_pkthdr.len = totlen;
1192 		} else {
1193 			if (totlen + off >= MINCLSIZE) {
1194 				m = m_getcl(M_NOWAIT, MT_DATA, 0);
1195 				len = MCLBYTES;
1196 			} else {
1197 				m = m_get(M_NOWAIT, MT_DATA);
1198 				len = MLEN;
1199 			}
1200 			if (m == NULL) {
1201 				m_freem(top);
1202 				return NULL;
1203 			}
1204 		}
1205 		if (off) {
1206 			m->m_data += off;
1207 			len -= off;
1208 			off = 0;
1209 		}
1210 		m->m_len = len = min(totlen, len);
1211 		if (copy)
1212 			copy(buf, mtod(m, caddr_t), (u_int)len);
1213 		else
1214 			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1215 		buf += len;
1216 		*mp = m;
1217 		mp = &m->m_next;
1218 		totlen -= len;
1219 	}
1220 	return (top);
1221 }
1222 
1223 /*
1224  * Copy data from a buffer back into the indicated mbuf chain,
1225  * starting "off" bytes from the beginning, extending the mbuf
1226  * chain if necessary.
1227  */
1228 void
1229 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1230 {
1231 	int mlen;
1232 	struct mbuf *m = m0, *n;
1233 	int totlen = 0;
1234 
1235 	if (m0 == NULL)
1236 		return;
1237 	while (off > (mlen = m->m_len)) {
1238 		off -= mlen;
1239 		totlen += mlen;
1240 		if (m->m_next == NULL) {
1241 			n = m_get(M_NOWAIT, m->m_type);
1242 			if (n == NULL)
1243 				goto out;
1244 			bzero(mtod(n, caddr_t), MLEN);
1245 			n->m_len = min(MLEN, len + off);
1246 			m->m_next = n;
1247 		}
1248 		m = m->m_next;
1249 	}
1250 	while (len > 0) {
1251 		if (m->m_next == NULL && (len > m->m_len - off)) {
1252 			m->m_len += min(len - (m->m_len - off),
1253 			    M_TRAILINGSPACE(m));
1254 		}
1255 		mlen = min (m->m_len - off, len);
1256 		bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1257 		cp += mlen;
1258 		len -= mlen;
1259 		mlen += off;
1260 		off = 0;
1261 		totlen += mlen;
1262 		if (len == 0)
1263 			break;
1264 		if (m->m_next == NULL) {
1265 			n = m_get(M_NOWAIT, m->m_type);
1266 			if (n == NULL)
1267 				break;
1268 			n->m_len = min(MLEN, len);
1269 			m->m_next = n;
1270 		}
1271 		m = m->m_next;
1272 	}
1273 out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1274 		m->m_pkthdr.len = totlen;
1275 }
1276 
1277 /*
1278  * Append the specified data to the indicated mbuf chain,
1279  * Extend the mbuf chain if the new data does not fit in
1280  * existing space.
1281  *
1282  * Return 1 if able to complete the job; otherwise 0.
1283  */
1284 int
1285 m_append(struct mbuf *m0, int len, c_caddr_t cp)
1286 {
1287 	struct mbuf *m, *n;
1288 	int remainder, space;
1289 
1290 	for (m = m0; m->m_next != NULL; m = m->m_next)
1291 		;
1292 	remainder = len;
1293 	space = M_TRAILINGSPACE(m);
1294 	if (space > 0) {
1295 		/*
1296 		 * Copy into available space.
1297 		 */
1298 		if (space > remainder)
1299 			space = remainder;
1300 		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1301 		m->m_len += space;
1302 		cp += space, remainder -= space;
1303 	}
1304 	while (remainder > 0) {
1305 		/*
1306 		 * Allocate a new mbuf; could check space
1307 		 * and allocate a cluster instead.
