xref: /freebsd/sys/kern/uipc_mbuf.c (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_param.h"
38 #include "opt_mbuf_stress_test.h"
39 #include "opt_mbuf_profiling.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/limits.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/sysctl.h>
49 #include <sys/domain.h>
50 #include <sys/protosw.h>
51 #include <sys/uio.h>
52 #include <sys/vmmeter.h>
53 #include <sys/sdt.h>
54 #include <vm/vm.h>
55 #include <vm/vm_pageout.h>
56 #include <vm/vm_page.h>
57 
58 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__init,
59     "struct mbuf *", "mbufinfo_t *",
60     "uint32_t", "uint32_t",
61     "uint16_t", "uint16_t",
62     "uint32_t", "uint32_t",
63     "uint32_t", "uint32_t");
64 
65 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr,
66     "uint32_t", "uint32_t",
67     "uint16_t", "uint16_t",
68     "struct mbuf *", "mbufinfo_t *");
69 
70 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get,
71     "uint32_t", "uint32_t",
72     "uint16_t", "uint16_t",
73     "struct mbuf *", "mbufinfo_t *");
74 
75 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__getcl,
76     "uint32_t", "uint32_t",
77     "uint16_t", "uint16_t",
78     "uint32_t", "uint32_t",
79     "struct mbuf *", "mbufinfo_t *");
80 
81 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__clget,
82     "struct mbuf *", "mbufinfo_t *",
83     "uint32_t", "uint32_t",
84     "uint32_t", "uint32_t");
85 
86 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__cljget,
87     "struct mbuf *", "mbufinfo_t *",
88     "uint32_t", "uint32_t",
89     "uint32_t", "uint32_t",
90     "void*", "void*");
91 
92 SDT_PROBE_DEFINE(sdt, , , m__cljset);
93 
94 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__free,
95         "struct mbuf *", "mbufinfo_t *");
96 
97 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__freem,
98     "struct mbuf *", "mbufinfo_t *");
99 
100 #include <security/mac/mac_framework.h>
101 
102 int	max_linkhdr;
103 int	max_protohdr;
104 int	max_hdr;
105 int	max_datalen;
106 #ifdef MBUF_STRESS_TEST
107 int	m_defragpackets;
108 int	m_defragbytes;
109 int	m_defraguseless;
110 int	m_defragfailure;
111 int	m_defragrandomfailures;
112 #endif
113 
114 /*
115  * sysctl(8) exported objects
116  */
117 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
118 	   &max_linkhdr, 0, "Size of largest link layer header");
119 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
120 	   &max_protohdr, 0, "Size of largest protocol layer header");
121 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
122 	   &max_hdr, 0, "Size of largest link plus protocol header");
123 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
124 	   &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
125 #ifdef MBUF_STRESS_TEST
126 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
127 	   &m_defragpackets, 0, "");
128 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
129 	   &m_defragbytes, 0, "");
130 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
131 	   &m_defraguseless, 0, "");
132 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
133 	   &m_defragfailure, 0, "");
134 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
135 	   &m_defragrandomfailures, 0, "");
136 #endif
137 
138 /*
139  * Ensure the correct size of various mbuf parameters.  It could be off due
140  * to compiler-induced padding and alignment artifacts.
141  */
142 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN);
143 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN);
144 
145 /*
146  * mbuf data storage should be 64-bit aligned regardless of architectural
147  * pointer size; check this is the case with and without a packet header.
148  */
149 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0);
150 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0);
151 
152 /*
153  * While the specific values here don't matter too much (i.e., +/- a few
154  * words), we do want to ensure that changes to these values are carefully
155  * reasoned about and properly documented.  This is especially the case as
156  * network-protocol and device-driver modules encode these layouts, and must
157  * be recompiled if the structures change.  Check these values at compile time
158  * against the ones documented in comments in mbuf.h.
159  *
160  * NB: Possibly they should be documented there via #define's and not just
161  * comments.
162  */
163 #if defined(__LP64__)
164 CTASSERT(offsetof(struct mbuf, m_dat) == 32);
165 CTASSERT(sizeof(struct pkthdr) == 56);
166 CTASSERT(sizeof(struct m_ext) == 160);
167 #else
168 CTASSERT(offsetof(struct mbuf, m_dat) == 24);
169 CTASSERT(sizeof(struct pkthdr) == 48);
170 #if defined(__powerpc__) && defined(BOOKE)
171 /* PowerPC booke has 64-bit physical pointers. */
172 CTASSERT(sizeof(struct m_ext) == 184);
173 #else
174 CTASSERT(sizeof(struct m_ext) == 180);
175 #endif
176 #endif
177 
178 /*
179  * Assert that the queue(3) macros produce code of the same size as an old
180  * plain pointer does.
181  */
182 #ifdef INVARIANTS
183 static struct mbuf __used m_assertbuf;
184 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next));
185 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next));
186 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt));
187 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt));
188 #endif
189 
190 /*
191  * Attach the cluster from *m to *n, set up m_ext in *n
192  * and bump the refcount of the cluster.
193  */
194 void
195 mb_dupcl(struct mbuf *n, struct mbuf *m)
196 {
197 	volatile u_int *refcnt;
198 
199 	KASSERT(m->m_flags & (M_EXT|M_EXTPG),
200 	    ("%s: M_EXT|M_EXTPG not set on %p", __func__, m));
201 	KASSERT(!(n->m_flags & (M_EXT|M_EXTPG)),
202 	    ("%s: M_EXT|M_EXTPG set on %p", __func__, n));
203 
204 	/*
205 	 * Cache access optimization.
206 	 *
207 	 * o Regular M_EXT storage doesn't need full copy of m_ext, since
208 	 *   the holder of the 'ext_count' is responsible to carry the free
209 	 *   routine and its arguments.
210 	 * o M_EXTPG data is split between main part of mbuf and m_ext, the
211 	 *   main part is copied in full, the m_ext part is similar to M_EXT.
212 	 * o EXT_EXTREF, where 'ext_cnt' doesn't point into mbuf at all, is
213 	 *   special - it needs full copy of m_ext into each mbuf, since any
214 	 *   copy could end up as the last to free.
215 	 */
216 	if (m->m_flags & M_EXTPG) {
217 		bcopy(&m->m_epg_startcopy, &n->m_epg_startcopy,
218 		    __rangeof(struct mbuf, m_epg_startcopy, m_epg_endcopy));
219 		bcopy(&m->m_ext, &n->m_ext, m_epg_ext_copylen);
220 	} else if (m->m_ext.ext_type == EXT_EXTREF)
221 		bcopy(&m->m_ext, &n->m_ext, sizeof(struct m_ext));
222 	else
223 		bcopy(&m->m_ext, &n->m_ext, m_ext_copylen);
224 
225 	n->m_flags |= m->m_flags & (M_RDONLY | M_EXT | M_EXTPG);
226 
227 	/* See if this is the mbuf that holds the embedded refcount. */
228 	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
229 		refcnt = n->m_ext.ext_cnt = &m->m_ext.ext_count;
230 		n->m_ext.ext_flags &= ~EXT_FLAG_EMBREF;
231 	} else {
232 		KASSERT(m->m_ext.ext_cnt != NULL,
233 		    ("%s: no refcounting pointer on %p", __func__, m));
234 		refcnt = m->m_ext.ext_cnt;
235 	}
236 
237 	if (*refcnt == 1)
238 		*refcnt += 1;
239 	else
240 		atomic_add_int(refcnt, 1);
241 }
242 
243 void
244 m_demote_pkthdr(struct mbuf *m)
245 {
246 
247 	M_ASSERTPKTHDR(m);
248 
249 	m_tag_delete_chain(m, NULL);
250 	m->m_flags &= ~M_PKTHDR;
251 	bzero(&m->m_pkthdr, sizeof(struct pkthdr));
252 }
253 
254 /*
255  * Clean up mbuf (chain) from any tags and packet headers.
256  * If "all" is set then the first mbuf in the chain will be
257  * cleaned too.
258  */
259 void
260 m_demote(struct mbuf *m0, int all, int flags)
261 {
262 	struct mbuf *m;
263 
264 	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
265 		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p",
266 		    __func__, m, m0));
267 		if (m->m_flags & M_PKTHDR)
268 			m_demote_pkthdr(m);
269 		m->m_flags = m->m_flags & (M_EXT | M_RDONLY | M_NOFREE |
270 		    M_EXTPG | flags);
271 	}
272 }
273 
274 /*
275  * Sanity checks on mbuf (chain) for use in KASSERT() and general
276  * debugging.
277  * Returns 0 or panics when bad and 1 on all tests passed.
278  * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
279  * blow up later.
