1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_param.h" 36 #include "opt_mbuf_stress_test.h" 37 #include "opt_mbuf_profiling.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/limits.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/sysctl.h> 47 #include <sys/domain.h> 48 #include <sys/protosw.h> 49 #include <sys/uio.h> 50 51 int max_linkhdr; 52 int max_protohdr; 53 int max_hdr; 54 int max_datalen; 55 #ifdef MBUF_STRESS_TEST 56 int m_defragpackets; 57 int m_defragbytes; 58 int m_defraguseless; 59 int m_defragfailure; 60 int m_defragrandomfailures; 61 #endif 62 63 /* 64 * sysctl(8) exported objects 65 */ 66 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD, 67 &max_linkhdr, 0, "Size of largest link layer header"); 68 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD, 69 &max_protohdr, 0, "Size of largest protocol layer header"); 70 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD, 71 &max_hdr, 0, "Size of largest link plus protocol header"); 72 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD, 73 &max_datalen, 0, "Minimum space left in mbuf after max_hdr"); 74 #ifdef MBUF_STRESS_TEST 75 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD, 76 &m_defragpackets, 0, ""); 77 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD, 78 &m_defragbytes, 0, ""); 79 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD, 80 &m_defraguseless, 0, ""); 81 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD, 82 &m_defragfailure, 0, ""); 83 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW, 84 &m_defragrandomfailures, 0, ""); 85 #endif 86 87 /* 88 * m_get2() allocates minimum mbuf that would fit "size" argument. 89 */ 90 struct mbuf * 91 m_get2(int size, int how, short type, int flags) 92 { 93 struct mb_args args; 94 struct mbuf *m, *n; 95 uma_zone_t zone; 96 97 args.flags = flags; 98 args.type = type; 99 100 if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0)) 101 return (uma_zalloc_arg(zone_mbuf, &args, how)); 102 if (size <= MCLBYTES) 103 return (uma_zalloc_arg(zone_pack, &args, how)); 104 if (size > MJUM16BYTES) 105 return (NULL); 106 107 m = uma_zalloc_arg(zone_mbuf, &args, how); 108 if (m == NULL) 109 return (NULL); 110 111 #if MJUMPAGESIZE != MCLBYTES 112 if (size <= MJUMPAGESIZE) 113 zone = zone_jumbop; 114 else 115 #endif 116 if (size <= MJUM9BYTES) 117 zone = zone_jumbo9; 118 else 119 zone = zone_jumbo16; 120 121 n = uma_zalloc_arg(zone, m, how); 122 if (n == NULL) { 123 uma_zfree(zone_mbuf, m); 124 return (NULL); 125 } 126 127 return (m); 128 } 129 130 /* 131 * m_getjcl() returns an mbuf with a cluster of the specified size attached. 132 * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES. 133 */ 134 struct mbuf * 135 m_getjcl(int how, short type, int flags, int size) 136 { 137 struct mb_args args; 138 struct mbuf *m, *n; 139 uma_zone_t zone; 140 141 if (size == MCLBYTES) 142 return m_getcl(how, type, flags); 143 144 args.flags = flags; 145 args.type = type; 146 147 m = uma_zalloc_arg(zone_mbuf, &args, how); 148 if (m == NULL) 149 return (NULL); 150 151 zone = m_getzone(size); 152 n = uma_zalloc_arg(zone, m, how); 153 if (n == NULL) { 154 uma_zfree(zone_mbuf, m); 155 return (NULL); 156 } 157 return (m); 158 } 159 160 /* 161 * Allocate a given length worth of mbufs and/or clusters (whatever fits 162 * best) and return a pointer to the top of the allocated chain. If an 163 * existing mbuf chain is provided, then we will append the new chain 164 * to the existing one but still return the top of the newly allocated 165 * chain. 166 */ 167 struct mbuf * 168 m_getm2(struct mbuf *m, int len, int how, short type, int flags) 169 { 170 struct mbuf *mb, *nm = NULL, *mtail = NULL; 171 172 KASSERT(len >= 0, ("%s: len is < 0", __func__)); 173 174 /* Validate flags. */ 175 flags &= (M_PKTHDR | M_EOR); 176 177 /* Packet header mbuf must be first in chain. */ 178 if ((flags & M_PKTHDR) && m != NULL) 179 flags &= ~M_PKTHDR; 180 181 /* Loop and append maximum sized mbufs to the chain tail. */ 182 while (len > 0) { 183 if (len > MCLBYTES) 184 mb = m_getjcl(how, type, (flags & M_PKTHDR), 185 MJUMPAGESIZE); 186 else if (len >= MINCLSIZE) 187 mb = m_getcl(how, type, (flags & M_PKTHDR)); 188 else if (flags & M_PKTHDR) 189 mb = m_gethdr(how, type); 190 else 191 mb = m_get(how, type); 192 193 /* Fail the whole operation if one mbuf can't be allocated. */ 194 if (mb == NULL) { 195 if (nm != NULL) 196 m_freem(nm); 197 return (NULL); 198 } 199 200 /* Book keeping. */ 201 len -= (mb->m_flags & M_EXT) ? mb->m_ext.ext_size : 202 ((mb->m_flags & M_PKTHDR) ? MHLEN : MLEN); 203 if (mtail != NULL) 204 mtail->m_next = mb; 205 else 206 nm = mb; 207 mtail = mb; 208 flags &= ~M_PKTHDR; /* Only valid on the first mbuf. */ 209 } 210 if (flags & M_EOR) 211 mtail->m_flags |= M_EOR; /* Only valid on the last mbuf. */ 212 213 /* If mbuf was supplied, append new chain to the end of it. */ 214 if (m != NULL) { 215 for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next) 216 ; 217 mtail->m_next = nm; 218 mtail->m_flags &= ~M_EOR; 219 } else 220 m = nm; 221 222 return (m); 223 } 224 225 /* 226 * Free an entire chain of mbufs and associated external buffers, if 227 * applicable. 228 */ 229 void 230 m_freem(struct mbuf *mb) 231 { 232 233 while (mb != NULL) 234 mb = m_free(mb); 235 } 236 237 /*- 238 * Configure a provided mbuf to refer to the provided external storage 239 * buffer and setup a reference count for said buffer. If the setting 240 * up of the reference count fails, the M_EXT bit will not be set. If 241 * successfull, the M_EXT bit is set in the mbuf's flags. 242 * 243 * Arguments: 244 * mb The existing mbuf to which to attach the provided buffer. 245 * buf The address of the provided external storage buffer. 246 * size The size of the provided buffer. 247 * freef A pointer to a routine that is responsible for freeing the 248 * provided external storage buffer. 249 * args A pointer to an argument structure (of any type) to be passed 250 * to the provided freef routine (may be NULL). 251 * flags Any other flags to be passed to the provided mbuf. 252 * type The type that the external storage buffer should be 253 * labeled with. 254 * 255 * Returns: 256 * Nothing. 257 */ 258 int 259 m_extadd(struct mbuf *mb, caddr_t buf, u_int size, 260 void (*freef)(void *, void *), void *arg1, void *arg2, int flags, int type, 261 int wait) 262 { 263 KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__)); 264 265 if (type != EXT_EXTREF) 266 mb->m_ext.ref_cnt = uma_zalloc(zone_ext_refcnt, wait); 267 268 if (mb->m_ext.ref_cnt == NULL) 269 return (ENOMEM); 270 271 *(mb->m_ext.ref_cnt) = 1; 272 mb->m_flags |= (M_EXT | flags); 273 mb->m_ext.ext_buf = buf; 274 mb->m_data = mb->m_ext.ext_buf; 275 mb->m_ext.ext_size = size; 276 mb->m_ext.ext_free = freef; 277 mb->m_ext.ext_arg1 = arg1; 278 mb->m_ext.ext_arg2 = arg2; 279 mb->m_ext.ext_type = type; 280 281 return (0); 282 } 283 284 /* 285 * Non-directly-exported function to clean up after mbufs with M_EXT 286 * storage attached to them if the reference count hits 1. 