1308 		 */
1309 		n = m_get(M_NOWAIT, m->m_type);
1310 		if (n == NULL)
1311 			break;
1312 		n->m_len = min(MLEN, remainder);
1313 		bcopy(cp, mtod(n, caddr_t), n->m_len);
1314 		cp += n->m_len, remainder -= n->m_len;
1315 		m->m_next = n;
1316 		m = n;
1317 	}
1318 	if (m0->m_flags & M_PKTHDR)
1319 		m0->m_pkthdr.len += len - remainder;
1320 	return (remainder == 0);
1321 }
1322 
1323 /*
1324  * Apply function f to the data in an mbuf chain starting "off" bytes from
1325  * the beginning, continuing for "len" bytes.
1326  */
1327 int
1328 m_apply(struct mbuf *m, int off, int len,
1329     int (*f)(void *, void *, u_int), void *arg)
1330 {
1331 	u_int count;
1332 	int rval;
1333 
1334 	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1335 	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1336 	while (off > 0) {
1337 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1338 		if (off < m->m_len)
1339 			break;
1340 		off -= m->m_len;
1341 		m = m->m_next;
1342 	}
1343 	while (len > 0) {
1344 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1345 		count = min(m->m_len - off, len);
1346 		rval = (*f)(arg, mtod(m, caddr_t) + off, count);
1347 		if (rval)
1348 			return (rval);
1349 		len -= count;
1350 		off = 0;
1351 		m = m->m_next;
1352 	}
1353 	return (0);
1354 }
1355 
1356 /*
1357  * Return a pointer to mbuf/offset of location in mbuf chain.
1358  */
1359 struct mbuf *
1360 m_getptr(struct mbuf *m, int loc, int *off)
1361 {
1362 
1363 	while (loc >= 0) {
1364 		/* Normal end of search. */
1365 		if (m->m_len > loc) {
1366 			*off = loc;
1367 			return (m);
1368 		} else {
1369 			loc -= m->m_len;
1370 			if (m->m_next == NULL) {
1371 				if (loc == 0) {
1372 					/* Point at the end of valid data. */
1373 					*off = m->m_len;
1374 					return (m);
1375 				}
1376 				return (NULL);
1377 			}
1378 			m = m->m_next;
1379 		}
1380 	}
1381 	return (NULL);
1382 }
1383 
1384 void
1385 m_print(const struct mbuf *m, int maxlen)
1386 {
1387 	int len;
1388 	int pdata;
1389 	const struct mbuf *m2;
1390 
1391 	if (m == NULL) {
1392 		printf("mbuf: %p\n", m);
1393 		return;
1394 	}
1395 
1396 	if (m->m_flags & M_PKTHDR)
1397 		len = m->m_pkthdr.len;
1398 	else
1399 		len = -1;
1400 	m2 = m;
1401 	while (m2 != NULL && (len == -1 || len)) {
1402 		pdata = m2->m_len;
1403 		if (maxlen != -1 && pdata > maxlen)
1404 			pdata = maxlen;
1405 		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1406 		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1407 		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1408 		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1409 		if (pdata)
1410 			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1411 		if (len != -1)
1412 			len -= m2->m_len;
1413 		m2 = m2->m_next;
1414 	}
1415 	if (len > 0)
1416 		printf("%d bytes unaccounted for.\n", len);
1417 	return;
1418 }
1419 
1420 u_int
1421 m_fixhdr(struct mbuf *m0)
1422 {
1423 	u_int len;
1424 
1425 	len = m_length(m0, NULL);
1426 	m0->m_pkthdr.len = len;
1427 	return (len);
1428 }
1429 
1430 u_int
1431 m_length(struct mbuf *m0, struct mbuf **last)
1432 {
1433 	struct mbuf *m;
1434 	u_int len;
1435 
1436 	len = 0;
1437 	for (m = m0; m != NULL; m = m->m_next) {
1438 		len += m->m_len;
1439 		if (m->m_next == NULL)
1440 			break;
1441 	}
1442 	if (last != NULL)
1443 		*last = m;
1444 	return (len);
1445 }
1446 
1447 /*
1448  * Defragment a mbuf chain, returning the shortest possible
1449  * chain of mbufs and clusters.  If allocation fails and
1450  * this cannot be completed, NULL will be returned, but
1451  * the passed in chain will be unchanged.  Upon success,
1452  * the original chain will be freed, and the new chain
1453  * will be returned.
1454  *
1455  * If a non-packet header is passed in, the original
1456  * mbuf (chain?) will be returned unharmed.