280  */
281 int
282 m_sanity(struct mbuf *m0, int sanitize)
283 {
284 	struct mbuf *m;
285 	caddr_t a, b;
286 	int pktlen = 0;
287 
288 #ifdef INVARIANTS
289 #define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
290 #else
291 #define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
292 #endif
293 
294 	for (m = m0; m != NULL; m = m->m_next) {
295 		/*
296 		 * Basic pointer checks.  If any of these fails then some
297 		 * unrelated kernel memory before or after us is trashed.
298 		 * No way to recover from that.
299 		 */
300 		a = M_START(m);
301 		b = a + M_SIZE(m);
302 		if ((caddr_t)m->m_data < a)
303 			M_SANITY_ACTION("m_data outside mbuf data range left");
304 		if ((caddr_t)m->m_data > b)
305 			M_SANITY_ACTION("m_data outside mbuf data range right");
306 		if ((caddr_t)m->m_data + m->m_len > b)
307 			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
308 
309 		/* m->m_nextpkt may only be set on first mbuf in chain. */
310 		if (m != m0 && m->m_nextpkt != NULL) {
311 			if (sanitize) {
312 				m_freem(m->m_nextpkt);
313 				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
314 			} else
315 				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
316 		}
317 
318 		/* packet length (not mbuf length!) calculation */
319 		if (m0->m_flags & M_PKTHDR)
320 			pktlen += m->m_len;
321 
322 		/* m_tags may only be attached to first mbuf in chain. */
323 		if (m != m0 && m->m_flags & M_PKTHDR &&
324 		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
325 			if (sanitize) {
326 				m_tag_delete_chain(m, NULL);
327 				/* put in 0xDEADC0DE perhaps? */
328 			} else
329 				M_SANITY_ACTION("m_tags on in-chain mbuf");
330 		}
331 
332 		/* M_PKTHDR may only be set on first mbuf in chain */
333 		if (m != m0 && m->m_flags & M_PKTHDR) {
334 			if (sanitize) {
335 				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
336 				m->m_flags &= ~M_PKTHDR;
337 				/* put in 0xDEADCODE and leave hdr flag in */
338 			} else
339 				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
340 		}
341 	}
342 	m = m0;
343 	if (pktlen && pktlen != m->m_pkthdr.len) {
344 		if (sanitize)
345 			m->m_pkthdr.len = 0;
346 		else
347 			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
348 	}
349 	return 1;
350 
351 #undef	M_SANITY_ACTION
352 }
353 
354 /*
355  * Non-inlined part of m_init().
356  */
357 int
358 m_pkthdr_init(struct mbuf *m, int how)
359 {
360 #ifdef MAC
361 	int error;
362 #endif
363 	m->m_data = m->m_pktdat;
364 	bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
365 #ifdef NUMA
366 	m->m_pkthdr.numa_domain = M_NODOM;
367 #endif
368 #ifdef MAC
369 	/* If the label init fails, fail the alloc */
370 	error = mac_mbuf_init(m, how);
371 	if (error)
372 		return (error);
373 #endif
374 
375 	return (0);
376 }
377 
378 /*
379  * "Move" mbuf pkthdr from "from" to "to".
380  * "from" must have M_PKTHDR set, and "to" must be empty.
381  */
382 void
383 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
384 {
385 
386 #if 0
387 	/* see below for why these are not enabled */
388 	M_ASSERTPKTHDR(to);
389 	/* Note: with MAC, this may not be a good assertion. */
390 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
391 	    ("m_move_pkthdr: to has tags"));
392 #endif
393 #ifdef MAC
394 	/*
395 	 * XXXMAC: It could be this should also occur for non-MAC?
396 	 */
397 	if (to->m_flags & M_PKTHDR)
398 		m_tag_delete_chain(to, NULL);
399 #endif
400 	to->m_flags = (from->m_flags & M_COPYFLAGS) |
401 	    (to->m_flags & (M_EXT | M_EXTPG));
402 	if ((to->m_flags & M_EXT) == 0)
403 		to->m_data = to->m_pktdat;
404 	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
405 	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
406 	from->m_flags &= ~M_PKTHDR;
407 	if (from->m_pkthdr.csum_flags & CSUM_SND_TAG) {
408 		from->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
409 		from->m_pkthdr.snd_tag = NULL;
410 	}
411 }
412 
413 /*
414  * Duplicate "from"'s mbuf pkthdr in "to".
415  * "from" must have M_PKTHDR set, and "to" must be empty.
416  * In particular, this does a deep copy of the packet tags.
417  */
418 int
419 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how)
420 {
421 
422 #if 0
423 	/*
424 	 * The mbuf allocator only initializes the pkthdr
425 	 * when the mbuf is allocated with m_gethdr(). Many users
426 	 * (e.g. m_copy*, m_prepend) use m_get() and then
427 	 * smash the pkthdr as needed causing these
428 	 * assertions to trip.  For now just disable them.
429 	 */
430 	M_ASSERTPKTHDR(to);
431 	/* Note: with MAC, this may not be a good assertion. */
432 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
433 #endif
434 	MBUF_CHECKSLEEP(how);
435 #ifdef MAC
436 	if (to->m_flags & M_PKTHDR)
437 		m_tag_delete_chain(to, NULL);
438 #endif
439 	to->m_flags = (from->m_flags & M_COPYFLAGS) |
440 	    (to->m_flags & (M_EXT | M_EXTPG));
441 	if ((to->m_flags & M_EXT) == 0)
442 		to->m_data = to->m_pktdat;
443 	to->m_pkthdr = from->m_pkthdr;
444 	if (from->m_pkthdr.csum_flags & CSUM_SND_TAG)
445 		m_snd_tag_ref(from->m_pkthdr.snd_tag);
446 	SLIST_INIT(&to->m_pkthdr.tags);
447 	return (m_tag_copy_chain(to, from, how));
448 }
449 
450 /*
451  * Lesser-used path for M_PREPEND:
452  * allocate new mbuf to prepend to chain,
453  * copy junk along.
454  */
455 struct mbuf *
456 m_prepend(struct mbuf *m, int len, int how)
457 {
458 	struct mbuf *mn;
459 
460 	if (m->m_flags & M_PKTHDR)
461 		mn = m_gethdr(how, m->m_type);
462 	else
463 		mn = m_get(how, m->m_type);
464 	if (mn == NULL) {
465 		m_freem(m);
466 		return (NULL);
467 	}
468 	if (m->m_flags & M_PKTHDR)
469 		m_move_pkthdr(mn, m);
470 	mn->m_next = m;
471 	m = mn;
472 	if (len < M_SIZE(m))
473 		M_ALIGN(m, len);
474 	m->m_len = len;
475 	return (m);
476 }
477 
478 /*
479  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
480  * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
481  * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
482  * Note that the copy is read-only, because clusters are not copied,
483  * only their reference counts are incremented.
484  */
485 struct mbuf *
486 m_copym(struct mbuf *m, int off0, int len, int wait)
487 {
488 	struct mbuf *n, **np;
489 	int off = off0;
490 	struct mbuf *top;
491 	int copyhdr = 0;
492 
493 	KASSERT(off >= 0, ("m_copym, negative off %d", off));
494 	KASSERT(len >= 0, ("m_copym, negative len %d", len));
495 	MBUF_CHECKSLEEP(wait);
496 	if (off == 0 && m->m_flags & M_PKTHDR)
497 		copyhdr = 1;
498 	while (off > 0) {
499 		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
500 		if (off < m->m_len)
501 			break;
502 		off -= m->m_len;
503 		m = m->m_next;
504 	}
505 	np = &top;
506 	top = NULL;
507 	while (len > 0) {
508 		if (m == NULL) {
509 			KASSERT(len == M_COPYALL,
510 			    ("m_copym, length > size of mbuf chain"));
511 			break;
512 		}
513 		if (copyhdr)
514 			n = m_gethdr(wait, m->m_type);
515 		else
516 			n = m_get(wait, m->m_type);
517 		*np = n;
518 		if (n == NULL)
519 			goto nospace;
520 		if (copyhdr) {
521 			if (!m_dup_pkthdr(n, m, wait))
522 				goto nospace;
523 			if (len == M_COPYALL)
524 				n->m_pkthdr.len -= off0;
525 			else
526 				n->m_pkthdr.len = len;
527 			copyhdr = 0;
528 		}
529 		n->m_len = min(len, m->m_len - off);
530 		if (m->m_flags & (M_EXT|M_EXTPG)) {
531 			n->m_data = m->m_data + off;
532 			mb_dupcl(n, m);
533 		} else
534 			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
535 			    (u_int)n->m_len);
536 		if (len != M_COPYALL)
537 			len -= n->m_len;
538 		off = 0;
539 		m = m->m_next;
540 		np = &n->m_next;
541 	}
542 
543 	return (top);
544 nospace:
545 	m_freem(top);
546 	return (NULL);
547 }
548 
549 /*
550  * Copy an entire packet, including header (which must be present).
551  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
552  * Note that the copy is read-only, because clusters are not copied,
553  * only their reference counts are incremented.