287 */ 288 void 289 mb_free_ext(struct mbuf *m) 290 { 291 int skipmbuf; 292 293 KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__)); 294 KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__)); 295 296 297 /* 298 * check if the header is embedded in the cluster 299 */ 300 skipmbuf = (m->m_flags & M_NOFREE); 301 302 /* Free attached storage if this mbuf is the only reference to it. */ 303 if (*(m->m_ext.ref_cnt) == 1 || 304 atomic_fetchadd_int(m->m_ext.ref_cnt, -1) == 1) { 305 switch (m->m_ext.ext_type) { 306 case EXT_PACKET: /* The packet zone is special. */ 307 if (*(m->m_ext.ref_cnt) == 0) 308 *(m->m_ext.ref_cnt) = 1; 309 uma_zfree(zone_pack, m); 310 return; /* Job done. */ 311 case EXT_CLUSTER: 312 uma_zfree(zone_clust, m->m_ext.ext_buf); 313 break; 314 case EXT_JUMBOP: 315 uma_zfree(zone_jumbop, m->m_ext.ext_buf); 316 break; 317 case EXT_JUMBO9: 318 uma_zfree(zone_jumbo9, m->m_ext.ext_buf); 319 break; 320 case EXT_JUMBO16: 321 uma_zfree(zone_jumbo16, m->m_ext.ext_buf); 322 break; 323 case EXT_SFBUF: 324 case EXT_NET_DRV: 325 case EXT_MOD_TYPE: 326 case EXT_DISPOSABLE: 327 *(m->m_ext.ref_cnt) = 0; 328 uma_zfree(zone_ext_refcnt, __DEVOLATILE(u_int *, 329 m->m_ext.ref_cnt)); 330 /* FALLTHROUGH */ 331 case EXT_EXTREF: 332 KASSERT(m->m_ext.ext_free != NULL, 333 ("%s: ext_free not set", __func__)); 334 (*(m->m_ext.ext_free))(m->m_ext.ext_arg1, 335 m->m_ext.ext_arg2); 336 break; 337 default: 338 KASSERT(m->m_ext.ext_type == 0, 339 ("%s: unknown ext_type", __func__)); 340 } 341 } 342 if (skipmbuf) 343 return; 344 345 /* 346 * Free this mbuf back to the mbuf zone with all m_ext 347 * information purged. 348 */ 349 m->m_ext.ext_buf = NULL; 350 m->m_ext.ext_free = NULL; 351 m->m_ext.ext_arg1 = NULL; 352 m->m_ext.ext_arg2 = NULL; 353 m->m_ext.ref_cnt = NULL; 354 m->m_ext.ext_size = 0; 355 m->m_ext.ext_type = 0; 356 m->m_flags &= ~M_EXT; 357 uma_zfree(zone_mbuf, m); 358 } 359 360 /* 361 * Attach the cluster from *m to *n, set up m_ext in *n 362 * and bump the refcount of the cluster. 363 */ 364 static void 365 mb_dupcl(struct mbuf *n, struct mbuf *m) 366 { 367 KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__)); 368 KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__)); 369 KASSERT((n->m_flags & M_EXT) == 0, ("%s: M_EXT set", __func__)); 370 371 if (*(m->m_ext.ref_cnt) == 1) 372 *(m->m_ext.ref_cnt) += 1; 373 else 374 atomic_add_int(m->m_ext.ref_cnt, 1); 375 n->m_ext.ext_buf = m->m_ext.ext_buf; 376 n->m_ext.ext_free = m->m_ext.ext_free; 377 n->m_ext.ext_arg1 = m->m_ext.ext_arg1; 378 n->m_ext.ext_arg2 = m->m_ext.ext_arg2; 379 n->m_ext.ext_size = m->m_ext.ext_size; 380 n->m_ext.ref_cnt = m->m_ext.ref_cnt; 381 n->m_ext.ext_type = m->m_ext.ext_type; 382 n->m_flags |= M_EXT; 383 n->m_flags |= m->m_flags & M_RDONLY; 384 } 385 386 /* 387 * Clean up mbuf (chain) from any tags and packet headers. 388 * If "all" is set then the first mbuf in the chain will be 389 * cleaned too. 390 */ 391 void 392 m_demote(struct mbuf *m0, int all) 393 { 394 struct mbuf *m; 395 396 for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) { 397 if (m->m_flags & M_PKTHDR) { 398 m_tag_delete_chain(m, NULL); 399 m->m_flags &= ~M_PKTHDR; 400 bzero(&m->m_pkthdr, sizeof(struct pkthdr)); 401 } 402 if (m != m0 && m->m_nextpkt != NULL) { 403 KASSERT(m->m_nextpkt == NULL, 404 ("%s: m_nextpkt not NULL", __func__)); 405 m_freem(m->m_nextpkt); 406 m->m_nextpkt = NULL; 407 } 408 m->m_flags = m->m_flags & (M_EXT|M_RDONLY|M_FREELIST|M_NOFREE); 409 } 410 } 411 412 /* 413 * Sanity checks on mbuf (chain) for use in KASSERT() and general 414 * debugging. 415 * Returns 0 or panics when bad and 1 on all tests passed. 416 * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they 417 * blow up later. 418 */ 419 int 420 m_sanity(struct mbuf *m0, int sanitize) 421 { 422 struct mbuf *m; 423 caddr_t a, b; 424 int pktlen = 0; 425 426 #ifdef INVARIANTS 427 #define M_SANITY_ACTION(s) panic("mbuf %p: " s, m) 428 #else 429 #define M_SANITY_ACTION(s) printf("mbuf %p: " s, m) 430 #endif 431 432 for (m = m0; m != NULL; m = m->m_next) { 433 /* 434 * Basic pointer checks. If any of these fails then some 435 * unrelated kernel memory before or after us is trashed. 436 * No way to recover from that. 437 */ 438 a = ((m->m_flags & M_EXT) ? m->m_ext.ext_buf : 439 ((m->m_flags & M_PKTHDR) ? (caddr_t)(&m->m_pktdat) : 440 (caddr_t)(&m->m_dat)) ); 441 b = (caddr_t)(a + (m->m_flags & M_EXT ? m->m_ext.ext_size : 442 ((m->m_flags & M_PKTHDR) ? MHLEN : MLEN))); 443 if ((caddr_t)m->m_data < a) 444 M_SANITY_ACTION("m_data outside mbuf data range left"); 445 if ((caddr_t)m->m_data > b) 446 M_SANITY_ACTION("m_data outside mbuf data range right"); 447 if ((caddr_t)m->m_data + m->m_len > b) 448 M_SANITY_ACTION("m_data + m_len exeeds mbuf space"); 449 if ((m->m_flags & M_PKTHDR) && m->m_pkthdr.header) { 450 if ((caddr_t)m->m_pkthdr.header < a || 451 (caddr_t)m->m_pkthdr.header > b) 452 M_SANITY_ACTION("m_pkthdr.header outside mbuf data range"); 453 } 454 455 /* m->m_nextpkt may only be set on first mbuf in chain. */ 456 if (m != m0 && m->m_nextpkt != NULL) { 457 if (sanitize) { 458 m_freem(m->m_nextpkt); 459 m->m_nextpkt = (struct mbuf *)0xDEADC0DE; 460 } else 461 M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf"); 462 } 463 464 /* packet length (not mbuf length!) calculation */ 465 if (m0->m_flags & M_PKTHDR) 466 pktlen += m->m_len; 467 468 /* m_tags may only be attached to first mbuf in chain. */ 469 if (m != m0 && m->m_flags & M_PKTHDR && 470 !SLIST_EMPTY(&m->m_pkthdr.tags)) { 471 if (sanitize) { 472 m_tag_delete_chain(m, NULL); 473 /* put in 0xDEADC0DE perhaps? */ 474 } else 475 M_SANITY_ACTION("m_tags on in-chain mbuf"); 476 } 477 478 /* M_PKTHDR may only be set on first mbuf in chain */ 479 if (m != m0 && m->m_flags & M_PKTHDR) { 480 if (sanitize) { 481 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr)); 482 m->m_flags &= ~M_PKTHDR; 483 /* put in 0xDEADCODE and leave hdr flag in */ 484 } else 485 M_SANITY_ACTION("M_PKTHDR on in-chain mbuf"); 486 } 487 } 488 m = m0; 489 if (pktlen && pktlen != m->m_pkthdr.len) { 490 if (sanitize) 491 m->m_pkthdr.len = 0; 492 else 493 M_SANITY_ACTION("m_pkthdr.len != mbuf chain length"); 494 } 495 return 1; 496 497 #undef M_SANITY_ACTION 498 } 499 500 501 /* 502 * "Move" mbuf pkthdr from "from" to "to". 503 * "from" must have M_PKTHDR set, and "to" must be empty. 504 */ 505 void 506 m_move_pkthdr(struct mbuf *to, struct mbuf *from) 507 { 508 509 #if 0 510 /* see below for why these are not enabled */ 511 M_ASSERTPKTHDR(to); 512 /* Note: with MAC, this may not be a good assertion. */ 513 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), 514 ("m_move_pkthdr: to has tags")); 515 #endif 516 #ifdef MAC 517 /* 518 * XXXMAC: It could be this should also occur for non-MAC? 519 */ 520 if (to->m_flags & M_PKTHDR) 521 m_tag_delete_chain(to, NULL); 522 #endif 523 to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); 524 if ((to->m_flags & M_EXT) == 0) 525 to->m_data = to->m_pktdat; 526 to->m_pkthdr = from->m_pkthdr; /* especially tags */ 527 SLIST_INIT(&from->m_pkthdr.tags); /* purge tags from src */ 528 from->m_flags &= ~M_PKTHDR; 529 } 530 531 /* 532 * Duplicate "from"'s mbuf pkthdr in "to". 533 * "from" must have M_PKTHDR set, and "to" must be empty. 