1457  */
1458 struct mbuf *
1459 m_defrag(struct mbuf *m0, int how)
1460 {
1461 	struct mbuf *m_new = NULL, *m_final = NULL;
1462 	int progress = 0, length;
1463 
1464 	MBUF_CHECKSLEEP(how);
1465 	if (!(m0->m_flags & M_PKTHDR))
1466 		return (m0);
1467 
1468 	m_fixhdr(m0); /* Needed sanity check */
1469 
1470 #ifdef MBUF_STRESS_TEST
1471 	if (m_defragrandomfailures) {
1472 		int temp = arc4random() & 0xff;
1473 		if (temp == 0xba)
1474 			goto nospace;
1475 	}
1476 #endif
1477 
1478 	if (m0->m_pkthdr.len > MHLEN)
1479 		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1480 	else
1481 		m_final = m_gethdr(how, MT_DATA);
1482 
1483 	if (m_final == NULL)
1484 		goto nospace;
1485 
1486 	if (m_dup_pkthdr(m_final, m0, how) == 0)
1487 		goto nospace;
1488 
1489 	m_new = m_final;
1490 
1491 	while (progress < m0->m_pkthdr.len) {
1492 		length = m0->m_pkthdr.len - progress;
1493 		if (length > MCLBYTES)
1494 			length = MCLBYTES;
1495 
1496 		if (m_new == NULL) {
1497 			if (length > MLEN)
1498 				m_new = m_getcl(how, MT_DATA, 0);
1499 			else
1500 				m_new = m_get(how, MT_DATA);
1501 			if (m_new == NULL)
1502 				goto nospace;
1503 		}
1504 
1505 		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1506 		progress += length;
1507 		m_new->m_len = length;
1508 		if (m_new != m_final)
1509 			m_cat(m_final, m_new);
1510 		m_new = NULL;
1511 	}
1512 #ifdef MBUF_STRESS_TEST
1513 	if (m0->m_next == NULL)
1514 		m_defraguseless++;
1515 #endif
1516 	m_freem(m0);
1517 	m0 = m_final;
1518 #ifdef MBUF_STRESS_TEST
1519 	m_defragpackets++;
1520 	m_defragbytes += m0->m_pkthdr.len;
1521 #endif
1522 	return (m0);
1523 nospace:
1524 #ifdef MBUF_STRESS_TEST
1525 	m_defragfailure++;
1526 #endif
1527 	if (m_final)
1528 		m_freem(m_final);
1529 	return (NULL);
1530 }
1531 
1532 /*
1533  * Defragment an mbuf chain, returning at most maxfrags separate
1534  * mbufs+clusters.  If this is not possible NULL is returned and
1535  * the original mbuf chain is left in it's present (potentially
1536  * modified) state.  We use two techniques: collapsing consecutive
1537  * mbufs and replacing consecutive mbufs by a cluster.
1538  *
1539  * NB: this should really be named m_defrag but that name is taken
1540  */
1541 struct mbuf *
1542 m_collapse(struct mbuf *m0, int how, int maxfrags)
1543 {
1544 	struct mbuf *m, *n, *n2, **prev;
1545 	u_int curfrags;
1546 
1547 	/*
1548 	 * Calculate the current number of frags.
1549 	 */
1550 	curfrags = 0;
1551 	for (m = m0; m != NULL; m = m->m_next)
1552 		curfrags++;
1553 	/*
1554 	 * First, try to collapse mbufs.  Note that we always collapse
1555 	 * towards the front so we don't need to deal with moving the
1556 	 * pkthdr.  This may be suboptimal if the first mbuf has much
1557 	 * less data than the following.
1558 	 */
1559 	m = m0;
1560 again:
1561 	for (;;) {
1562 		n = m->m_next;
1563 		if (n == NULL)
1564 			break;
1565 		if (M_WRITABLE(m) &&
1566 		    n->m_len < M_TRAILINGSPACE(m)) {
1567 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
1568 				n->m_len);
1569 			m->m_len += n->m_len;
1570 			m->m_next = n->m_next;
1571 			m_free(n);
1572 			if (--curfrags <= maxfrags)
1573 				return m0;
1574 		} else
1575 			m = n;
1576 	}
1577 	KASSERT(maxfrags > 1,
1578 		("maxfrags %u, but normal collapse failed", maxfrags));
1579 	/*
1580 	 * Collapse consecutive mbufs to a cluster.
