1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_param.h" 38 #include "opt_mbuf_stress_test.h" 39 #include "opt_mbuf_profiling.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/kernel.h> 44 #include <sys/limits.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/sysctl.h> 49 #include <sys/domain.h> 50 #include <sys/protosw.h> 51 #include <sys/uio.h> 52 #include <sys/vmmeter.h> 53 #include <sys/sdt.h> 54 #include <vm/vm.h> 55 #include <vm/vm_pageout.h> 56 #include <vm/vm_page.h> 57 58 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__init, 59 "struct mbuf *", "mbufinfo_t *", 60 "uint32_t", "uint32_t", 61 "uint16_t", "uint16_t", 62 "uint32_t", "uint32_t", 63 "uint32_t", "uint32_t"); 64 65 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr, 66 "uint32_t", "uint32_t", 67 "uint16_t", "uint16_t", 68 "struct mbuf *", "mbufinfo_t *"); 69 70 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get, 71 "uint32_t", "uint32_t", 72 "uint16_t", "uint16_t", 73 "struct mbuf *", "mbufinfo_t *"); 74 75 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__getcl, 76 "uint32_t", "uint32_t", 77 "uint16_t", "uint16_t", 78 "uint32_t", "uint32_t", 79 "struct mbuf *", "mbufinfo_t *"); 80 81 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__clget, 82 "struct mbuf *", "mbufinfo_t *", 83 "uint32_t", "uint32_t", 84 "uint32_t", "uint32_t"); 85 86 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__cljget, 87 "struct mbuf *", "mbufinfo_t *", 88 "uint32_t", "uint32_t", 89 "uint32_t", "uint32_t", 90 "void*", "void*"); 91 92 SDT_PROBE_DEFINE(sdt, , , m__cljset); 93 94 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__free, 95 "struct mbuf *", "mbufinfo_t *"); 96 97 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__freem, 98 "struct mbuf *", "mbufinfo_t *"); 99 100 #include <security/mac/mac_framework.h> 101 102 int max_linkhdr; 103 int max_protohdr; 104 int max_hdr; 105 int max_datalen; 106 #ifdef MBUF_STRESS_TEST 107 int m_defragpackets; 108 int m_defragbytes; 109 int m_defraguseless; 110 int m_defragfailure; 111 int m_defragrandomfailures; 112 #endif 113 114 /* 115 * sysctl(8) exported objects 116 */ 117 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD, 118 &max_linkhdr, 0, "Size of largest link layer header"); 119 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD, 120 &max_protohdr, 0, "Size of largest protocol layer header"); 121 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD, 122 &max_hdr, 0, "Size of largest link plus protocol header"); 123 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD, 124 &max_datalen, 0, "Minimum space left in mbuf after max_hdr"); 125 #ifdef MBUF_STRESS_TEST 126 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD, 127 &m_defragpackets, 0, ""); 128 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD, 129 &m_defragbytes, 0, ""); 130 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD, 131 &m_defraguseless, 0, ""); 132 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD, 133 &m_defragfailure, 0, ""); 134 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW, 135 &m_defragrandomfailures, 0, ""); 136 #endif 137 138 /* 139 * Ensure the correct size of various mbuf parameters. It could be off due 140 * to compiler-induced padding and alignment artifacts. 141 */ 142 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN); 143 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN); 144 145 /* 146 * mbuf data storage should be 64-bit aligned regardless of architectural 147 * pointer size; check this is the case with and without a packet header. 148 */ 149 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0); 150 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0); 151 152 /* 153 * While the specific values here don't matter too much (i.e., +/- a few 154 * words), we do want to ensure that changes to these values are carefully 155 * reasoned about and properly documented. This is especially the case as 156 * network-protocol and device-driver modules encode these layouts, and must 157 * be recompiled if the structures change. Check these values at compile time 158 * against the ones documented in comments in mbuf.h. 159 * 160 * NB: Possibly they should be documented there via #define's and not just 161 * comments. 