534 * In particular, this does a deep copy of the packet tags. 535 */ 536 int 537 m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how) 538 { 539 540 #if 0 541 /* 542 * The mbuf allocator only initializes the pkthdr 543 * when the mbuf is allocated with MGETHDR. Many users 544 * (e.g. m_copy*, m_prepend) use MGET and then 545 * smash the pkthdr as needed causing these 546 * assertions to trip. For now just disable them. 547 */ 548 M_ASSERTPKTHDR(to); 549 /* Note: with MAC, this may not be a good assertion. */ 550 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags")); 551 #endif 552 MBUF_CHECKSLEEP(how); 553 #ifdef MAC 554 if (to->m_flags & M_PKTHDR) 555 m_tag_delete_chain(to, NULL); 556 #endif 557 to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); 558 if ((to->m_flags & M_EXT) == 0) 559 to->m_data = to->m_pktdat; 560 to->m_pkthdr = from->m_pkthdr; 561 SLIST_INIT(&to->m_pkthdr.tags); 562 return (m_tag_copy_chain(to, from, MBTOM(how))); 563 } 564 565 /* 566 * Lesser-used path for M_PREPEND: 567 * allocate new mbuf to prepend to chain, 568 * copy junk along. 569 */ 570 struct mbuf * 571 m_prepend(struct mbuf *m, int len, int how) 572 { 573 struct mbuf *mn; 574 575 if (m->m_flags & M_PKTHDR) 576 MGETHDR(mn, how, m->m_type); 577 else 578 MGET(mn, how, m->m_type); 579 if (mn == NULL) { 580 m_freem(m); 581 return (NULL); 582 } 583 if (m->m_flags & M_PKTHDR) 584 M_MOVE_PKTHDR(mn, m); 585 mn->m_next = m; 586 m = mn; 587 if(m->m_flags & M_PKTHDR) { 588 if (len < MHLEN) 589 MH_ALIGN(m, len); 590 } else { 591 if (len < MLEN) 592 M_ALIGN(m, len); 593 } 594 m->m_len = len; 595 return (m); 596 } 597 598 /* 599 * Make a copy of an mbuf chain starting "off0" bytes from the beginning, 600 * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf. 601 * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller. 602 * Note that the copy is read-only, because clusters are not copied, 603 * only their reference counts are incremented. 604 */ 605 struct mbuf * 606 m_copym(struct mbuf *m, int off0, int len, int wait) 607 { 608 struct mbuf *n, **np; 609 int off = off0; 610 struct mbuf *top; 611 int copyhdr = 0; 612 613 KASSERT(off >= 0, ("m_copym, negative off %d", off)); 614 KASSERT(len >= 0, ("m_copym, negative len %d", len)); 615 MBUF_CHECKSLEEP(wait); 616 if (off == 0 && m->m_flags & M_PKTHDR) 617 copyhdr = 1; 618 while (off > 0) { 619 KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain")); 620 if (off < m->m_len) 621 break; 622 off -= m->m_len; 623 m = m->m_next; 624 } 625 np = ⊤ 626 top = 0; 627 while (len > 0) { 628 if (m == NULL) { 629 KASSERT(len == M_COPYALL, 630 ("m_copym, length > size of mbuf chain")); 631 break; 632 } 633 if (copyhdr) 634 MGETHDR(n, wait, m->m_type); 635 else 636 MGET(n, wait, m->m_type); 637 *np = n; 638 if (n == NULL) 639 goto nospace; 640 if (copyhdr) { 641 if (!m_dup_pkthdr(n, m, wait)) 642 goto nospace; 643 if (len == M_COPYALL) 644 n->m_pkthdr.len -= off0; 645 else 646 n->m_pkthdr.len = len; 647 copyhdr = 0; 648 } 649 n->m_len = min(len, m->m_len - off); 650 if (m->m_flags & M_EXT) { 651 n->m_data = m->m_data + off; 652 mb_dupcl(n, m); 653 } else 654 bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t), 655 (u_int)n->m_len); 656 if (len != M_COPYALL) 657 len -= n->m_len; 658 off = 0; 659 m = m->m_next; 660 np = &n->m_next; 661 } 662 if (top == NULL) 663 mbstat.m_mcfail++; /* XXX: No consistency. */ 664 665 return (top); 666 nospace: 667 m_freem(top); 668 mbstat.m_mcfail++; /* XXX: No consistency. */ 669 return (NULL); 670 } 671 672 /* 673 * Returns mbuf chain with new head for the prepending case. 674 * Copies from mbuf (chain) n from off for len to mbuf (chain) m 675 * either prepending or appending the data. 676 * The resulting mbuf (chain) m is fully writeable. 677 * m is destination (is made writeable) 678 * n is source, off is offset in source, len is len from offset 679 * dir, 0 append, 1 prepend 680 * how, wait or nowait 681 */ 682 683 static int 684 m_bcopyxxx(void *s, void *t, u_int len) 685 { 686 bcopy(s, t, (size_t)len); 687 return 0; 688 } 689 690 struct mbuf * 691 m_copymdata(struct mbuf *m, struct mbuf *n, int off, int len, 692 int prep, int how) 693 { 694 struct mbuf *mm, *x, *z, *prev = NULL; 695 caddr_t p; 696 int i, nlen = 0; 697 caddr_t buf[MLEN]; 698 699 KASSERT(m != NULL && n != NULL, ("m_copymdata, no target or source")); 700 KASSERT(off >= 0, ("m_copymdata, negative off %d", off)); 701 KASSERT(len >= 0, ("m_copymdata, negative len %d", len)); 702 KASSERT(prep == 0 || prep == 1, ("m_copymdata, unknown direction %d", prep)); 703 704 mm = m; 705 if (!prep) { 706 while(mm->m_next) { 707 prev = mm; 708 mm = mm->m_next; 709 } 710 } 711 for (z = n; z != NULL; z = z->m_next) 712 nlen += z->m_len; 713 if (len == M_COPYALL) 714 len = nlen - off; 715 if (off + len > nlen || len < 1) 716 return NULL; 717 718 if (!M_WRITABLE(mm)) { 719 /* XXX: Use proper m_xxx function instead. */ 720 x = m_getcl(how, MT_DATA, mm->m_flags); 721 if (x == NULL) 722 return NULL; 723 bcopy(mm->m_ext.ext_buf, x->m_ext.ext_buf, x->m_ext.ext_size); 724 p = x->m_ext.ext_buf + (mm->m_data - mm->m_ext.ext_buf); 725 x->m_data = p; 726 mm->m_next = NULL; 727 if (mm != m) 728 prev->m_next = x; 729 m_free(mm); 730 mm = x; 731 } 732 733 /* 734 * Append/prepend the data. Allocating mbufs as necessary. 735 */ 736 /* Shortcut if enough free space in first/last mbuf. */ 737 if (!prep && M_TRAILINGSPACE(mm) >= len) { 738 m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t) + 739 mm->m_len); 740 mm->m_len += len; 741 mm->m_pkthdr.len += len; 742 return m; 743 } 744 if (prep && M_LEADINGSPACE(mm) >= len) { 745 mm->m_data = mtod(mm, caddr_t) - len; 746 m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t)); 747 mm->m_len += len; 748 mm->m_pkthdr.len += len; 749 return mm; 750 } 751 752 /* Expand first/last mbuf to cluster if possible. */ 753 if (!prep && !(mm->m_flags & M_EXT) && len > M_TRAILINGSPACE(mm)) { 754 bcopy(mm->m_data, &buf, mm->m_len); 755 m_clget(mm, how); 756 if (!(mm->m_flags & M_EXT)) 757 return NULL; 758 bcopy(&buf, mm->m_ext.ext_buf, mm->m_len); 759 mm->m_data = mm->m_ext.ext_buf; 760 mm->m_pkthdr.header = NULL; 761 } 762 if (prep && !(mm->m_flags & M_EXT) && len > M_LEADINGSPACE(mm)) { 763 bcopy(mm->m_data, &buf, mm->m_len); 764 m_clget(mm, how); 765 if (!(mm->m_flags & M_EXT)) 766 return NULL; 767 bcopy(&buf, (caddr_t *)mm->m_ext.ext_buf + 768 mm->m_ext.ext_size - mm->m_len, mm->m_len); 769 mm->m_data = (caddr_t)mm->m_ext.ext_buf + 770 mm->m_ext.ext_size - mm->m_len; 771 mm->m_pkthdr.header = NULL; 772 } 773 774 /* Append/prepend as many mbuf (clusters) as necessary to fit len. */ 775 if (!prep && len > M_TRAILINGSPACE(mm)) { 776 if (!m_getm(mm, len - M_TRAILINGSPACE(mm), how, MT_DATA)) 777 return NULL; 778 } 779 if (prep && len > M_LEADINGSPACE(mm)) { 780 if (!(z = m_getm(NULL, len - M_LEADINGSPACE(mm), how, MT_DATA))) 781 return NULL; 782 i = 0; 783 for (x = z; x != NULL; x = x->m_next) { 784 i += x->m_flags & M_EXT ? x->m_ext.ext_size : 785 (x->m_flags & M_PKTHDR ? MHLEN : MLEN); 786 if (!x->m_next) 787 break; 788 } 789 z->m_data += i - len; 790 m_move_pkthdr(mm, z); 791 x->m_next = mm; 792 mm = z; 793 } 794 795 /* Seek to start position in source mbuf. Optimization for long chains. */ 796 while (off > 0) { 797 if (off < n->m_len) 798 break; 799 off -= n->m_len; 800 n = n->m_next; 801 } 802 803 /* Copy data into target mbuf. */ 804 z = mm; 805 while (len > 0) { 806 KASSERT(z != NULL, ("m_copymdata, falling off target edge")); 807 i = M_TRAILINGSPACE(z); 808 m_apply(n, off, i, m_bcopyxxx, mtod(z, caddr_t) + z->m_len); 809 z->m_len += i; 810 /* fixup pkthdr.len if necessary */ 811 if ((prep ? mm : m)->m_flags & M_PKTHDR) 812 (prep ? mm : m)->m_pkthdr.len += i; 813 off += i; 814 len -= i; 815 z = z->m_next; 816 } 817 return (prep ? mm : m); 818 } 819 820 /* 821 * Copy an entire packet, including header (which must be present). 