1581 	 */
1582 	prev = &m0->m_next;		/* NB: not the first mbuf */
1583 	while ((n = *prev) != NULL) {
1584 		if ((n2 = n->m_next) != NULL &&
1585 		    n->m_len + n2->m_len < MCLBYTES) {
1586 			m = m_getcl(how, MT_DATA, 0);
1587 			if (m == NULL)
1588 				goto bad;
1589 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
1590 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
1591 				n2->m_len);
1592 			m->m_len = n->m_len + n2->m_len;
1593 			m->m_next = n2->m_next;
1594 			*prev = m;
1595 			m_free(n);
1596 			m_free(n2);
1597 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
1598 				return m0;
1599 			/*
1600 			 * Still not there, try the normal collapse
1601 			 * again before we allocate another cluster.
1602 			 */
1603 			goto again;
1604 		}
1605 		prev = &n->m_next;
1606 	}
1607 	/*
1608 	 * No place where we can collapse to a cluster; punt.
1609 	 * This can occur if, for example, you request 2 frags
1610 	 * but the packet requires that both be clusters (we
1611 	 * never reallocate the first mbuf to avoid moving the
1612 	 * packet header).
1613 	 */
1614 bad:
1615 	return NULL;
1616 }
1617 
1618 #ifdef MBUF_STRESS_TEST
1619 
1620 /*
1621  * Fragment an mbuf chain.  There's no reason you'd ever want to do
1622  * this in normal usage, but it's great for stress testing various
1623  * mbuf consumers.
1624  *
1625  * If fragmentation is not possible, the original chain will be
1626  * returned.
1627  *
1628  * Possible length values:
1629  * 0	 no fragmentation will occur
1630  * > 0	each fragment will be of the specified length
1631  * -1	each fragment will be the same random value in length
1632  * -2	each fragment's length will be entirely random
1633  * (Random values range from 1 to 256)
1634  */
1635 struct mbuf *
1636 m_fragment(struct mbuf *m0, int how, int length)
1637 {
1638 	struct mbuf *m_new = NULL, *m_final = NULL;
1639 	int progress = 0;
1640 
1641 	if (!(m0->m_flags & M_PKTHDR))
1642 		return (m0);
1643 
1644 	if ((length == 0) || (length < -2))
1645 		return (m0);
1646 
1647 	m_fixhdr(m0); /* Needed sanity check */
1648 
1649 	m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1650 
1651 	if (m_final == NULL)
1652 		goto nospace;
1653 
1654 	if (m_dup_pkthdr(m_final, m0, how) == 0)
1655 		goto nospace;
1656 
1657 	m_new = m_final;
1658 
1659 	if (length == -1)
1660 		length = 1 + (arc4random() & 255);
1661 
1662 	while (progress < m0->m_pkthdr.len) {
1663 		int fraglen;
1664 
1665 		if (length > 0)
1666 			fraglen = length;
1667 		else
1668 			fraglen = 1 + (arc4random() & 255);
1669 		if (fraglen > m0->m_pkthdr.len - progress)
1670 			fraglen = m0->m_pkthdr.len - progress;
1671 
1672 		if (fraglen > MCLBYTES)
1673 			fraglen = MCLBYTES;
1674 
1675 		if (m_new == NULL) {
1676 			m_new = m_getcl(how, MT_DATA, 0);
1677 			if (m_new == NULL)
1678 				goto nospace;
1679 		}
1680 
1681 		m_copydata(m0, progress, fraglen, mtod(m_new, caddr_t));
1682 		progress += fraglen;
1683 		m_new->m_len = fraglen;
1684 		if (m_new != m_final)
1685 			m_cat(m_final, m_new);
1686 		m_new = NULL;
1687 	}
1688 	m_freem(m0);
1689 	m0 = m_final;
1690 	return (m0);
1691 nospace:
1692 	if (m_final)
1693 		m_freem(m_final);
1694 	/* Return the original chain on failure */
1695 	return (m0);
1696 }
1697 
1698 #endif
1699 
1700 /*
1701  * Copy the contents of uio into a properly sized mbuf chain.