162 */ 163 #if defined(__LP64__) 164 CTASSERT(offsetof(struct mbuf, m_dat) == 32); 165 CTASSERT(sizeof(struct pkthdr) == 56); 166 CTASSERT(sizeof(struct m_ext) == 160); 167 #else 168 CTASSERT(offsetof(struct mbuf, m_dat) == 24); 169 CTASSERT(sizeof(struct pkthdr) == 48); 170 #if defined(__powerpc__) && defined(BOOKE) 171 /* PowerPC booke has 64-bit physical pointers. */ 172 CTASSERT(sizeof(struct m_ext) == 184); 173 #else 174 CTASSERT(sizeof(struct m_ext) == 180); 175 #endif 176 #endif 177 178 /* 179 * Assert that the queue(3) macros produce code of the same size as an old 180 * plain pointer does. 181 */ 182 #ifdef INVARIANTS 183 static struct mbuf __used m_assertbuf; 184 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next)); 185 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next)); 186 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt)); 187 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt)); 188 #endif 189 190 /* 191 * Attach the cluster from *m to *n, set up m_ext in *n 192 * and bump the refcount of the cluster. 193 */ 194 void 195 mb_dupcl(struct mbuf *n, struct mbuf *m) 196 { 197 volatile u_int *refcnt; 198 199 KASSERT(m->m_flags & (M_EXT|M_EXTPG), 200 ("%s: M_EXT|M_EXTPG not set on %p", __func__, m)); 201 KASSERT(!(n->m_flags & (M_EXT|M_EXTPG)), 202 ("%s: M_EXT|M_EXTPG set on %p", __func__, n)); 203 204 /* 205 * Cache access optimization. 206 * 207 * o Regular M_EXT storage doesn't need full copy of m_ext, since 208 * the holder of the 'ext_count' is responsible to carry the free 209 * routine and its arguments. 210 * o M_EXTPG data is split between main part of mbuf and m_ext, the 211 * main part is copied in full, the m_ext part is similar to M_EXT. 212 * o EXT_EXTREF, where 'ext_cnt' doesn't point into mbuf at all, is 213 * special - it needs full copy of m_ext into each mbuf, since any 214 * copy could end up as the last to free. 215 */ 216 if (m->m_flags & M_EXTPG) { 217 bcopy(&m->m_epg_startcopy, &n->m_epg_startcopy, 218 __rangeof(struct mbuf, m_epg_startcopy, m_epg_endcopy)); 219 bcopy(&m->m_ext, &n->m_ext, m_epg_ext_copylen); 220 } else if (m->m_ext.ext_type == EXT_EXTREF) 221 bcopy(&m->m_ext, &n->m_ext, sizeof(struct m_ext)); 222 else 223 bcopy(&m->m_ext, &n->m_ext, m_ext_copylen); 224 225 n->m_flags |= m->m_flags & (M_RDONLY | M_EXT | M_EXTPG); 226 227 /* See if this is the mbuf that holds the embedded refcount. */ 228 if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) { 229 refcnt = n->m_ext.ext_cnt = &m->m_ext.ext_count; 230 n->m_ext.ext_flags &= ~EXT_FLAG_EMBREF; 231 } else { 232 KASSERT(m->m_ext.ext_cnt != NULL, 233 ("%s: no refcounting pointer on %p", __func__, m)); 234 refcnt = m->m_ext.ext_cnt; 235 } 236 237 if (*refcnt == 1) 238 *refcnt += 1; 239 else 240 atomic_add_int(refcnt, 1); 241 } 242 243 void 244 m_demote_pkthdr(struct mbuf *m) 245 { 246 247 M_ASSERTPKTHDR(m); 248 249 m_tag_delete_chain(m, NULL); 250 m->m_flags &= ~M_PKTHDR; 251 bzero(&m->m_pkthdr, sizeof(struct pkthdr)); 252 } 253 254 /* 255 * Clean up mbuf (chain) from any tags and packet headers. 256 * If "all" is set then the first mbuf in the chain will be 257 * cleaned too. 258 */ 259 void 260 m_demote(struct mbuf *m0, int all, int flags) 261 { 262 struct mbuf *m; 263 264 for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) { 265 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p", 266 __func__, m, m0)); 267 if (m->m_flags & M_PKTHDR) 268 m_demote_pkthdr(m); 269 m->m_flags = m->m_flags & (M_EXT | M_RDONLY | M_NOFREE | 270 M_EXTPG | flags); 271 } 272 } 273 274 /* 275 * Sanity checks on mbuf (chain) for use in KASSERT() and general 276 * debugging. 277 * Returns 0 or panics when bad and 1 on all tests passed. 278 * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they 279 * blow up later. 280 */ 281 int 282 m_sanity(struct mbuf *m0, int sanitize) 283 { 284 struct mbuf *m; 285 caddr_t a, b; 286 int pktlen = 0; 287 288 #ifdef INVARIANTS 289 #define M_SANITY_ACTION(s) panic("mbuf %p: " s, m) 290 #else 291 #define M_SANITY_ACTION(s) printf("mbuf %p: " s, m) 292 #endif 293 294 for (m = m0; m != NULL; m = m->m_next) { 295 /* 296 * Basic pointer checks. If any of these fails then some 297 * unrelated kernel memory before or after us is trashed. 