822 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'. 823 * Note that the copy is read-only, because clusters are not copied, 824 * only their reference counts are incremented. 825 * Preserve alignment of the first mbuf so if the creator has left 826 * some room at the beginning (e.g. for inserting protocol headers) 827 * the copies still have the room available. 828 */ 829 struct mbuf * 830 m_copypacket(struct mbuf *m, int how) 831 { 832 struct mbuf *top, *n, *o; 833 834 MBUF_CHECKSLEEP(how); 835 MGET(n, how, m->m_type); 836 top = n; 837 if (n == NULL) 838 goto nospace; 839 840 if (!m_dup_pkthdr(n, m, how)) 841 goto nospace; 842 n->m_len = m->m_len; 843 if (m->m_flags & M_EXT) { 844 n->m_data = m->m_data; 845 mb_dupcl(n, m); 846 } else { 847 n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat ); 848 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 849 } 850 851 m = m->m_next; 852 while (m) { 853 MGET(o, how, m->m_type); 854 if (o == NULL) 855 goto nospace; 856 857 n->m_next = o; 858 n = n->m_next; 859 860 n->m_len = m->m_len; 861 if (m->m_flags & M_EXT) { 862 n->m_data = m->m_data; 863 mb_dupcl(n, m); 864 } else { 865 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 866 } 867 868 m = m->m_next; 869 } 870 return top; 871 nospace: 872 m_freem(top); 873 mbstat.m_mcfail++; /* XXX: No consistency. */ 874 return (NULL); 875 } 876 877 /* 878 * Copy data from an mbuf chain starting "off" bytes from the beginning, 879 * continuing for "len" bytes, into the indicated buffer. 880 */ 881 void 882 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp) 883 { 884 u_int count; 885 886 KASSERT(off >= 0, ("m_copydata, negative off %d", off)); 887 KASSERT(len >= 0, ("m_copydata, negative len %d", len)); 888 while (off > 0) { 889 KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain")); 890 if (off < m->m_len) 891 break; 892 off -= m->m_len; 893 m = m->m_next; 894 } 895 while (len > 0) { 896 KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain")); 897 count = min(m->m_len - off, len); 898 bcopy(mtod(m, caddr_t) + off, cp, count); 899 len -= count; 900 cp += count; 901 off = 0; 902 m = m->m_next; 903 } 904 } 905 906 /* 907 * Copy a packet header mbuf chain into a completely new chain, including 908 * copying any mbuf clusters. Use this instead of m_copypacket() when 909 * you need a writable copy of an mbuf chain. 910 */ 911 struct mbuf * 912 m_dup(struct mbuf *m, int how) 913 { 914 struct mbuf **p, *top = NULL; 915 int remain, moff, nsize; 916 917 MBUF_CHECKSLEEP(how); 918 /* Sanity check */ 919 if (m == NULL) 920 return (NULL); 921 M_ASSERTPKTHDR(m); 922 923 /* While there's more data, get a new mbuf, tack it on, and fill it */ 924 remain = m->m_pkthdr.len; 925 moff = 0; 926 p = ⊤ 927 while (remain > 0 || top == NULL) { /* allow m->m_pkthdr.len == 0 */ 928 struct mbuf *n; 929 930 /* Get the next new mbuf */ 931 if (remain >= MINCLSIZE) { 932 n = m_getcl(how, m->m_type, 0); 933 nsize = MCLBYTES; 934 } else { 935 n = m_get(how, m->m_type); 936 nsize = MLEN; 937 } 938 if (n == NULL) 939 goto nospace; 940 941 if (top == NULL) { /* First one, must be PKTHDR */ 942 if (!m_dup_pkthdr(n, m, how)) { 943 m_free(n); 944 goto nospace; 945 } 946 if ((n->m_flags & M_EXT) == 0) 947 nsize = MHLEN; 948 } 949 n->m_len = 0; 950 951 /* Link it into the new chain */ 952 *p = n; 953 p = &n->m_next; 954 955 /* Copy data from original mbuf(s) into new mbuf */ 956 while (n->m_len < nsize && m != NULL) { 957 int chunk = min(nsize - n->m_len, m->m_len - moff); 958 959 bcopy(m->m_data + moff, n->m_data + n->m_len, chunk); 960 moff += chunk; 961 n->m_len += chunk; 962 remain -= chunk; 963 if (moff == m->m_len) { 964 m = m->m_next; 965 moff = 0; 966 } 967 } 968 969 /* Check correct total mbuf length */ 970 KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL), 971 ("%s: bogus m_pkthdr.len", __func__)); 972 } 973 return (top); 974 975 nospace: 976 m_freem(top); 977 mbstat.m_mcfail++; /* XXX: No consistency. */ 978 return (NULL); 979 } 980 981 /* 982 * Concatenate mbuf chain n to m. 983 * Both chains must be of the same type (e.g. MT_DATA). 984 * Any m_pkthdr is not updated. 985 */ 986 void 987 m_cat(struct mbuf *m, struct mbuf *n) 988 { 989 while (m->m_next) 990 m = m->m_next; 991 while (n) { 992 if (!M_WRITABLE(m) || 993 M_TRAILINGSPACE(m) < n->m_len) { 994 /* just join the two chains */ 995 m->m_next = n; 996 return; 997 } 998 /* splat the data from one into the other */ 999 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 1000 (u_int)n->m_len); 1001 m->m_len += n->m_len; 1002 n = m_free(n); 1003 } 1004 } 1005 1006 void 1007 m_adj(struct mbuf *mp, int req_len) 1008 { 1009 int len = req_len; 1010 struct mbuf *m; 1011 int count; 1012 1013 if ((m = mp) == NULL) 1014 return; 1015 if (len >= 0) { 1016 /* 1017 * Trim from head. 1018 */ 1019 while (m != NULL && len > 0) { 1020 if (m->m_len <= len) { 1021 len -= m->m_len; 1022 m->m_len = 0; 1023 m = m->m_next; 1024 } else { 1025 m->m_len -= len; 1026 m->m_data += len; 1027 len = 0; 1028 } 1029 } 1030 if (mp->m_flags & M_PKTHDR) 1031 mp->m_pkthdr.len -= (req_len - len); 1032 } else { 1033 /* 1034 * Trim from tail. Scan the mbuf chain, 1035 * calculating its length and finding the last mbuf. 1036 * If the adjustment only affects this mbuf, then just 1037 * adjust and return. Otherwise, rescan and truncate 1038 * after the remaining size. 1039 */ 1040 len = -len; 1041 count = 0; 1042 for (;;) { 1043 count += m->m_len; 1044 if (m->m_next == (struct mbuf *)0) 1045 break; 1046 m = m->m_next; 1047 } 1048 if (m->m_len >= len) { 1049 m->m_len -= len; 1050 if (mp->m_flags & M_PKTHDR) 1051 mp->m_pkthdr.len -= len; 1052 return; 1053 } 1054 count -= len; 1055 if (count < 0) 1056 count = 0; 1057 /* 1058 * Correct length for chain is "count". 1059 * Find the mbuf with last data, adjust its length, 1060 * and toss data from remaining mbufs on chain. 1061 */ 1062 m = mp; 1063 if (m->m_flags & M_PKTHDR) 1064 m->m_pkthdr.len = count; 1065 for (; m; m = m->m_next) { 1066 if (m->m_len >= count) { 1067 m->m_len = count; 1068 if (m->m_next != NULL) { 1069 m_freem(m->m_next); 1070 m->m_next = NULL; 1071 } 1072 break; 1073 } 1074 count -= m->m_len; 1075 } 1076 } 1077 } 1078 1079 /* 1080 * Rearange an mbuf chain so that len bytes are contiguous 1081 * and in the data area of an mbuf (so that mtod will work 1082 * for a structure of size len). Returns the resulting 1083 * mbuf chain on success, frees it and returns null on failure. 1084 * If there is room, it will add up to max_protohdr-len extra bytes to the 1085 * contiguous region in an attempt to avoid being called next time. 1086 */ 1087 struct mbuf * 1088 m_pullup(struct mbuf *n, int len) 1089 { 1090 struct mbuf *m; 1091 int count; 1092 int space; 1093 1094 /* 1095 * If first mbuf has no cluster, and has room for len bytes 1096 * without shifting current data, pullup into it, 1097 * otherwise allocate a new mbuf to prepend to the chain. 