1702  */
1703 struct mbuf *
1704 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1705 {
1706 	struct mbuf *m, *mb;
1707 	int error, length;
1708 	ssize_t total;
1709 	int progress = 0;
1710 
1711 	/*
1712 	 * len can be zero or an arbitrary large value bound by
1713 	 * the total data supplied by the uio.
1714 	 */
1715 	if (len > 0)
1716 		total = min(uio->uio_resid, len);
1717 	else
1718 		total = uio->uio_resid;
1719 
1720 	/*
1721 	 * The smallest unit returned by m_getm2() is a single mbuf
1722 	 * with pkthdr.  We can't align past it.
1723 	 */
1724 	if (align >= MHLEN)
1725 		return (NULL);
1726 
1727 	/*
1728 	 * Give us the full allocation or nothing.
1729 	 * If len is zero return the smallest empty mbuf.
1730 	 */
1731 	m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1732 	if (m == NULL)
1733 		return (NULL);
1734 	m->m_data += align;
1735 
1736 	/* Fill all mbufs with uio data and update header information. */
1737 	for (mb = m; mb != NULL; mb = mb->m_next) {
1738 		length = min(M_TRAILINGSPACE(mb), total - progress);
1739 
1740 		error = uiomove(mtod(mb, void *), length, uio);
1741 		if (error) {
1742 			m_freem(m);
1743 			return (NULL);
1744 		}
1745 
1746 		mb->m_len = length;
1747 		progress += length;
1748 		if (flags & M_PKTHDR)
1749 			m->m_pkthdr.len += length;
1750 	}
1751 	KASSERT(progress == total, ("%s: progress != total", __func__));
1752 
1753 	return (m);
1754 }
1755 
1756 /*
1757  * Copy an mbuf chain into a uio limited by len if set.
1758  */
1759 int
1760 m_mbuftouio(struct uio *uio, struct mbuf *m, int len)
1761 {
1762 	int error, length, total;
1763 	int progress = 0;
1764 
1765 	if (len > 0)
1766 		total = min(uio->uio_resid, len);
1767 	else
1768 		total = uio->uio_resid;
1769 
1770 	/* Fill the uio with data from the mbufs. */
1771 	for (; m != NULL; m = m->m_next) {
1772 		length = min(m->m_len, total - progress);
1773 
1774 		error = uiomove(mtod(m, void *), length, uio);
1775 		if (error)
1776 			return (error);
1777 
1778 		progress += length;
1779 	}
1780 
1781 	return (0);
1782 }
1783 
1784 /*
1785  * Create a writable copy of the mbuf chain.  While doing this
1786  * we compact the chain with a goal of producing a chain with
1787  * at most two mbufs.  The second mbuf in this chain is likely
1788  * to be a cluster.  The primary purpose of this work is to create
1789  * a writable packet for encryption, compression, etc.  The
1790  * secondary goal is to linearize the data so the data can be
1791  * passed to crypto hardware in the most efficient manner possible.
1792  */
1793 struct mbuf *
1794 m_unshare(struct mbuf *m0, int how)
1795 {
1796 	struct mbuf *m, *mprev;
1797 	struct mbuf *n, *mfirst, *mlast;
1798 	int len, off;
1799 
1800 	mprev = NULL;
1801 	for (m = m0; m != NULL; m = mprev->m_next) {
1802 		/*
1803 		 * Regular mbufs are ignored unless there's a cluster
1804 		 * in front of it that we can use to coalesce.  We do
1805 		 * the latter mainly so later clusters can be coalesced
1806 		 * also w/o having to handle them specially (i.e. convert
1807 		 * mbuf+cluster -> cluster).  This optimization is heavily
1808 		 * influenced by the assumption that we're running over
1809 		 * Ethernet where MCLBYTES is large enough that the max
1810 		 * packet size will permit lots of coalescing into a
1811 		 * single cluster.  This in turn permits efficient
1812 		 * crypto operations, especially when using hardware.