554  * Preserve alignment of the first mbuf so if the creator has left
555  * some room at the beginning (e.g. for inserting protocol headers)
556  * the copies still have the room available.
557  */
558 struct mbuf *
559 m_copypacket(struct mbuf *m, int how)
560 {
561 	struct mbuf *top, *n, *o;
562 
563 	MBUF_CHECKSLEEP(how);
564 	n = m_get(how, m->m_type);
565 	top = n;
566 	if (n == NULL)
567 		goto nospace;
568 
569 	if (!m_dup_pkthdr(n, m, how))
570 		goto nospace;
571 	n->m_len = m->m_len;
572 	if (m->m_flags & (M_EXT|M_EXTPG)) {
573 		n->m_data = m->m_data;
574 		mb_dupcl(n, m);
575 	} else {
576 		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
577 		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
578 	}
579 
580 	m = m->m_next;
581 	while (m) {
582 		o = m_get(how, m->m_type);
583 		if (o == NULL)
584 			goto nospace;
585 
586 		n->m_next = o;
587 		n = n->m_next;
588 
589 		n->m_len = m->m_len;
590 		if (m->m_flags & (M_EXT|M_EXTPG)) {
591 			n->m_data = m->m_data;
592 			mb_dupcl(n, m);
593 		} else {
594 			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
595 		}
596 
597 		m = m->m_next;
598 	}
599 	return top;
600 nospace:
601 	m_freem(top);
602 	return (NULL);
603 }
604 
605 static void
606 m_copyfromunmapped(const struct mbuf *m, int off, int len, caddr_t cp)
607 {
608 	struct iovec iov;
609 	struct uio uio;
610 	int error;
611 
612 	KASSERT(off >= 0, ("m_copyfromunmapped: negative off %d", off));
613 	KASSERT(len >= 0, ("m_copyfromunmapped: negative len %d", len));
614 	KASSERT(off < m->m_len,
615 	    ("m_copyfromunmapped: len exceeds mbuf length"));
616 	iov.iov_base = cp;
617 	iov.iov_len = len;
618 	uio.uio_resid = len;
619 	uio.uio_iov = &iov;
620 	uio.uio_segflg = UIO_SYSSPACE;
621 	uio.uio_iovcnt = 1;
622 	uio.uio_offset = 0;
623 	uio.uio_rw = UIO_READ;
624 	error = m_unmappedtouio(m, off, &uio, len);
625 	KASSERT(error == 0, ("m_unmappedtouio failed: off %d, len %d", off,
626 	   len));
627 }
628 
629 /*
630  * Copy data from an mbuf chain starting "off" bytes from the beginning,
631  * continuing for "len" bytes, into the indicated buffer.
632  */
633 void
634 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
635 {
636 	u_int count;
637 
638 	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
639 	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
640 	while (off > 0) {
641 		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
642 		if (off < m->m_len)
643 			break;
644 		off -= m->m_len;
645 		m = m->m_next;
646 	}
647 	while (len > 0) {
648 		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
649 		count = min(m->m_len - off, len);
650 		if ((m->m_flags & M_EXTPG) != 0)
651 			m_copyfromunmapped(m, off, count, cp);
652 		else
653 			bcopy(mtod(m, caddr_t) + off, cp, count);
654 		len -= count;
655 		cp += count;
656 		off = 0;
657 		m = m->m_next;
658 	}
659 }
660 
661 /*
662  * Copy a packet header mbuf chain into a completely new chain, including
663  * copying any mbuf clusters.  Use this instead of m_copypacket() when
664  * you need a writable copy of an mbuf chain.
665  */
666 struct mbuf *
667 m_dup(const struct mbuf *m, int how)
668 {
669 	struct mbuf **p, *top = NULL;
670 	int remain, moff, nsize;
671 
672 	MBUF_CHECKSLEEP(how);
673 	/* Sanity check */
674 	if (m == NULL)
675 		return (NULL);
676 	M_ASSERTPKTHDR(m);
677 
678 	/* While there's more data, get a new mbuf, tack it on, and fill it */
679 	remain = m->m_pkthdr.len;
680 	moff = 0;
681 	p = &top;
682 	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
683 		struct mbuf *n;
684 
685 		/* Get the next new mbuf */
686 		if (remain >= MINCLSIZE) {
687 			n = m_getcl(how, m->m_type, 0);
688 			nsize = MCLBYTES;
689 		} else {
690 			n = m_get(how, m->m_type);
691 			nsize = MLEN;
692 		}
693 		if (n == NULL)
694 			goto nospace;
695 
696 		if (top == NULL) {		/* First one, must be PKTHDR */
697 			if (!m_dup_pkthdr(n, m, how)) {
698 				m_free(n);
699 				goto nospace;
700 			}
701 			if ((n->m_flags & M_EXT) == 0)
702 				nsize = MHLEN;
703 			n->m_flags &= ~M_RDONLY;
704 		}
705 		n->m_len = 0;
706 
707 		/* Link it into the new chain */
708 		*p = n;
709 		p = &n->m_next;
710 
711 		/* Copy data from original mbuf(s) into new mbuf */
712 		while (n->m_len < nsize && m != NULL) {
713 			int chunk = min(nsize - n->m_len, m->m_len - moff);
714 
715 			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
716 			moff += chunk;
717 			n->m_len += chunk;
718 			remain -= chunk;
719 			if (moff == m->m_len) {
720 				m = m->m_next;
721 				moff = 0;
722 			}
723 		}
724 
725 		/* Check correct total mbuf length */
726 		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
727 		    	("%s: bogus m_pkthdr.len", __func__));
728 	}
729 	return (top);
730 
731 nospace:
732 	m_freem(top);
733 	return (NULL);
734 }
735 
736 /*
737  * Concatenate mbuf chain n to m.
738  * Both chains must be of the same type (e.g. MT_DATA).
739  * Any m_pkthdr is not updated.
740  */
741 void
742 m_cat(struct mbuf *m, struct mbuf *n)
743 {
744 	while (m->m_next)
745 		m = m->m_next;
746 	while (n) {
747 		if (!M_WRITABLE(m) ||
748 		    (n->m_flags & M_EXTPG) != 0 ||
749 		    M_TRAILINGSPACE(m) < n->m_len) {
750 			/* just join the two chains */
751 			m->m_next = n;
752 			return;
753 		}
754 		/* splat the data from one into the other */
755 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
756 		    (u_int)n->m_len);
757 		m->m_len += n->m_len;
758 		n = m_free(n);
759 	}
760 }
761 
762 /*
763  * Concatenate two pkthdr mbuf chains.
764  */
765 void
766 m_catpkt(struct mbuf *m, struct mbuf *n)
767 {
768 
769 	M_ASSERTPKTHDR(m);
770 	M_ASSERTPKTHDR(n);
771 
772 	m->m_pkthdr.len += n->m_pkthdr.len;
773 	m_demote(n, 1, 0);
774 
775 	m_cat(m, n);
776 }
777 
778 void
779 m_adj(struct mbuf *mp, int req_len)
780 {
781 	int len = req_len;
782 	struct mbuf *m;
783 	int count;
784 
785 	if ((m = mp) == NULL)
786 		return;
787 	if (len >= 0) {
788 		/*
789 		 * Trim from head.
790 		 */
791 		while (m != NULL && len > 0) {
792 			if (m->m_len <= len) {
793 				len -= m->m_len;
794 				m->m_len = 0;
795 				m = m->m_next;
796 			} else {
797 				m->m_len -= len;
798 				m->m_data += len;
799 				len = 0;
800 			}
801 		}
802 		if (mp->m_flags & M_PKTHDR)
803 			mp->m_pkthdr.len -= (req_len - len);
804 	} else {
805 		/*
806 		 * Trim from tail.  Scan the mbuf chain,
807 		 * calculating its length and finding the last mbuf.
808 		 * If the adjustment only affects this mbuf, then just
809 		 * adjust and return.  Otherwise, rescan and truncate
810 		 * after the remaining size.
811 		 */
812 		len = -len;
813 		count = 0;
814 		for (;;) {
815 			count += m->m_len;
816 			if (m->m_next == (struct mbuf *)0)
817 				break;
818 			m = m->m_next;
819 		}
820 		if (m->m_len >= len) {
821 			m->m_len -= len;
822 			if (mp->m_flags & M_PKTHDR)
823 				mp->m_pkthdr.len -= len;
824 			return;
825 		}
826 		count -= len;
827 		if (count < 0)
828 			count = 0;
829 		/*
830 		 * Correct length for chain is "count".
831 		 * Find the mbuf with last data, adjust its length,
832 		 * and toss data from remaining mbufs on chain.