1098 */ 1099 if ((n->m_flags & M_EXT) == 0 && 1100 n->m_data + len < &n->m_dat[MLEN] && n->m_next) { 1101 if (n->m_len >= len) 1102 return (n); 1103 m = n; 1104 n = n->m_next; 1105 len -= m->m_len; 1106 } else { 1107 if (len > MHLEN) 1108 goto bad; 1109 MGET(m, M_NOWAIT, n->m_type); 1110 if (m == NULL) 1111 goto bad; 1112 m->m_len = 0; 1113 if (n->m_flags & M_PKTHDR) 1114 M_MOVE_PKTHDR(m, n); 1115 } 1116 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 1117 do { 1118 count = min(min(max(len, max_protohdr), space), n->m_len); 1119 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 1120 (u_int)count); 1121 len -= count; 1122 m->m_len += count; 1123 n->m_len -= count; 1124 space -= count; 1125 if (n->m_len) 1126 n->m_data += count; 1127 else 1128 n = m_free(n); 1129 } while (len > 0 && n); 1130 if (len > 0) { 1131 (void) m_free(m); 1132 goto bad; 1133 } 1134 m->m_next = n; 1135 return (m); 1136 bad: 1137 m_freem(n); 1138 mbstat.m_mpfail++; /* XXX: No consistency. */ 1139 return (NULL); 1140 } 1141 1142 /* 1143 * Like m_pullup(), except a new mbuf is always allocated, and we allow 1144 * the amount of empty space before the data in the new mbuf to be specified 1145 * (in the event that the caller expects to prepend later). 1146 */ 1147 int MSFail; 1148 1149 struct mbuf * 1150 m_copyup(struct mbuf *n, int len, int dstoff) 1151 { 1152 struct mbuf *m; 1153 int count, space; 1154 1155 if (len > (MHLEN - dstoff)) 1156 goto bad; 1157 MGET(m, M_NOWAIT, n->m_type); 1158 if (m == NULL) 1159 goto bad; 1160 m->m_len = 0; 1161 if (n->m_flags & M_PKTHDR) 1162 M_MOVE_PKTHDR(m, n); 1163 m->m_data += dstoff; 1164 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 1165 do { 1166 count = min(min(max(len, max_protohdr), space), n->m_len); 1167 memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t), 1168 (unsigned)count); 1169 len -= count; 1170 m->m_len += count; 1171 n->m_len -= count; 1172 space -= count; 1173 if (n->m_len) 1174 n->m_data += count; 1175 else 1176 n = m_free(n); 1177 } while (len > 0 && n); 1178 if (len > 0) { 1179 (void) m_free(m); 1180 goto bad; 1181 } 1182 m->m_next = n; 1183 return (m); 1184 bad: 1185 m_freem(n); 1186 MSFail++; 1187 return (NULL); 1188 } 1189 1190 /* 1191 * Partition an mbuf chain in two pieces, returning the tail -- 1192 * all but the first len0 bytes. In case of failure, it returns NULL and 1193 * attempts to restore the chain to its original state. 1194 * 1195 * Note that the resulting mbufs might be read-only, because the new 1196 * mbuf can end up sharing an mbuf cluster with the original mbuf if 1197 * the "breaking point" happens to lie within a cluster mbuf. Use the 1198 * M_WRITABLE() macro to check for this case. 1199 */ 1200 struct mbuf * 1201 m_split(struct mbuf *m0, int len0, int wait) 1202 { 1203 struct mbuf *m, *n; 1204 u_int len = len0, remain; 1205 1206 MBUF_CHECKSLEEP(wait); 1207 for (m = m0; m && len > m->m_len; m = m->m_next) 1208 len -= m->m_len; 1209 if (m == NULL) 1210 return (NULL); 1211 remain = m->m_len - len; 1212 if (m0->m_flags & M_PKTHDR) { 1213 MGETHDR(n, wait, m0->m_type); 1214 if (n == NULL) 1215 return (NULL); 1216 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; 1217 n->m_pkthdr.len = m0->m_pkthdr.len - len0; 1218 m0->m_pkthdr.len = len0; 1219 if (m->m_flags & M_EXT) 1220 goto extpacket; 1221 if (remain > MHLEN) { 1222 /* m can't be the lead packet */ 1223 MH_ALIGN(n, 0); 1224 n->m_next = m_split(m, len, wait); 1225 if (n->m_next == NULL) { 1226 (void) m_free(n); 1227 return (NULL); 1228 } else { 1229 n->m_len = 0; 1230 return (n); 1231 } 1232 } else 1233 MH_ALIGN(n, remain); 1234 } else if (remain == 0) { 1235 n = m->m_next; 1236 m->m_next = NULL; 1237 return (n); 1238 } else { 1239 MGET(n, wait, m->m_type); 1240 if (n == NULL) 1241 return (NULL); 1242 M_ALIGN(n, remain); 1243 } 1244 extpacket: 1245 if (m->m_flags & M_EXT) { 1246 n->m_data = m->m_data + len; 1247 mb_dupcl(n, m); 1248 } else { 1249 bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain); 1250 } 1251 n->m_len = remain; 1252 m->m_len = len; 1253 n->m_next = m->m_next; 1254 m->m_next = NULL; 1255 return (n); 1256 } 1257 /* 1258 * Routine to copy from device local memory into mbufs. 1259 * Note that `off' argument is offset into first mbuf of target chain from 1260 * which to begin copying the data to. 1261 */ 1262 struct mbuf * 1263 m_devget(char *buf, int totlen, int off, struct ifnet *ifp, 1264 void (*copy)(char *from, caddr_t to, u_int len)) 1265 { 1266 struct mbuf *m; 1267 struct mbuf *top = NULL, **mp = ⊤ 1268 int len; 1269 1270 if (off < 0 || off > MHLEN) 1271 return (NULL); 1272 1273 while (totlen > 0) { 1274 if (top == NULL) { /* First one, must be PKTHDR */ 1275 if (totlen + off >= MINCLSIZE) { 1276 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1277 len = MCLBYTES; 1278 } else { 1279 m = m_gethdr(M_NOWAIT, MT_DATA); 1280 len = MHLEN; 1281 1282 /* Place initial small packet/header at end of mbuf */ 1283 if (m && totlen + off + max_linkhdr <= MLEN) { 1284 m->m_data += max_linkhdr; 1285 len -= max_linkhdr; 1286 } 1287 } 1288 if (m == NULL) 1289 return NULL; 1290 m->m_pkthdr.rcvif = ifp; 1291 m->m_pkthdr.len = totlen; 1292 } else { 1293 if (totlen + off >= MINCLSIZE) { 1294 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1295 len = MCLBYTES; 1296 } else { 1297 m = m_get(M_NOWAIT, MT_DATA); 1298 len = MLEN; 1299 } 1300 if (m == NULL) { 1301 m_freem(top); 1302 return NULL; 1303 } 1304 } 1305 if (off) { 1306 m->m_data += off; 1307 len -= off; 1308 off = 0; 1309 } 1310 m->m_len = len = min(totlen, len); 1311 if (copy) 1312 copy(buf, mtod(m, caddr_t), (u_int)len); 1313 else 1314 bcopy(buf, mtod(m, caddr_t), (u_int)len); 1315 buf += len; 1316 *mp = m; 1317 mp = &m->m_next; 1318 totlen -= len; 1319 } 1320 return (top); 1321 } 1322 1323 /* 1324 * Copy data from a buffer back into the indicated mbuf chain, 1325 * starting "off" bytes from the beginning, extending the mbuf 1326 * chain if necessary. 1327 */ 1328 void 1329 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp) 1330 { 1331 int mlen; 1332 struct mbuf *m = m0, *n; 1333 int totlen = 0; 1334 1335 if (m0 == NULL) 1336 return; 1337 while (off > (mlen = m->m_len)) { 1338 off -= mlen; 1339 totlen += mlen; 1340 if (m->m_next == NULL) { 1341 n = m_get(M_NOWAIT, m->m_type); 1342 if (n == NULL) 1343 goto out; 1344 bzero(mtod(n, caddr_t), MLEN); 1345 n->m_len = min(MLEN, len + off); 1346 m->m_next = n; 1347 } 1348 m = m->m_next; 1349 } 1350 while (len > 0) { 1351 if (m->m_next == NULL && (len > m->m_len - off)) { 1352 m->m_len += min(len - (m->m_len - off), 1353 M_TRAILINGSPACE(m)); 1354 } 1355 mlen = min (m->m_len - off, len); 1356 bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen); 1357 cp += mlen; 1358 len -= mlen; 1359 mlen += off; 1360 off = 0; 1361 totlen += mlen; 1362 if (len == 0) 1363 break; 1364 if (m->m_next == NULL) { 1365 n = m_get(M_NOWAIT, m->m_type); 1366 if (n == NULL) 1367 break; 1368 n->m_len = min(MLEN, len); 1369 m->m_next = n; 1370 } 1371 m = m->m_next; 1372 } 1373 out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) 1374 m->m_pkthdr.len = totlen; 1375 } 1376 1377 /* 1378 * Append the specified data to the indicated mbuf chain, 1379 * Extend the mbuf chain if the new data does not fit in 1380 * existing space. 1381 * 1382 * Return 1 if able to complete the job; otherwise 0. 