1813 		 */
1814 		if ((m->m_flags & M_EXT) == 0) {
1815 			if (mprev && (mprev->m_flags & M_EXT) &&
1816 			    m->m_len <= M_TRAILINGSPACE(mprev)) {
1817 				/* XXX: this ignores mbuf types */
1818 				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1819 				    mtod(m, caddr_t), m->m_len);
1820 				mprev->m_len += m->m_len;
1821 				mprev->m_next = m->m_next;	/* unlink from chain */
1822 				m_free(m);			/* reclaim mbuf */
1823 #if 0
1824 				newipsecstat.ips_mbcoalesced++;
1825 #endif
1826 			} else {
1827 				mprev = m;
1828 			}
1829 			continue;
1830 		}
1831 		/*
1832 		 * Writable mbufs are left alone (for now).
1833 		 */
1834 		if (M_WRITABLE(m)) {
1835 			mprev = m;
1836 			continue;
1837 		}
1838 
1839 		/*
1840 		 * Not writable, replace with a copy or coalesce with
1841 		 * the previous mbuf if possible (since we have to copy
1842 		 * it anyway, we try to reduce the number of mbufs and
1843 		 * clusters so that future work is easier).
1844 		 */
1845 		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
1846 		/* NB: we only coalesce into a cluster or larger */
1847 		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
1848 		    m->m_len <= M_TRAILINGSPACE(mprev)) {
1849 			/* XXX: this ignores mbuf types */
1850 			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1851 			    mtod(m, caddr_t), m->m_len);
1852 			mprev->m_len += m->m_len;
1853 			mprev->m_next = m->m_next;	/* unlink from chain */
1854 			m_free(m);			/* reclaim mbuf */
1855 #if 0
1856 			newipsecstat.ips_clcoalesced++;
1857 #endif
1858 			continue;
1859 		}
1860 
1861 		/*
1862 		 * Allocate new space to hold the copy and copy the data.
1863 		 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
1864 		 * splitting them into clusters.  We could just malloc a
1865 		 * buffer and make it external but too many device drivers
1866 		 * don't know how to break up the non-contiguous memory when
1867 		 * doing DMA.
1868 		 */
1869 		n = m_getcl(how, m->m_type, m->m_flags);
1870 		if (n == NULL) {
1871 			m_freem(m0);
1872 			return (NULL);
1873 		}
1874 		if (m->m_flags & M_PKTHDR) {
1875 			KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR",
1876 			    __func__, m0, m));
1877 			m_move_pkthdr(n, m);
1878 		}
1879 		len = m->m_len;
1880 		off = 0;
1881 		mfirst = n;
1882 		mlast = NULL;
1883 		for (;;) {
1884 			int cc = min(len, MCLBYTES);
1885 			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
1886 			n->m_len = cc;
1887 			if (mlast != NULL)
1888 				mlast->m_next = n;
1889 			mlast = n;
1890 #if 0
1891 			newipsecstat.ips_clcopied++;
1892 #endif
1893 
1894 			len -= cc;
1895 			if (len <= 0)
1896 				break;
1897 			off += cc;
1898 
1899 			n = m_getcl(how, m->m_type, m->m_flags);
1900 			if (n == NULL) {
1901 				m_freem(mfirst);
1902 				m_freem(m0);
1903 				return (NULL);
1904 			}
1905 		}
1906 		n->m_next = m->m_next;
1907 		if (mprev == NULL)
1908 			m0 = mfirst;		/* new head of chain */
1909 		else
1910 			mprev->m_next = mfirst;	/* replace old mbuf */
1911 		m_free(m);			/* release old mbuf */
1912 		mprev = mfirst;
1913 	}
1914 	return (m0);
1915 }
1916 
1917 #ifdef MBUF_PROFILING
1918 
1919 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
1920 struct mbufprofile {
1921 	uintmax_t wasted[MP_BUCKETS];
1922 	uintmax_t used[MP_BUCKETS];
1923 	uintmax_t segments[MP_BUCKETS];
1924 } mbprof;
1925 
1926 #define MP_MAXDIGITS 21	/* strlen("16,000,000,000,000,000,000") == 21 */
1927 #define MP_NUMLINES 6
1928 #define MP_NUMSPERLINE 16
1929 #define MP_EXTRABYTES 64	/* > strlen("used:\nwasted:\nsegments:\n") */
1930 /* work out max space needed and add a bit of spare space too */
1931 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
1932 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
1933 
1934 char mbprofbuf[MP_BUFSIZE];
1935 
1936 void
1937 m_profile(struct mbuf *m)
1938 {
1939 	int segments = 0;
1940 	int used = 0;