833 		 */
834 		m = mp;
835 		if (m->m_flags & M_PKTHDR)
836 			m->m_pkthdr.len = count;
837 		for (; m; m = m->m_next) {
838 			if (m->m_len >= count) {
839 				m->m_len = count;
840 				if (m->m_next != NULL) {
841 					m_freem(m->m_next);
842 					m->m_next = NULL;
843 				}
844 				break;
845 			}
846 			count -= m->m_len;
847 		}
848 	}
849 }
850 
851 /*
852  * Rearange an mbuf chain so that len bytes are contiguous
853  * and in the data area of an mbuf (so that mtod will work
854  * for a structure of size len).  Returns the resulting
855  * mbuf chain on success, frees it and returns null on failure.
856  * If there is room, it will add up to max_protohdr-len extra bytes to the
857  * contiguous region in an attempt to avoid being called next time.
858  */
859 struct mbuf *
860 m_pullup(struct mbuf *n, int len)
861 {
862 	struct mbuf *m;
863 	int count;
864 	int space;
865 
866 	KASSERT((n->m_flags & M_EXTPG) == 0,
867 	    ("%s: unmapped mbuf %p", __func__, n));
868 
869 	/*
870 	 * If first mbuf has no cluster, and has room for len bytes
871 	 * without shifting current data, pullup into it,
872 	 * otherwise allocate a new mbuf to prepend to the chain.
873 	 */
874 	if ((n->m_flags & M_EXT) == 0 &&
875 	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
876 		if (n->m_len >= len)
877 			return (n);
878 		m = n;
879 		n = n->m_next;
880 		len -= m->m_len;
881 	} else {
882 		if (len > MHLEN)
883 			goto bad;
884 		m = m_get(M_NOWAIT, n->m_type);
885 		if (m == NULL)
886 			goto bad;
887 		if (n->m_flags & M_PKTHDR)
888 			m_move_pkthdr(m, n);
889 	}
890 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
891 	do {
892 		count = min(min(max(len, max_protohdr), space), n->m_len);
893 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
894 		  (u_int)count);
895 		len -= count;
896 		m->m_len += count;
897 		n->m_len -= count;
898 		space -= count;
899 		if (n->m_len)
900 			n->m_data += count;
901 		else
902 			n = m_free(n);
903 	} while (len > 0 && n);
904 	if (len > 0) {
905 		(void) m_free(m);
906 		goto bad;
907 	}
908 	m->m_next = n;
909 	return (m);
910 bad:
911 	m_freem(n);
912 	return (NULL);
913 }
914 
915 /*
916  * Like m_pullup(), except a new mbuf is always allocated, and we allow
917  * the amount of empty space before the data in the new mbuf to be specified
918  * (in the event that the caller expects to prepend later).
919  */
920 struct mbuf *
921 m_copyup(struct mbuf *n, int len, int dstoff)
922 {
923 	struct mbuf *m;
924 	int count, space;
925 
926 	if (len > (MHLEN - dstoff))
927 		goto bad;
928 	m = m_get(M_NOWAIT, n->m_type);
929 	if (m == NULL)
930 		goto bad;
931 	if (n->m_flags & M_PKTHDR)
932 		m_move_pkthdr(m, n);
933 	m->m_data += dstoff;
934 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
935 	do {
936 		count = min(min(max(len, max_protohdr), space), n->m_len);
937 		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
938 		    (unsigned)count);
939 		len -= count;
940 		m->m_len += count;
941 		n->m_len -= count;
942 		space -= count;
943 		if (n->m_len)
944 			n->m_data += count;
945 		else
946 			n = m_free(n);
947 	} while (len > 0 && n);
948 	if (len > 0) {
949 		(void) m_free(m);
950 		goto bad;
951 	}
952 	m->m_next = n;
953 	return (m);
954  bad:
955 	m_freem(n);
956 	return (NULL);
957 }
958 
959 /*
960  * Partition an mbuf chain in two pieces, returning the tail --
961  * all but the first len0 bytes.  In case of failure, it returns NULL and
962  * attempts to restore the chain to its original state.
963  *
964  * Note that the resulting mbufs might be read-only, because the new
965  * mbuf can end up sharing an mbuf cluster with the original mbuf if
966  * the "breaking point" happens to lie within a cluster mbuf. Use the
967  * M_WRITABLE() macro to check for this case.
968  */
969 struct mbuf *
970 m_split(struct mbuf *m0, int len0, int wait)
971 {
972 	struct mbuf *m, *n;
973 	u_int len = len0, remain;
974 
975 	MBUF_CHECKSLEEP(wait);
976 	for (m = m0; m && len > m->m_len; m = m->m_next)
977 		len -= m->m_len;
978 	if (m == NULL)
979 		return (NULL);
980 	remain = m->m_len - len;
981 	if (m0->m_flags & M_PKTHDR && remain == 0) {
982 		n = m_gethdr(wait, m0->m_type);
983 		if (n == NULL)
984 			return (NULL);
985 		n->m_next = m->m_next;
986 		m->m_next = NULL;
987 		if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) {
988 			n->m_pkthdr.snd_tag =
989 			    m_snd_tag_ref(m0->m_pkthdr.snd_tag);
990 			n->m_pkthdr.csum_flags |= CSUM_SND_TAG;
991 		} else
992 			n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
993 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
994 		m0->m_pkthdr.len = len0;
995 		return (n);
996 	} else if (m0->m_flags & M_PKTHDR) {
997 		n = m_gethdr(wait, m0->m_type);
998 		if (n == NULL)
999 			return (NULL);
1000 		if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1001 			n->m_pkthdr.snd_tag =
1002 			    m_snd_tag_ref(m0->m_pkthdr.snd_tag);
1003 			n->m_pkthdr.csum_flags |= CSUM_SND_TAG;
1004 		} else
1005 			n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1006 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1007 		m0->m_pkthdr.len = len0;
1008 		if (m->m_flags & (M_EXT|M_EXTPG))
1009 			goto extpacket;
1010 		if (remain > MHLEN) {
1011 			/* m can't be the lead packet */
1012 			M_ALIGN(n, 0);
1013 			n->m_next = m_split(m, len, wait);
1014 			if (n->m_next == NULL) {
1015 				(void) m_free(n);
1016 				return (NULL);
1017 			} else {
1018 				n->m_len = 0;
1019 				return (n);
1020 			}
1021 		} else
1022 			M_ALIGN(n, remain);
1023 	} else if (remain == 0) {
1024 		n = m->m_next;
1025 		m->m_next = NULL;
1026 		return (n);
1027 	} else {
1028 		n = m_get(wait, m->m_type);
1029 		if (n == NULL)
1030 			return (NULL);
1031 		M_ALIGN(n, remain);
1032 	}
1033 extpacket:
1034 	if (m->m_flags & (M_EXT|M_EXTPG)) {
1035 		n->m_data = m->m_data + len;
1036 		mb_dupcl(n, m);
1037 	} else {
1038 		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1039 	}
1040 	n->m_len = remain;
1041 	m->m_len = len;
1042 	n->m_next = m->m_next;
1043 	m->m_next = NULL;
1044 	return (n);
1045 }
1046 /*
1047  * Routine to copy from device local memory into mbufs.
1048  * Note that `off' argument is offset into first mbuf of target chain from
1049  * which to begin copying the data to.
1050  */
1051 struct mbuf *
1052 m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1053     void (*copy)(char *from, caddr_t to, u_int len))
1054 {
1055 	struct mbuf *m;
1056 	struct mbuf *top = NULL, **mp = &top;
1057 	int len;
1058 
1059 	if (off < 0 || off > MHLEN)
1060 		return (NULL);
1061 
1062 	while (totlen > 0) {
1063 		if (top == NULL) {	/* First one, must be PKTHDR */
1064 			if (totlen + off >= MINCLSIZE) {
1065 				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1066 				len = MCLBYTES;
1067 			} else {
1068 				m = m_gethdr(M_NOWAIT, MT_DATA);
1069 				len = MHLEN;
1070 
1071 				/* Place initial small packet/header at end of mbuf */
1072 				if (m && totlen + off + max_linkhdr <= MHLEN) {
1073 					m->m_data += max_linkhdr;
1074 					len -= max_linkhdr;
1075 				}
1076 			}
1077 			if (m == NULL)
1078 				return NULL;
1079 			m->m_pkthdr.rcvif = ifp;
1080 			m->m_pkthdr.len = totlen;
1081 		} else {
1082 			if (totlen + off >= MINCLSIZE) {
1083 				m = m_getcl(M_NOWAIT, MT_DATA, 0);
1084 				len = MCLBYTES;
1085 			} else {
1086 				m = m_get(M_NOWAIT, MT_DATA);
1087 				len = MLEN;
1088 			}
1089 			if (m == NULL) {
1090 				m_freem(top);
1091 				return NULL;
1092 			}
1093 		}
1094 		if (off) {
1095 			m->m_data += off;
1096 			len -= off;
1097 			off = 0;
1098 		}
1099 		m->m_len = len = min(totlen, len);
1100 		if (copy)
1101 			copy(buf, mtod(m, caddr_t), (u_int)len);
1102 		else
1103 			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1104 		buf += len;
1105 		*mp = m;
1106 		mp = &m->m_next;
1107 		totlen -= len;
1108 	}
1109 	return (top);
1110 }
1111 
1112 /*
1113  * Copy data from a buffer back into the indicated mbuf chain,
1114  * starting "off" bytes from the beginning, extending the mbuf
1115  * chain if necessary.