1383 */ 1384 int 1385 m_append(struct mbuf *m0, int len, c_caddr_t cp) 1386 { 1387 struct mbuf *m, *n; 1388 int remainder, space; 1389 1390 for (m = m0; m->m_next != NULL; m = m->m_next) 1391 ; 1392 remainder = len; 1393 space = M_TRAILINGSPACE(m); 1394 if (space > 0) { 1395 /* 1396 * Copy into available space. 1397 */ 1398 if (space > remainder) 1399 space = remainder; 1400 bcopy(cp, mtod(m, caddr_t) + m->m_len, space); 1401 m->m_len += space; 1402 cp += space, remainder -= space; 1403 } 1404 while (remainder > 0) { 1405 /* 1406 * Allocate a new mbuf; could check space 1407 * and allocate a cluster instead. 1408 */ 1409 n = m_get(M_NOWAIT, m->m_type); 1410 if (n == NULL) 1411 break; 1412 n->m_len = min(MLEN, remainder); 1413 bcopy(cp, mtod(n, caddr_t), n->m_len); 1414 cp += n->m_len, remainder -= n->m_len; 1415 m->m_next = n; 1416 m = n; 1417 } 1418 if (m0->m_flags & M_PKTHDR) 1419 m0->m_pkthdr.len += len - remainder; 1420 return (remainder == 0); 1421 } 1422 1423 /* 1424 * Apply function f to the data in an mbuf chain starting "off" bytes from 1425 * the beginning, continuing for "len" bytes. 1426 */ 1427 int 1428 m_apply(struct mbuf *m, int off, int len, 1429 int (*f)(void *, void *, u_int), void *arg) 1430 { 1431 u_int count; 1432 int rval; 1433 1434 KASSERT(off >= 0, ("m_apply, negative off %d", off)); 1435 KASSERT(len >= 0, ("m_apply, negative len %d", len)); 1436 while (off > 0) { 1437 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1438 if (off < m->m_len) 1439 break; 1440 off -= m->m_len; 1441 m = m->m_next; 1442 } 1443 while (len > 0) { 1444 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1445 count = min(m->m_len - off, len); 1446 rval = (*f)(arg, mtod(m, caddr_t) + off, count); 1447 if (rval) 1448 return (rval); 1449 len -= count; 1450 off = 0; 1451 m = m->m_next; 1452 } 1453 return (0); 1454 } 1455 1456 /* 1457 * Return a pointer to mbuf/offset of location in mbuf chain. 1458 */ 1459 struct mbuf * 1460 m_getptr(struct mbuf *m, int loc, int *off) 1461 { 1462 1463 while (loc >= 0) { 1464 /* Normal end of search. */ 1465 if (m->m_len > loc) { 1466 *off = loc; 1467 return (m); 1468 } else { 1469 loc -= m->m_len; 1470 if (m->m_next == NULL) { 1471 if (loc == 0) { 1472 /* Point at the end of valid data. */ 1473 *off = m->m_len; 1474 return (m); 1475 } 1476 return (NULL); 1477 } 1478 m = m->m_next; 1479 } 1480 } 1481 return (NULL); 1482 } 1483 1484 void 1485 m_print(const struct mbuf *m, int maxlen) 1486 { 1487 int len; 1488 int pdata; 1489 const struct mbuf *m2; 1490 1491 if (m == NULL) { 1492 printf("mbuf: %p\n", m); 1493 return; 1494 } 1495 1496 if (m->m_flags & M_PKTHDR) 1497 len = m->m_pkthdr.len; 1498 else 1499 len = -1; 1500 m2 = m; 1501 while (m2 != NULL && (len == -1 || len)) { 1502 pdata = m2->m_len; 1503 if (maxlen != -1 && pdata > maxlen) 1504 pdata = maxlen; 1505 printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len, 1506 m2->m_next, m2->m_flags, "\20\20freelist\17skipfw" 1507 "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly" 1508 "\3eor\2pkthdr\1ext", pdata ? "" : "\n"); 1509 if (pdata) 1510 printf(", %*D\n", pdata, (u_char *)m2->m_data, "-"); 1511 if (len != -1) 1512 len -= m2->m_len; 1513 m2 = m2->m_next; 1514 } 1515 if (len > 0) 1516 printf("%d bytes unaccounted for.\n", len); 1517 return; 1518 } 1519 1520 u_int 1521 m_fixhdr(struct mbuf *m0) 1522 { 1523 u_int len; 1524 1525 len = m_length(m0, NULL); 1526 m0->m_pkthdr.len = len; 1527 return (len); 1528 } 1529 1530 u_int 1531 m_length(struct mbuf *m0, struct mbuf **last) 1532 { 1533 struct mbuf *m; 1534 u_int len; 1535 1536 len = 0; 1537 for (m = m0; m != NULL; m = m->m_next) { 1538 len += m->m_len; 1539 if (m->m_next == NULL) 1540 break; 1541 } 1542 if (last != NULL) 1543 *last = m; 1544 return (len); 1545 } 1546 1547 /* 1548 * Defragment a mbuf chain, returning the shortest possible 1549 * chain of mbufs and clusters. If allocation fails and 1550 * this cannot be completed, NULL will be returned, but 1551 * the passed in chain will be unchanged. Upon success, 1552 * the original chain will be freed, and the new chain 1553 * will be returned. 1554 * 1555 * If a non-packet header is passed in, the original 1556 * mbuf (chain?) will be returned unharmed. 1557 */ 1558 struct mbuf * 1559 m_defrag(struct mbuf *m0, int how) 1560 { 1561 struct mbuf *m_new = NULL, *m_final = NULL; 1562 int progress = 0, length; 1563 1564 MBUF_CHECKSLEEP(how); 1565 if (!(m0->m_flags & M_PKTHDR)) 1566 return (m0); 1567 1568 m_fixhdr(m0); /* Needed sanity check */ 1569 1570 #ifdef MBUF_STRESS_TEST 1571 if (m_defragrandomfailures) { 1572 int temp = arc4random() & 0xff; 1573 if (temp == 0xba) 1574 goto nospace; 1575 } 1576 #endif 1577 1578 if (m0->m_pkthdr.len > MHLEN) 1579 m_final = m_getcl(how, MT_DATA, M_PKTHDR); 1580 else 1581 m_final = m_gethdr(how, MT_DATA); 1582 1583 if (m_final == NULL) 1584 goto nospace; 1585 1586 if (m_dup_pkthdr(m_final, m0, how) == 0) 1587 goto nospace; 1588 1589 m_new = m_final; 1590 1591 while (progress < m0->m_pkthdr.len) { 1592 length = m0->m_pkthdr.len - progress; 1593 if (length > MCLBYTES) 1594 length = MCLBYTES; 1595 1596 if (m_new == NULL) { 1597 if (length > MLEN) 1598 m_new = m_getcl(how, MT_DATA, 0); 1599 else 1600 m_new = m_get(how, MT_DATA); 1601 if (m_new == NULL) 1602 goto nospace; 1603 } 1604 1605 m_copydata(m0, progress, length, mtod(m_new, caddr_t)); 1606 progress += length; 1607 m_new->m_len = length; 1608 if (m_new != m_final) 1609 m_cat(m_final, m_new); 1610 m_new = NULL; 1611 } 1612 #ifdef MBUF_STRESS_TEST 1613 if (m0->m_next == NULL) 1614 m_defraguseless++; 1615 #endif 1616 m_freem(m0); 1617 m0 = m_final; 1618 #ifdef MBUF_STRESS_TEST 1619 m_defragpackets++; 1620 m_defragbytes += m0->m_pkthdr.len; 1621 #endif 1622 return (m0); 1623 nospace: 1624 #ifdef MBUF_STRESS_TEST 1625 m_defragfailure++; 1626 #endif 1627 if (m_final) 1628 m_freem(m_final); 1629 return (NULL); 1630 } 1631 1632 /* 1633 * Defragment an mbuf chain, returning at most maxfrags separate 1634 * mbufs+clusters. If this is not possible NULL is returned and 1635 * the original mbuf chain is left in it's present (potentially 1636 * modified) state. We use two techniques: collapsing consecutive 1637 * mbufs and replacing consecutive mbufs by a cluster. 1638 * 1639 * NB: this should really be named m_defrag but that name is taken 1640 */ 1641 struct mbuf * 1642 m_collapse(struct mbuf *m0, int how, int maxfrags) 1643 { 1644 struct mbuf *m, *n, *n2, **prev; 1645 u_int curfrags; 1646 1647 /* 1648 * Calculate the current number of frags. 1649 */ 1650 curfrags = 0; 1651 for (m = m0; m != NULL; m = m->m_next) 1652 curfrags++; 1653 /* 1654 * First, try to collapse mbufs. Note that we always collapse 1655 * towards the front so we don't need to deal with moving the 1656 * pkthdr. This may be suboptimal if the first mbuf has much 1657 * less data than the following. 1658 */ 1659 m = m0; 1660 again: 1661 for (;;) { 1662 n = m->m_next; 1663 if (n == NULL) 1664 break; 1665 if (M_WRITABLE(m) && 1666 n->m_len < M_TRAILINGSPACE(m)) { 1667 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len, 1668 n->m_len); 1669 m->m_len += n->m_len; 1670 m->m_next = n->m_next; 1671 m_free(n); 1672 if (--curfrags <= maxfrags) 1673 return m0; 1674 } else 1675 m = n; 1676 } 1677 KASSERT(maxfrags > 1, 1678 ("maxfrags %u, but normal collapse failed", maxfrags)); 1679 /* 1680 * Collapse consecutive mbufs to a cluster. 