1941 	int wasted = 0;
1942 
1943 	while (m) {
1944 		segments++;
1945 		used += m->m_len;
1946 		if (m->m_flags & M_EXT) {
1947 			wasted += MHLEN - sizeof(m->m_ext) +
1948 			    m->m_ext.ext_size - m->m_len;
1949 		} else {
1950 			if (m->m_flags & M_PKTHDR)
1951 				wasted += MHLEN - m->m_len;
1952 			else
1953 				wasted += MLEN - m->m_len;
1954 		}
1955 		m = m->m_next;
1956 	}
1957 	/* be paranoid.. it helps */
1958 	if (segments > MP_BUCKETS - 1)
1959 		segments = MP_BUCKETS - 1;
1960 	if (used > 100000)
1961 		used = 100000;
1962 	if (wasted > 100000)
1963 		wasted = 100000;
1964 	/* store in the appropriate bucket */
1965 	/* don't bother locking. if it's slightly off, so what? */
1966 	mbprof.segments[segments]++;
1967 	mbprof.used[fls(used)]++;
1968 	mbprof.wasted[fls(wasted)]++;
1969 }
1970 
1971 static void
1972 mbprof_textify(void)
1973 {
1974 	int offset;
1975 	char *c;
1976 	uint64_t *p;
1977 
1978 	p = &mbprof.wasted[0];
1979 	c = mbprofbuf;
1980 	offset = snprintf(c, MP_MAXLINE + 10,
1981 	    "wasted:\n"
1982 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
1983 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
1984 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
1985 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
1986 #ifdef BIG_ARRAY
1987 	p = &mbprof.wasted[16];
1988 	c += offset;
1989 	offset = snprintf(c, MP_MAXLINE,
1990 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
1991 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
1992 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
1993 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
1994 #endif
1995 	p = &mbprof.used[0];
1996 	c += offset;
1997 	offset = snprintf(c, MP_MAXLINE + 10,
1998 	    "used:\n"
1999 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2000 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2001 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2002 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2003 #ifdef BIG_ARRAY
2004 	p = &mbprof.used[16];
2005 	c += offset;
2006 	offset = snprintf(c, MP_MAXLINE,
2007 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2008 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2009 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2010 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2011 #endif
2012 	p = &mbprof.segments[0];
2013 	c += offset;
2014 	offset = snprintf(c, MP_MAXLINE + 10,
2015 	    "segments:\n"
2016 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2017 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2018 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2019 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2020 #ifdef BIG_ARRAY
2021 	p = &mbprof.segments[16];
2022 	c += offset;
2023 	offset = snprintf(c, MP_MAXLINE,
2024 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2025 	    "%ju %ju %ju %ju %ju %ju %ju %jju",
2026 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2027 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2028 #endif
2029 }
2030 
2031 static int
2032 mbprof_handler(SYSCTL_HANDLER_ARGS)
2033 {
2034 	int error;
2035 
2036 	mbprof_textify();
2037 	error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
2038 	return (error);
2039 }
2040 
2041 static int
2042 mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
2043 {
2044 	int clear, error;
2045 
2046 	clear = 0;
2047 	error = sysctl_handle_int(oidp, &clear, 0, req);
2048 	if (error || !req->newptr)
2049 		return (error);
2050 
2051 	if (clear) {
2052 		bzero(&mbprof, sizeof(mbprof));
2053 	}
2054 
2055 	return (error);
2056 }
2057 
2058 
2059 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD,
2060 	    NULL, 0, mbprof_handler, "A", "mbuf profiling statistics");
2061 
2062 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW,
2063 	    NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics");
2064 #endif
2065 
2066