1116  */
1117 void
1118 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1119 {
1120 	int mlen;
1121 	struct mbuf *m = m0, *n;
1122 	int totlen = 0;
1123 
1124 	if (m0 == NULL)
1125 		return;
1126 	while (off > (mlen = m->m_len)) {
1127 		off -= mlen;
1128 		totlen += mlen;
1129 		if (m->m_next == NULL) {
1130 			n = m_get(M_NOWAIT, m->m_type);
1131 			if (n == NULL)
1132 				goto out;
1133 			bzero(mtod(n, caddr_t), MLEN);
1134 			n->m_len = min(MLEN, len + off);
1135 			m->m_next = n;
1136 		}
1137 		m = m->m_next;
1138 	}
1139 	while (len > 0) {
1140 		if (m->m_next == NULL && (len > m->m_len - off)) {
1141 			m->m_len += min(len - (m->m_len - off),
1142 			    M_TRAILINGSPACE(m));
1143 		}
1144 		mlen = min (m->m_len - off, len);
1145 		bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1146 		cp += mlen;
1147 		len -= mlen;
1148 		mlen += off;
1149 		off = 0;
1150 		totlen += mlen;
1151 		if (len == 0)
1152 			break;
1153 		if (m->m_next == NULL) {
1154 			n = m_get(M_NOWAIT, m->m_type);
1155 			if (n == NULL)
1156 				break;
1157 			n->m_len = min(MLEN, len);
1158 			m->m_next = n;
1159 		}
1160 		m = m->m_next;
1161 	}
1162 out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1163 		m->m_pkthdr.len = totlen;
1164 }
1165 
1166 /*
1167  * Append the specified data to the indicated mbuf chain,
1168  * Extend the mbuf chain if the new data does not fit in
1169  * existing space.
1170  *
1171  * Return 1 if able to complete the job; otherwise 0.
1172  */
1173 int
1174 m_append(struct mbuf *m0, int len, c_caddr_t cp)
1175 {
1176 	struct mbuf *m, *n;
1177 	int remainder, space;
1178 
1179 	for (m = m0; m->m_next != NULL; m = m->m_next)
1180 		;
1181 	remainder = len;
1182 	space = M_TRAILINGSPACE(m);
1183 	if (space > 0) {
1184 		/*
1185 		 * Copy into available space.
1186 		 */
1187 		if (space > remainder)
1188 			space = remainder;
1189 		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1190 		m->m_len += space;
1191 		cp += space, remainder -= space;
1192 	}
1193 	while (remainder > 0) {
1194 		/*
1195 		 * Allocate a new mbuf; could check space
1196 		 * and allocate a cluster instead.
1197 		 */
1198 		n = m_get(M_NOWAIT, m->m_type);
1199 		if (n == NULL)
1200 			break;
1201 		n->m_len = min(MLEN, remainder);
1202 		bcopy(cp, mtod(n, caddr_t), n->m_len);
1203 		cp += n->m_len, remainder -= n->m_len;
1204 		m->m_next = n;
1205 		m = n;
1206 	}
1207 	if (m0->m_flags & M_PKTHDR)
1208 		m0->m_pkthdr.len += len - remainder;
1209 	return (remainder == 0);
1210 }
1211 
1212 /*
1213  * Apply function f to the data in an mbuf chain starting "off" bytes from
1214  * the beginning, continuing for "len" bytes.
1215  */
1216 int
1217 m_apply(struct mbuf *m, int off, int len,
1218     int (*f)(void *, void *, u_int), void *arg)
1219 {
1220 	u_int count;
1221 	int rval;
1222 
1223 	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1224 	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1225 	while (off > 0) {
1226 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1227 		if (off < m->m_len)
1228 			break;
1229 		off -= m->m_len;
1230 		m = m->m_next;
1231 	}
1232 	while (len > 0) {
1233 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1234 		count = min(m->m_len - off, len);
1235 		rval = (*f)(arg, mtod(m, caddr_t) + off, count);
1236 		if (rval)
1237 			return (rval);
1238 		len -= count;
1239 		off = 0;
1240 		m = m->m_next;
1241 	}
1242 	return (0);
1243 }
1244 
1245 /*
1246  * Return a pointer to mbuf/offset of location in mbuf chain.
1247  */
1248 struct mbuf *
1249 m_getptr(struct mbuf *m, int loc, int *off)
1250 {
1251 
1252 	while (loc >= 0) {
1253 		/* Normal end of search. */
1254 		if (m->m_len > loc) {
1255 			*off = loc;
1256 			return (m);
1257 		} else {
1258 			loc -= m->m_len;
1259 			if (m->m_next == NULL) {
1260 				if (loc == 0) {
1261 					/* Point at the end of valid data. */
1262 					*off = m->m_len;
1263 					return (m);
1264 				}
1265 				return (NULL);
1266 			}
1267 			m = m->m_next;
1268 		}
1269 	}
1270 	return (NULL);
1271 }
1272 
1273 void
1274 m_print(const struct mbuf *m, int maxlen)
1275 {
1276 	int len;
1277 	int pdata;
1278 	const struct mbuf *m2;
1279 
1280 	if (m == NULL) {
1281 		printf("mbuf: %p\n", m);
1282 		return;
1283 	}
1284 
1285 	if (m->m_flags & M_PKTHDR)
1286 		len = m->m_pkthdr.len;
1287 	else
1288 		len = -1;
1289 	m2 = m;
1290 	while (m2 != NULL && (len == -1 || len)) {
1291 		pdata = m2->m_len;
1292 		if (maxlen != -1 && pdata > maxlen)
1293 			pdata = maxlen;
1294 		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1295 		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1296 		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1297 		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1298 		if (pdata)
1299 			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1300 		if (len != -1)
1301 			len -= m2->m_len;
1302 		m2 = m2->m_next;
1303 	}
1304 	if (len > 0)
1305 		printf("%d bytes unaccounted for.\n", len);
1306 	return;
1307 }
1308 
1309 u_int
1310 m_fixhdr(struct mbuf *m0)
1311 {
1312 	u_int len;
1313 
1314 	len = m_length(m0, NULL);
1315 	m0->m_pkthdr.len = len;
1316 	return (len);
1317 }
1318 
1319 u_int
1320 m_length(struct mbuf *m0, struct mbuf **last)
1321 {
1322 	struct mbuf *m;
1323 	u_int len;
1324 
1325 	len = 0;
1326 	for (m = m0; m != NULL; m = m->m_next) {
1327 		len += m->m_len;
1328 		if (m->m_next == NULL)
1329 			break;
1330 	}
1331 	if (last != NULL)
1332 		*last = m;
1333 	return (len);
1334 }
1335 
1336 /*
1337  * Defragment a mbuf chain, returning the shortest possible
1338  * chain of mbufs and clusters.  If allocation fails and
1339  * this cannot be completed, NULL will be returned, but
1340  * the passed in chain will be unchanged.  Upon success,
1341  * the original chain will be freed, and the new chain
1342  * will be returned.
1343  *
1344  * If a non-packet header is passed in, the original
1345  * mbuf (chain?) will be returned unharmed.