1681 */ 1682 prev = &m0->m_next; /* NB: not the first mbuf */ 1683 while ((n = *prev) != NULL) { 1684 if ((n2 = n->m_next) != NULL && 1685 n->m_len + n2->m_len < MCLBYTES) { 1686 m = m_getcl(how, MT_DATA, 0); 1687 if (m == NULL) 1688 goto bad; 1689 bcopy(mtod(n, void *), mtod(m, void *), n->m_len); 1690 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len, 1691 n2->m_len); 1692 m->m_len = n->m_len + n2->m_len; 1693 m->m_next = n2->m_next; 1694 *prev = m; 1695 m_free(n); 1696 m_free(n2); 1697 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */ 1698 return m0; 1699 /* 1700 * Still not there, try the normal collapse 1701 * again before we allocate another cluster. 1702 */ 1703 goto again; 1704 } 1705 prev = &n->m_next; 1706 } 1707 /* 1708 * No place where we can collapse to a cluster; punt. 1709 * This can occur if, for example, you request 2 frags 1710 * but the packet requires that both be clusters (we 1711 * never reallocate the first mbuf to avoid moving the 1712 * packet header). 1713 */ 1714 bad: 1715 return NULL; 1716 } 1717 1718 #ifdef MBUF_STRESS_TEST 1719 1720 /* 1721 * Fragment an mbuf chain. There's no reason you'd ever want to do 1722 * this in normal usage, but it's great for stress testing various 1723 * mbuf consumers. 1724 * 1725 * If fragmentation is not possible, the original chain will be 1726 * returned. 1727 * 1728 * Possible length values: 1729 * 0 no fragmentation will occur 1730 * > 0 each fragment will be of the specified length 1731 * -1 each fragment will be the same random value in length 1732 * -2 each fragment's length will be entirely random 1733 * (Random values range from 1 to 256) 1734 */ 1735 struct mbuf * 1736 m_fragment(struct mbuf *m0, int how, int length) 1737 { 1738 struct mbuf *m_new = NULL, *m_final = NULL; 1739 int progress = 0; 1740 1741 if (!(m0->m_flags & M_PKTHDR)) 1742 return (m0); 1743 1744 if ((length == 0) || (length < -2)) 1745 return (m0); 1746 1747 m_fixhdr(m0); /* Needed sanity check */ 1748 1749 m_final = m_getcl(how, MT_DATA, M_PKTHDR); 1750 1751 if (m_final == NULL) 1752 goto nospace; 1753 1754 if (m_dup_pkthdr(m_final, m0, how) == 0) 1755 goto nospace; 1756 1757 m_new = m_final; 1758 1759 if (length == -1) 1760 length = 1 + (arc4random() & 255); 1761 1762 while (progress < m0->m_pkthdr.len) { 1763 int fraglen; 1764 1765 if (length > 0) 1766 fraglen = length; 1767 else 1768 fraglen = 1 + (arc4random() & 255); 1769 if (fraglen > m0->m_pkthdr.len - progress) 1770 fraglen = m0->m_pkthdr.len - progress; 1771 1772 if (fraglen > MCLBYTES) 1773 fraglen = MCLBYTES; 1774 1775 if (m_new == NULL) { 1776 m_new = m_getcl(how, MT_DATA, 0); 1777 if (m_new == NULL) 1778 goto nospace; 1779 } 1780 1781 m_copydata(m0, progress, fraglen, mtod(m_new, caddr_t)); 1782 progress += fraglen; 1783 m_new->m_len = fraglen; 1784 if (m_new != m_final) 1785 m_cat(m_final, m_new); 1786 m_new = NULL; 1787 } 1788 m_freem(m0); 1789 m0 = m_final; 1790 return (m0); 1791 nospace: 1792 if (m_final) 1793 m_freem(m_final); 1794 /* Return the original chain on failure */ 1795 return (m0); 1796 } 1797 1798 #endif 1799 1800 /* 1801 * Copy the contents of uio into a properly sized mbuf chain. 1802 */ 1803 struct mbuf * 1804 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags) 1805 { 1806 struct mbuf *m, *mb; 1807 int error, length; 1808 ssize_t total; 1809 int progress = 0; 1810 1811 /* 1812 * len can be zero or an arbitrary large value bound by 1813 * the total data supplied by the uio. 1814 */ 1815 if (len > 0) 1816 total = min(uio->uio_resid, len); 1817 else 1818 total = uio->uio_resid; 1819 1820 /* 1821 * The smallest unit returned by m_getm2() is a single mbuf 1822 * with pkthdr. We can't align past it. 1823 */ 1824 if (align >= MHLEN) 1825 return (NULL); 1826 1827 /* 1828 * Give us the full allocation or nothing. 1829 * If len is zero return the smallest empty mbuf. 1830 */ 1831 m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags); 1832 if (m == NULL) 1833 return (NULL); 1834 m->m_data += align; 1835 1836 /* Fill all mbufs with uio data and update header information. */ 1837 for (mb = m; mb != NULL; mb = mb->m_next) { 1838 length = min(M_TRAILINGSPACE(mb), total - progress); 1839 1840 error = uiomove(mtod(mb, void *), length, uio); 1841 if (error) { 1842 m_freem(m); 1843 return (NULL); 1844 } 1845 1846 mb->m_len = length; 1847 progress += length; 1848 if (flags & M_PKTHDR) 1849 m->m_pkthdr.len += length; 1850 } 1851 KASSERT(progress == total, ("%s: progress != total", __func__)); 1852 1853 return (m); 1854 } 1855 1856 /* 1857 * Copy an mbuf chain into a uio limited by len if set. 1858 */ 1859 int 1860 m_mbuftouio(struct uio *uio, struct mbuf *m, int len) 1861 { 1862 int error, length, total; 1863 int progress = 0; 1864 1865 if (len > 0) 1866 total = min(uio->uio_resid, len); 1867 else 1868 total = uio->uio_resid; 1869 1870 /* Fill the uio with data from the mbufs. */ 1871 for (; m != NULL; m = m->m_next) { 1872 length = min(m->m_len, total - progress); 1873 1874 error = uiomove(mtod(m, void *), length, uio); 1875 if (error) 1876 return (error); 1877 1878 progress += length; 1879 } 1880 1881 return (0); 1882 } 1883 1884 /* 1885 * Set the m_data pointer of a newly-allocated mbuf 1886 * to place an object of the specified size at the 1887 * end of the mbuf, longword aligned. 1888 */ 1889 void 1890 m_align(struct mbuf *m, int len) 1891 { 1892 int adjust; 1893 1894 if (m->m_flags & M_EXT) 1895 adjust = m->m_ext.ext_size - len; 1896 else if (m->m_flags & M_PKTHDR) 1897 adjust = MHLEN - len; 1898 else 1899 adjust = MLEN - len; 1900 m->m_data += adjust &~ (sizeof(long)-1); 1901 } 1902 1903 /* 1904 * Create a writable copy of the mbuf chain. While doing this 1905 * we compact the chain with a goal of producing a chain with 1906 * at most two mbufs. The second mbuf in this chain is likely 1907 * to be a cluster. The primary purpose of this work is to create 1908 * a writable packet for encryption, compression, etc. The 1909 * secondary goal is to linearize the data so the data can be 1910 * passed to crypto hardware in the most efficient manner possible. 1911 */ 1912 struct mbuf * 1913 m_unshare(struct mbuf *m0, int how) 1914 { 1915 struct mbuf *m, *mprev; 1916 struct mbuf *n, *mfirst, *mlast; 1917 int len, off; 1918 1919 mprev = NULL; 1920 for (m = m0; m != NULL; m = mprev->m_next) { 1921 /* 1922 * Regular mbufs are ignored unless there's a cluster 1923 * in front of it that we can use to coalesce. We do 1924 * the latter mainly so later clusters can be coalesced 1925 * also w/o having to handle them specially (i.e. convert 1926 * mbuf+cluster -> cluster). This optimization is heavily 1927 * influenced by the assumption that we're running over 1928 * Ethernet where MCLBYTES is large enough that the max 1929 * packet size will permit lots of coalescing into a 1930 * single cluster. This in turn permits efficient 1931 * crypto operations, especially when using hardware. 1932 */ 1933 if ((m->m_flags & M_EXT) == 0) { 1934 if (mprev && (mprev->m_flags & M_EXT) && 1935 m->m_len <= M_TRAILINGSPACE(mprev)) { 1936 /* XXX: this ignores mbuf types */ 1937 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 1938 mtod(m, caddr_t), m->m_len); 1939 mprev->m_len += m->m_len; 1940 mprev->m_next = m->m_next; /* unlink from chain */ 1941 m_free(m); /* reclaim mbuf */ 1942 #if 0 1943 newipsecstat.ips_mbcoalesced++; 1944 #endif 1945 } else { 1946 mprev = m; 1947 } 1948 continue; 1949 } 1950 /* 1951 * Writable mbufs are left alone (for now). 1952 */ 1953 if (M_WRITABLE(m)) { 1954 mprev = m; 1955 continue; 1956 } 1957 1958 /* 1959 * Not writable, replace with a copy or coalesce with 1960 * the previous mbuf if possible (since we have to copy 1961 * it anyway, we try to reduce the number of mbufs and 1962 * clusters so that future work is easier). 1963 */ 1964 KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags)); 1965 /* NB: we only coalesce into a cluster or larger */ 1966 if (mprev != NULL && (mprev->m_flags & M_EXT) && 1967 m->m_len <= M_TRAILINGSPACE(mprev)) { 1968 /* XXX: this ignores mbuf types */ 1969 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 1970 mtod(m, caddr_t), m->m_len); 1971 mprev->m_len += m->m_len; 1972 mprev->m_next = m->m_next; /* unlink from chain */ 1973 m_free(m); /* reclaim mbuf */ 1974 #if 0 1975 newipsecstat.ips_clcoalesced++; 1976 #endif 1977 continue; 1978 } 1979 1980 /* 1981 * Allocate new space to hold the copy... 1982 */ 1983 /* XXX why can M_PKTHDR be set past the first mbuf? */ 1984 if (mprev == NULL && (m->m_flags & M_PKTHDR)) { 1985 /* 1986 * NB: if a packet header is present we must 1987 * allocate the mbuf separately from any cluster 1988 * because M_MOVE_PKTHDR will smash the data 1989 * pointer and drop the M_EXT marker. 1990 */ 1991 MGETHDR(n, how, m->m_type); 1992 if (n == NULL) { 1993 m_freem(m0); 1994 return (NULL); 1995 } 1996 M_MOVE_PKTHDR(n, m); 1997 MCLGET(n, how); 1998 if ((n->m_flags & M_EXT) == 0) { 1999 m_free(n); 2000 m_freem(m0); 2001 return (NULL); 2002 } 2003 } else { 2004 n = m_getcl(how, m->m_type, m->m_flags); 2005 if (n == NULL) { 2006 m_freem(m0); 2007 return (NULL); 2008 } 2009 } 2010 /* 2011 * ... and copy the data. We deal with jumbo mbufs 2012 * (i.e. m_len > MCLBYTES) by splitting them into 2013 * clusters. We could just malloc a buffer and make 2014 * it external but too many device drivers don't know 2015 * how to break up the non-contiguous memory when 2016 * doing DMA. 2017 */ 2018 len = m->m_len; 2019 off = 0; 2020 mfirst = n; 2021 mlast = NULL; 2022 for (;;) { 2023 int cc = min(len, MCLBYTES); 2024 memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc); 2025 n->m_len = cc; 2026 if (mlast != NULL) 2027 mlast->m_next = n; 2028 mlast = n; 2029 #if 0 2030 newipsecstat.ips_clcopied++; 2031 #endif 2032 2033 len -= cc; 2034 if (len <= 0) 2035 break; 2036 off += cc; 2037 2038 n = m_getcl(how, m->m_type, m->m_flags); 2039 if (n == NULL) { 2040 m_freem(mfirst); 2041 m_freem(m0); 2042 return (NULL); 2043 } 2044 } 2045 n->m_next = m->m_next; 2046 if (mprev == NULL) 2047 m0 = mfirst; /* new head of chain */ 2048 else 2049 mprev->m_next = mfirst; /* replace old mbuf */ 2050 m_free(m); /* release old mbuf */ 2051 mprev = mfirst; 2052 } 2053 return (m0); 2054 } 2055 2056 #ifdef MBUF_PROFILING 2057 2058 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/ 2059 struct mbufprofile { 2060 uintmax_t wasted[MP_BUCKETS]; 2061 uintmax_t used[MP_BUCKETS]; 2062 uintmax_t segments[MP_BUCKETS]; 2063 } mbprof; 2064 2065 #define MP_MAXDIGITS 21 /* strlen("16,000,000,000,000,000,000") == 21 */ 2066 #define MP_NUMLINES 6 2067 #define MP_NUMSPERLINE 16 2068 #define MP_EXTRABYTES 64 /* > strlen("used:\nwasted:\nsegments:\n") */ 2069 /* work out max space needed and add a bit of spare space too */ 2070 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE) 2071 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES) 2072 2073 char mbprofbuf[MP_BUFSIZE]; 2074 2075 void 2076 m_profile(struct mbuf *m) 2077 { 2078 int segments = 0; 2079 int used = 0; 2080 int wasted = 0; 2081 2082 while (m) { 2083 segments++; 2084 used += m->m_len; 2085 if (m->m_flags & M_EXT) { 2086 wasted += MHLEN - sizeof(m->m_ext) + 2087 m->m_ext.ext_size - m->m_len; 2088 } else { 2089 if (m->m_flags & M_PKTHDR) 2090 wasted += MHLEN - m->m_len; 2091 else 2092 wasted += MLEN - m->m_len; 2093 } 2094 m = m->m_next; 2095 } 2096 /* be paranoid.. it helps */ 2097 if (segments > MP_BUCKETS - 1) 2098 segments = MP_BUCKETS - 1; 2099 if (used > 100000) 2100 used = 100000; 2101 if (wasted > 100000) 2102 wasted = 100000; 2103 /* store in the appropriate bucket */ 2104 /* don't bother locking. if it's slightly off, so what? */ 2105 mbprof.segments[segments]++; 2106 mbprof.used[fls(used)]++; 2107 mbprof.wasted[fls(wasted)]++; 2108 } 2109 2110 static void 2111 mbprof_textify(void) 2112 { 2113 int offset; 2114 char *c; 2115 uint64_t *p; 2116 2117 2118 p = &mbprof.wasted[0]; 2119 c = mbprofbuf; 2120 offset = snprintf(c, MP_MAXLINE + 10, 2121 "wasted:\n" 2122 "%ju %ju %ju %ju %ju %ju %ju %ju " 2123 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2124 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2125 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2126 #ifdef BIG_ARRAY 2127 p = &mbprof.wasted[16]; 2128 c += offset; 2129 offset = snprintf(c, MP_MAXLINE, 2130 "%ju %ju %ju %ju %ju %ju %ju %ju " 2131 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2132 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2133 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2134 #endif 2135 p = &mbprof.used[0]; 2136 c += offset; 2137 offset = snprintf(c, MP_MAXLINE + 10, 2138 "used:\n" 2139 "%ju %ju %ju %ju %ju %ju %ju %ju " 2140 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2141 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2142 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2143 #ifdef BIG_ARRAY 2144 p = &mbprof.used[16]; 2145 c += offset; 2146 offset = snprintf(c, MP_MAXLINE, 2147 "%ju %ju %ju %ju %ju %ju %ju %ju " 2148 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2149 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2150 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2151 #endif 2152 p = &mbprof.segments[0]; 2153 c += offset; 2154 offset = snprintf(c, MP_MAXLINE + 10, 2155 "segments:\n" 2156 "%ju %ju %ju %ju %ju %ju %ju %ju " 2157 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2158 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2159 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2160 #ifdef BIG_ARRAY 2161 p = &mbprof.segments[16]; 2162 c += offset; 2163 offset = snprintf(c, MP_MAXLINE, 2164 "%ju %ju %ju %ju %ju %ju %ju %ju " 2165 "%ju %ju %ju %ju %ju %ju %ju %jju", 2166 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2167 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2168 #endif 2169 } 2170 2171 static int 2172 mbprof_handler(SYSCTL_HANDLER_ARGS) 2173 { 2174 int error; 2175 2176 mbprof_textify(); 2177 error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1); 2178 return (error); 2179 } 2180 2181 static int 2182 mbprof_clr_handler(SYSCTL_HANDLER_ARGS) 2183 { 2184 int clear, error; 2185 2186 clear = 0; 2187 error = sysctl_handle_int(oidp, &clear, 0, req); 2188 if (error || !req->newptr) 2189 return (error); 2190 2191 if (clear) { 2192 bzero(&mbprof, sizeof(mbprof)); 2193 } 2194 2195 return (error); 2196 } 2197 2198 2199 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD, 2200 NULL, 0, mbprof_handler, "A", "mbuf profiling statistics"); 2201 2202 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW, 2203 NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics"); 2204 #endif 2205 2206