1346  */
1347 struct mbuf *
1348 m_defrag(struct mbuf *m0, int how)
1349 {
1350 	struct mbuf *m_new = NULL, *m_final = NULL;
1351 	int progress = 0, length;
1352 
1353 	MBUF_CHECKSLEEP(how);
1354 	if (!(m0->m_flags & M_PKTHDR))
1355 		return (m0);
1356 
1357 	m_fixhdr(m0); /* Needed sanity check */
1358 
1359 #ifdef MBUF_STRESS_TEST
1360 	if (m_defragrandomfailures) {
1361 		int temp = arc4random() & 0xff;
1362 		if (temp == 0xba)
1363 			goto nospace;
1364 	}
1365 #endif
1366 
1367 	if (m0->m_pkthdr.len > MHLEN)
1368 		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1369 	else
1370 		m_final = m_gethdr(how, MT_DATA);
1371 
1372 	if (m_final == NULL)
1373 		goto nospace;
1374 
1375 	if (m_dup_pkthdr(m_final, m0, how) == 0)
1376 		goto nospace;
1377 
1378 	m_new = m_final;
1379 
1380 	while (progress < m0->m_pkthdr.len) {
1381 		length = m0->m_pkthdr.len - progress;
1382 		if (length > MCLBYTES)
1383 			length = MCLBYTES;
1384 
1385 		if (m_new == NULL) {
1386 			if (length > MLEN)
1387 				m_new = m_getcl(how, MT_DATA, 0);
1388 			else
1389 				m_new = m_get(how, MT_DATA);
1390 			if (m_new == NULL)
1391 				goto nospace;
1392 		}
1393 
1394 		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1395 		progress += length;
1396 		m_new->m_len = length;
1397 		if (m_new != m_final)
1398 			m_cat(m_final, m_new);
1399 		m_new = NULL;
1400 	}
1401 #ifdef MBUF_STRESS_TEST
1402 	if (m0->m_next == NULL)
1403 		m_defraguseless++;
1404 #endif
1405 	m_freem(m0);
1406 	m0 = m_final;
1407 #ifdef MBUF_STRESS_TEST
1408 	m_defragpackets++;
1409 	m_defragbytes += m0->m_pkthdr.len;
1410 #endif
1411 	return (m0);
1412 nospace:
1413 #ifdef MBUF_STRESS_TEST
1414 	m_defragfailure++;
1415 #endif
1416 	if (m_final)
1417 		m_freem(m_final);
1418 	return (NULL);
1419 }
1420 
1421 /*
1422  * Return the number of fragments an mbuf will use.  This is usually
1423  * used as a proxy for the number of scatter/gather elements needed by
1424  * a DMA engine to access an mbuf.  In general mapped mbufs are
1425  * assumed to be backed by physically contiguous buffers that only
1426  * need a single fragment.  Unmapped mbufs, on the other hand, can
1427  * span disjoint physical pages.
1428  */
1429 static int
1430 frags_per_mbuf(struct mbuf *m)
1431 {
1432 	int frags;
1433 
1434 	if ((m->m_flags & M_EXTPG) == 0)
1435 		return (1);
1436 
1437 	/*
1438 	 * The header and trailer are counted as a single fragment
1439 	 * each when present.
1440 	 *
1441 	 * XXX: This overestimates the number of fragments by assuming
1442 	 * all the backing physical pages are disjoint.
1443 	 */
1444 	frags = 0;
1445 	if (m->m_epg_hdrlen != 0)
1446 		frags++;
1447 	frags += m->m_epg_npgs;
1448 	if (m->m_epg_trllen != 0)
1449 		frags++;
1450 
1451 	return (frags);
1452 }
1453 
1454 /*
1455  * Defragment an mbuf chain, returning at most maxfrags separate
1456  * mbufs+clusters.  If this is not possible NULL is returned and
1457  * the original mbuf chain is left in its present (potentially
1458  * modified) state.  We use two techniques: collapsing consecutive
1459  * mbufs and replacing consecutive mbufs by a cluster.
1460  *
1461  * NB: this should really be named m_defrag but that name is taken
1462  */
1463 struct mbuf *
1464 m_collapse(struct mbuf *m0, int how, int maxfrags)
1465 {
1466 	struct mbuf *m, *n, *n2, **prev;
1467 	u_int curfrags;
1468 
1469 	/*
1470 	 * Calculate the current number of frags.
1471 	 */
1472 	curfrags = 0;
1473 	for (m = m0; m != NULL; m = m->m_next)
1474 		curfrags += frags_per_mbuf(m);
1475 	/*
1476 	 * First, try to collapse mbufs.  Note that we always collapse
1477 	 * towards the front so we don't need to deal with moving the
1478 	 * pkthdr.  This may be suboptimal if the first mbuf has much
1479 	 * less data than the following.
1480 	 */
1481 	m = m0;
1482 again:
1483 	for (;;) {
1484 		n = m->m_next;
1485 		if (n == NULL)
1486 			break;
1487 		if (M_WRITABLE(m) &&
1488 		    n->m_len < M_TRAILINGSPACE(m)) {
1489 			m_copydata(n, 0, n->m_len,
1490 			    mtod(m, char *) + m->m_len);
1491 			m->m_len += n->m_len;
1492 			m->m_next = n->m_next;
1493 			curfrags -= frags_per_mbuf(n);
1494 			m_free(n);
1495 			if (curfrags <= maxfrags)
1496 				return m0;
1497 		} else
1498 			m = n;
1499 	}
1500 	KASSERT(maxfrags > 1,
1501 		("maxfrags %u, but normal collapse failed", maxfrags));
1502 	/*
1503 	 * Collapse consecutive mbufs to a cluster.
1504 	 */
1505 	prev = &m0->m_next;		/* NB: not the first mbuf */
1506 	while ((n = *prev) != NULL) {
1507 		if ((n2 = n->m_next) != NULL &&
1508 		    n->m_len + n2->m_len < MCLBYTES) {
1509 			m = m_getcl(how, MT_DATA, 0);
1510 			if (m == NULL)
1511 				goto bad;
1512 			m_copydata(n, 0,  n->m_len, mtod(m, char *));
1513 			m_copydata(n2, 0,  n2->m_len,
1514 			    mtod(m, char *) + n->m_len);
1515 			m->m_len = n->m_len + n2->m_len;
1516 			m->m_next = n2->m_next;
1517 			*prev = m;
1518 			curfrags += 1;  /* For the new cluster */
1519 			curfrags -= frags_per_mbuf(n);
1520 			curfrags -= frags_per_mbuf(n2);
1521 			m_free(n);
1522 			m_free(n2);
1523 			if (curfrags <= maxfrags)
1524 				return m0;
1525 			/*
1526 			 * Still not there, try the normal collapse
1527 			 * again before we allocate another cluster.
1528 			 */
1529 			goto again;
1530 		}
1531 		prev = &n->m_next;
1532 	}
1533 	/*
1534 	 * No place where we can collapse to a cluster; punt.
1535 	 * This can occur if, for example, you request 2 frags
1536 	 * but the packet requires that both be clusters (we
1537 	 * never reallocate the first mbuf to avoid moving the
1538 	 * packet header).
1539 	 */
1540 bad:
1541 	return NULL;
1542 }
1543 
1544 #ifdef MBUF_STRESS_TEST
1545 
1546 /*
1547  * Fragment an mbuf chain.  There's no reason you'd ever want to do
1548  * this in normal usage, but it's great for stress testing various
1549  * mbuf consumers.
1550  *
1551  * If fragmentation is not possible, the original chain will be
1552  * returned.
1553  *
1554  * Possible length values:
1555  * 0	 no fragmentation will occur
1556  * > 0	each fragment will be of the specified length
1557  * -1	each fragment will be the same random value in length
1558  * -2	each fragment's length will be entirely random
1559  * (Random values range from 1 to 256)
1560  */
1561 struct mbuf *
1562 m_fragment(struct mbuf *m0, int how, int length)
1563 {
1564 	struct mbuf *m_first, *m_last;
1565 	int divisor = 255, progress = 0, fraglen;
1566 
1567 	if (!(m0->m_flags & M_PKTHDR))
1568 		return (m0);
1569 
1570 	if (length == 0 || length < -2)
1571 		return (m0);
1572 	if (length > MCLBYTES)
1573 		length = MCLBYTES;
1574 	if (length < 0 && divisor > MCLBYTES)
1575 		divisor = MCLBYTES;
1576 	if (length == -1)
1577 		length = 1 + (arc4random() % divisor);
1578 	if (length > 0)
1579 		fraglen = length;
1580 
1581 	m_fixhdr(m0); /* Needed sanity check */
1582 
1583 	m_first = m_getcl(how, MT_DATA, M_PKTHDR);
1584 	if (m_first == NULL)
1585 		goto nospace;
1586 
1587 	if (m_dup_pkthdr(m_first, m0, how) == 0)
1588 		goto nospace;
1589 
1590 	m_last = m_first;
1591 
1592 	while (progress < m0->m_pkthdr.len) {
1593 		if (length == -2)
1594 			fraglen = 1 + (arc4random() % divisor);
1595 		if (fraglen > m0->m_pkthdr.len - progress)
1596 			fraglen = m0->m_pkthdr.len - progress;
1597 
1598 		if (progress != 0) {
1599 			struct mbuf *m_new = m_getcl(how, MT_DATA, 0);
1600 			if (m_new == NULL)
1601 				goto nospace;
1602 
1603 			m_last->m_next = m_new;
1604 			m_last = m_new;
1605 		}
1606 
1607 		m_copydata(m0, progress, fraglen, mtod(m_last, caddr_t));
1608 		progress += fraglen;
1609 		m_last->m_len = fraglen;
1610 	}
1611 	m_freem(m0);
1612 	m0 = m_first;
1613 	return (m0);
1614 nospace:
1615 	if (m_first)
1616 		m_freem(m_first);
1617 	/* Return the original chain on failure */
1618 	return (m0);
1619 }
1620 
1621 #endif
1622 
1623 /*
1624  * Free pages from mbuf_ext_pgs, assuming they were allocated via
1625  * vm_page_alloc() and aren't associated with any object.  Complement
1626  * to allocator from m_uiotombuf_nomap().
1627  */
1628 void
1629 mb_free_mext_pgs(struct mbuf *m)
1630 {
1631 	vm_page_t pg;
1632 
1633 	M_ASSERTEXTPG(m);
1634 	for (int i = 0; i < m->m_epg_npgs; i++) {
1635 		pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
1636 		vm_page_unwire_noq(pg);
1637 		vm_page_free(pg);
1638 	}
1639 }
1640 
1641 static struct mbuf *
1642 m_uiotombuf_nomap(struct uio *uio, int how, int len, int maxseg, int flags)
1643 {
1644 	struct mbuf *m, *mb, *prev;
1645 	vm_page_t pg_array[MBUF_PEXT_MAX_PGS];
1646 	int error, length, i, needed;
1647 	ssize_t total;
1648 	int pflags = malloc2vm_flags(how) | VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP |
1649 	    VM_ALLOC_WIRED;
1650 
1651 	/*
1652 	 * len can be zero or an arbitrary large value bound by
1653 	 * the total data supplied by the uio.
1654 	 */
1655 	if (len > 0)
1656 		total = MIN(uio->uio_resid, len);
1657 	else
1658 		total = uio->uio_resid;
1659 
1660 	if (maxseg == 0)
1661 		maxseg = MBUF_PEXT_MAX_PGS * PAGE_SIZE;
1662 
1663 	/*
1664 	 * Allocate the pages
1665 	 */
1666 	m = NULL;
1667 	MPASS((flags & M_PKTHDR) == 0);
1668 	while (total > 0) {
1669 		mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs);
1670 		if (mb == NULL)
1671 			goto failed;
1672 		if (m == NULL)
1673 			m = mb;
1674 		else
1675 			prev->m_next = mb;
1676 		prev = mb;
1677 		mb->m_epg_flags = EPG_FLAG_ANON;
1678 		needed = length = MIN(maxseg, total);
1679 		for (i = 0; needed > 0; i++, needed -= PAGE_SIZE) {
1680 retry_page:
1681 			pg_array[i] = vm_page_alloc(NULL, 0, pflags);
1682 			if (pg_array[i] == NULL) {
1683 				if (how & M_NOWAIT) {
1684 					goto failed;
1685 				} else {
1686 					vm_wait(NULL);
1687 					goto retry_page;
1688 				}
1689 			}
1690 			pg_array[i]->flags &= ~PG_ZERO;
1691 			mb->m_epg_pa[i] = VM_PAGE_TO_PHYS(pg_array[i]);
1692 			mb->m_epg_npgs++;
1693 		}
1694 		mb->m_epg_last_len = length - PAGE_SIZE * (mb->m_epg_npgs - 1);
1695 		MBUF_EXT_PGS_ASSERT_SANITY(mb);
1696 		total -= length;
1697 		error = uiomove_fromphys(pg_array, 0, length, uio);
1698 		if (error != 0)
1699 			goto failed;
1700 		mb->m_len = length;
1701 		mb->m_ext.ext_size += PAGE_SIZE * mb->m_epg_npgs;
1702 		if (flags & M_PKTHDR)
1703 			m->m_pkthdr.len += length;
1704 	}
1705 	return (m);
1706 
1707 failed:
1708 	m_freem(m);
1709 	return (NULL);
1710 }
1711 
1712 /*
1713  * Copy the contents of uio into a properly sized mbuf chain.
1714  */
1715 struct mbuf *
1716 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1717 {
1718 	struct mbuf *m, *mb;
1719 	int error, length;
1720 	ssize_t total;
1721 	int progress = 0;
1722 
1723 	if (flags & M_EXTPG)
1724 		return (m_uiotombuf_nomap(uio, how, len, align, flags));
1725 
1726 	/*
1727 	 * len can be zero or an arbitrary large value bound by
1728 	 * the total data supplied by the uio.
1729 	 */
1730 	if (len > 0)
1731 		total = (uio->uio_resid < len) ? uio->uio_resid : len;
1732 	else
1733 		total = uio->uio_resid;
1734 
1735 	/*
1736 	 * The smallest unit returned by m_getm2() is a single mbuf
1737 	 * with pkthdr.  We can't align past it.
1738 	 */
1739 	if (align >= MHLEN)
1740 		return (NULL);
1741 
1742 	/*
1743 	 * Give us the full allocation or nothing.
1744 	 * If len is zero return the smallest empty mbuf.
1745 	 */
1746 	m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1747 	if (m == NULL)
1748 		return (NULL);
1749 	m->m_data += align;
1750 
1751 	/* Fill all mbufs with uio data and update header information. */
1752 	for (mb = m; mb != NULL; mb = mb->m_next) {
1753 		length = min(M_TRAILINGSPACE(mb), total - progress);
1754 
1755 		error = uiomove(mtod(mb, void *), length, uio);
1756 		if (error) {
1757 			m_freem(m);
1758 			return (NULL);
1759 		}
1760 
1761 		mb->m_len = length;
1762 		progress += length;
1763 		if (flags & M_PKTHDR)
1764 			m->m_pkthdr.len += length;
1765 	}
1766 	KASSERT(progress == total, ("%s: progress != total", __func__));
1767 
1768 	return (m);
1769 }
1770 
1771 /*
1772  * Copy data from an unmapped mbuf into a uio limited by len if set.
1773  */
1774 int
1775 m_unmappedtouio(const struct mbuf *m, int m_off, struct uio *uio, int len)
1776 {
1777 	vm_page_t pg;
1778 	int error, i, off, pglen, pgoff, seglen, segoff;
1779 
1780 	M_ASSERTEXTPG(m);
1781 	error = 0;
1782 
1783 	/* Skip over any data removed from the front. */
1784 	off = mtod(m, vm_offset_t);
1785 
1786 	off += m_off;
1787 	if (m->m_epg_hdrlen != 0) {
1788 		if (off >= m->m_epg_hdrlen) {
1789 			off -= m->m_epg_hdrlen;
1790 		} else {
1791 			seglen = m->m_epg_hdrlen - off;
1792 			segoff = off;
1793 			seglen = min(seglen, len);
1794 			off = 0;
1795 			len -= seglen;
1796 			error = uiomove(__DECONST(void *,
1797 			    &m->m_epg_hdr[segoff]), seglen, uio);
1798 		}
1799 	}
1800 	pgoff = m->m_epg_1st_off;
1801 	for (i = 0; i < m->m_epg_npgs && error == 0 && len > 0; i++) {
1802 		pglen = m_epg_pagelen(m, i, pgoff);
1803 		if (off >= pglen) {
1804 			off -= pglen;
1805 			pgoff = 0;
1806 			continue;
1807 		}
1808 		seglen = pglen - off;
1809 		segoff = pgoff + off;
1810 		off = 0;
1811 		seglen = min(seglen, len);
1812 		len -= seglen;
1813 		pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
1814 		error = uiomove_fromphys(&pg, segoff, seglen, uio);
1815 		pgoff = 0;
1816 	};
1817 	if (len != 0 && error == 0) {
1818 		KASSERT((off + len) <= m->m_epg_trllen,
1819 		    ("off + len > trail (%d + %d > %d, m_off = %d)", off, len,
1820 		    m->m_epg_trllen, m_off));
1821 		error = uiomove(__DECONST(void *, &m->m_epg_trail[off]),
1822 		    len, uio);
1823 	}
1824 	return (error);
1825 }
1826 
1827 /*
1828  * Copy an mbuf chain into a uio limited by len if set.
1829  */
1830 int
1831 m_mbuftouio(struct uio *uio, const struct mbuf *m, int len)
1832 {
1833 	int error, length, total;
1834 	int progress = 0;
1835 
1836 	if (len > 0)
1837 		total = min(uio->uio_resid, len);
1838 	else
1839 		total = uio->uio_resid;
1840 
1841 	/* Fill the uio with data from the mbufs. */
1842 	for (; m != NULL; m = m->m_next) {
1843 		length = min(m->m_len, total - progress);
1844 
1845 		if ((m->m_flags & M_EXTPG) != 0)
1846 			error = m_unmappedtouio(m, 0, uio, length);
1847 		else
1848 			error = uiomove(mtod(m, void *), length, uio);
1849 		if (error)
1850 			return (error);
1851 
1852 		progress += length;
1853 	}
1854 
1855 	return (0);
1856 }
1857 
1858 /*
1859  * Create a writable copy of the mbuf chain.  While doing this
1860  * we compact the chain with a goal of producing a chain with
1861  * at most two mbufs.  The second mbuf in this chain is likely
1862  * to be a cluster.  The primary purpose of this work is to create
1863  * a writable packet for encryption, compression, etc.  The
1864  * secondary goal is to linearize the data so the data can be
1865  * passed to crypto hardware in the most efficient manner possible.
1866  */
1867 struct mbuf *
1868 m_unshare(struct mbuf *m0, int how)
1869 {
1870 	struct mbuf *m, *mprev;
1871 	struct mbuf *n, *mfirst, *mlast;
1872 	int len, off;
1873 
1874 	mprev = NULL;
1875 	for (m = m0; m != NULL; m = mprev->m_next) {
1876 		/*
1877 		 * Regular mbufs are ignored unless there's a cluster
1878 		 * in front of it that we can use to coalesce.  We do
1879 		 * the latter mainly so later clusters can be coalesced
1880 		 * also w/o having to handle them specially (i.e. convert
1881 		 * mbuf+cluster -> cluster).  This optimization is heavily
1882 		 * influenced by the assumption that we're running over
1883 		 * Ethernet where MCLBYTES is large enough that the max
1884 		 * packet size will permit lots of coalescing into a
1885 		 * single cluster.  This in turn permits efficient
1886 		 * crypto operations, especially when using hardware.
1887 		 */
1888 		if ((m->m_flags & M_EXT) == 0) {
1889 			if (mprev && (mprev->m_flags & M_EXT) &&
1890 			    m->m_len <= M_TRAILINGSPACE(mprev)) {
1891 				/* XXX: this ignores mbuf types */
1892 				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1893 				    mtod(m, caddr_t), m->m_len);
1894 				mprev->m_len += m->m_len;
1895 				mprev->m_next = m->m_next;	/* unlink from chain */
1896 				m_free(m);			/* reclaim mbuf */
1897 			} else {
1898 				mprev = m;
1899 			}
1900 			continue;
1901 		}
1902 		/*
1903 		 * Writable mbufs are left alone (for now).
1904 		 */
1905 		if (M_WRITABLE(m)) {
1906 			mprev = m;
1907 			continue;
1908 		}
1909 
1910 		/*
1911 		 * Not writable, replace with a copy or coalesce with
1912 		 * the previous mbuf if possible (since we have to copy
1913 		 * it anyway, we try to reduce the number of mbufs and
1914 		 * clusters so that future work is easier).
1915 		 */
1916 		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
1917 		/* NB: we only coalesce into a cluster or larger */
1918 		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
1919 		    m->m_len <= M_TRAILINGSPACE(mprev)) {
1920 			/* XXX: this ignores mbuf types */
1921 			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1922 			    mtod(m, caddr_t), m->m_len);
1923 			mprev->m_len += m->m_len;
1924 			mprev->m_next = m->m_next;	/* unlink from chain */
1925 			m_free(m);			/* reclaim mbuf */
1926 			continue;
1927 		}
1928 
1929 		/*
1930 		 * Allocate new space to hold the copy and copy the data.
1931 		 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
1932 		 * splitting them into clusters.  We could just malloc a
1933 		 * buffer and make it external but too many device drivers
1934 		 * don't know how to break up the non-contiguous memory when
1935 		 * doing DMA.
1936 		 */
1937 		n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
1938 		if (n == NULL) {
1939 			m_freem(m0);
1940 			return (NULL);
1941 		}
1942 		if (m->m_flags & M_PKTHDR) {
1943 			KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR",
1944 			    __func__, m0, m));
1945 			m_move_pkthdr(n, m);
1946 		}
1947 		len = m->m_len;
1948 		off = 0;
1949 		mfirst = n;
1950 		mlast = NULL;
1951 		for (;;) {
1952 			int cc = min(len, MCLBYTES);
1953 			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
1954 			n->m_len = cc;
1955 			if (mlast != NULL)
1956 				mlast->m_next = n;
1957 			mlast = n;
1958 #if 0
1959 			newipsecstat.ips_clcopied++;
1960 #endif
1961 
1962 			len -= cc;
1963 			if (len <= 0)
1964 				break;
1965 			off += cc;
1966 
1967 			n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
1968 			if (n == NULL) {
1969 				m_freem(mfirst);
1970 				m_freem(m0);
1971 				return (NULL);
1972 			}
1973 		}
1974 		n->m_next = m->m_next;
1975 		if (mprev == NULL)
1976 			m0 = mfirst;		/* new head of chain */
1977 		else
1978 			mprev->m_next = mfirst;	/* replace old mbuf */
1979 		m_free(m);			/* release old mbuf */
1980 		mprev = mfirst;
1981 	}
1982 	return (m0);
1983 }
1984 
1985 #ifdef MBUF_PROFILING
1986 
1987 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
1988 struct mbufprofile {
1989 	uintmax_t wasted[MP_BUCKETS];
1990 	uintmax_t used[MP_BUCKETS];
1991 	uintmax_t segments[MP_BUCKETS];
1992 } mbprof;
1993 
1994 #define MP_MAXDIGITS 21	/* strlen("16,000,000,000,000,000,000") == 21 */
1995 #define MP_NUMLINES 6
1996 #define MP_NUMSPERLINE 16
1997 #define MP_EXTRABYTES 64	/* > strlen("used:\nwasted:\nsegments:\n") */
1998 /* work out max space needed and add a bit of spare space too */
1999 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
2000 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
2001 
2002 char mbprofbuf[MP_BUFSIZE];
2003 
2004 void
2005 m_profile(struct mbuf *m)
2006 {
2007 	int segments = 0;
2008 	int used = 0;
2009 	int wasted = 0;
2010 
2011 	while (m) {
2012 		segments++;
2013 		used += m->m_len;
2014 		if (m->m_flags & M_EXT) {
2015 			wasted += MHLEN - sizeof(m->m_ext) +
2016 			    m->m_ext.ext_size - m->m_len;
2017 		} else {
2018 			if (m->m_flags & M_PKTHDR)
2019 				wasted += MHLEN - m->m_len;
2020 			else
2021 				wasted += MLEN - m->m_len;
2022 		}
2023 		m = m->m_next;
2024 	}
2025 	/* be paranoid.. it helps */
2026 	if (segments > MP_BUCKETS - 1)
2027 		segments = MP_BUCKETS - 1;
2028 	if (used > 100000)
2029 		used = 100000;
2030 	if (wasted > 100000)
2031 		wasted = 100000;
2032 	/* store in the appropriate bucket */
2033 	/* don't bother locking. if it's slightly off, so what? */
2034 	mbprof.segments[segments]++;
2035 	mbprof.used[fls(used)]++;
2036 	mbprof.wasted[fls(wasted)]++;
2037 }
2038 
2039 static void
2040 mbprof_textify(void)
2041 {
2042 	int offset;
2043 	char *c;
2044 	uint64_t *p;
2045 
2046 	p = &mbprof.wasted[0];
2047 	c = mbprofbuf;
2048 	offset = snprintf(c, MP_MAXLINE + 10,
2049 	    "wasted:\n"
2050 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2051 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2052 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2053 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2054 #ifdef BIG_ARRAY
2055 	p = &mbprof.wasted[16];
2056 	c += offset;
2057 	offset = snprintf(c, MP_MAXLINE,
2058 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2059 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2060 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2061 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2062 #endif
2063 	p = &mbprof.used[0];
2064 	c += offset;
2065 	offset = snprintf(c, MP_MAXLINE + 10,
2066 	    "used:\n"
2067 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2068 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2069 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2070 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2071 #ifdef BIG_ARRAY
2072 	p = &mbprof.used[16];
2073 	c += offset;
2074 	offset = snprintf(c, MP_MAXLINE,
2075 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2076 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2077 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2078 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2079 #endif
2080 	p = &mbprof.segments[0];
2081 	c += offset;
2082 	offset = snprintf(c, MP_MAXLINE + 10,
2083 	    "segments:\n"
2084 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2085 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2086 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2087 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2088 #ifdef BIG_ARRAY
2089 	p = &mbprof.segments[16];
2090 	c += offset;
2091 	offset = snprintf(c, MP_MAXLINE,
2092 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2093 	    "%ju %ju %ju %ju %ju %ju %ju %jju",
2094 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2095 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2096 #endif
2097 }
2098 
2099 static int
2100 mbprof_handler(SYSCTL_HANDLER_ARGS)
2101 {
2102 	int error;
2103 
2104 	mbprof_textify();
2105 	error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
2106 	return (error);
2107 }
2108 
2109 static int
2110 mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
2111 {
2112 	int clear, error;
2113 
2114 	clear = 0;
2115 	error = sysctl_handle_int(oidp, &clear, 0, req);
2116 	if (error || !req->newptr)
2117 		return (error);
2118 
2119 	if (clear) {
2120 		bzero(&mbprof, sizeof(mbprof));
2121 	}
2122 
2123 	return (error);
2124 }
2125 
2126 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile,
2127     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, NULL, 0,
2128     mbprof_handler, "A",
2129     "mbuf profiling statistics");
2130 
2131 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr,
2132     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
2133     mbprof_clr_handler, "I",
2134     "clear mbuf profiling statistics");
2135 #endif
2136 
2137