298 * No way to recover from that. 299 */ 300 a = M_START(m); 301 b = a + M_SIZE(m); 302 if ((caddr_t)m->m_data < a) 303 M_SANITY_ACTION("m_data outside mbuf data range left"); 304 if ((caddr_t)m->m_data > b) 305 M_SANITY_ACTION("m_data outside mbuf data range right"); 306 if ((caddr_t)m->m_data + m->m_len > b) 307 M_SANITY_ACTION("m_data + m_len exeeds mbuf space"); 308 309 /* m->m_nextpkt may only be set on first mbuf in chain. */ 310 if (m != m0 && m->m_nextpkt != NULL) { 311 if (sanitize) { 312 m_freem(m->m_nextpkt); 313 m->m_nextpkt = (struct mbuf *)0xDEADC0DE; 314 } else 315 M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf"); 316 } 317 318 /* packet length (not mbuf length!) calculation */ 319 if (m0->m_flags & M_PKTHDR) 320 pktlen += m->m_len; 321 322 /* m_tags may only be attached to first mbuf in chain. */ 323 if (m != m0 && m->m_flags & M_PKTHDR && 324 !SLIST_EMPTY(&m->m_pkthdr.tags)) { 325 if (sanitize) { 326 m_tag_delete_chain(m, NULL); 327 /* put in 0xDEADC0DE perhaps? */ 328 } else 329 M_SANITY_ACTION("m_tags on in-chain mbuf"); 330 } 331 332 /* M_PKTHDR may only be set on first mbuf in chain */ 333 if (m != m0 && m->m_flags & M_PKTHDR) { 334 if (sanitize) { 335 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr)); 336 m->m_flags &= ~M_PKTHDR; 337 /* put in 0xDEADCODE and leave hdr flag in */ 338 } else 339 M_SANITY_ACTION("M_PKTHDR on in-chain mbuf"); 340 } 341 } 342 m = m0; 343 if (pktlen && pktlen != m->m_pkthdr.len) { 344 if (sanitize) 345 m->m_pkthdr.len = 0; 346 else 347 M_SANITY_ACTION("m_pkthdr.len != mbuf chain length"); 348 } 349 return 1; 350 351 #undef M_SANITY_ACTION 352 } 353 354 /* 355 * Non-inlined part of m_init(). 356 */ 357 int 358 m_pkthdr_init(struct mbuf *m, int how) 359 { 360 #ifdef MAC 361 int error; 362 #endif 363 m->m_data = m->m_pktdat; 364 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr)); 365 #ifdef NUMA 366 m->m_pkthdr.numa_domain = M_NODOM; 367 #endif 368 #ifdef MAC 369 /* If the label init fails, fail the alloc */ 370 error = mac_mbuf_init(m, how); 371 if (error) 372 return (error); 373 #endif 374 375 return (0); 376 } 377 378 /* 379 * "Move" mbuf pkthdr from "from" to "to". 380 * "from" must have M_PKTHDR set, and "to" must be empty. 381 */ 382 void 383 m_move_pkthdr(struct mbuf *to, struct mbuf *from) 384 { 385 386 #if 0 387 /* see below for why these are not enabled */ 388 M_ASSERTPKTHDR(to); 389 /* Note: with MAC, this may not be a good assertion. */ 390 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), 391 ("m_move_pkthdr: to has tags")); 392 #endif 393 #ifdef MAC 394 /* 395 * XXXMAC: It could be this should also occur for non-MAC? 396 */ 397 if (to->m_flags & M_PKTHDR) 398 m_tag_delete_chain(to, NULL); 399 #endif 400 to->m_flags = (from->m_flags & M_COPYFLAGS) | 401 (to->m_flags & (M_EXT | M_EXTPG)); 402 if ((to->m_flags & M_EXT) == 0) 403 to->m_data = to->m_pktdat; 404 to->m_pkthdr = from->m_pkthdr; /* especially tags */ 405 SLIST_INIT(&from->m_pkthdr.tags); /* purge tags from src */ 406 from->m_flags &= ~M_PKTHDR; 407 if (from->m_pkthdr.csum_flags & CSUM_SND_TAG) { 408 from->m_pkthdr.csum_flags &= ~CSUM_SND_TAG; 409 from->m_pkthdr.snd_tag = NULL; 410 } 411 } 412 413 /* 414 * Duplicate "from"'s mbuf pkthdr in "to". 415 * "from" must have M_PKTHDR set, and "to" must be empty. 416 * In particular, this does a deep copy of the packet tags. 417 */ 418 int 419 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how) 420 { 421 422 #if 0 423 /* 424 * The mbuf allocator only initializes the pkthdr 425 * when the mbuf is allocated with m_gethdr(). Many users 426 * (e.g. m_copy*, m_prepend) use m_get() and then 427 * smash the pkthdr as needed causing these 428 * assertions to trip. For now just disable them. 429 */ 430 M_ASSERTPKTHDR(to); 431 /* Note: with MAC, this may not be a good assertion. */ 432 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags")); 433 #endif 434 MBUF_CHECKSLEEP(how); 435 #ifdef MAC 436 if (to->m_flags & M_PKTHDR) 437 m_tag_delete_chain(to, NULL); 438 #endif 439 to->m_flags = (from->m_flags & M_COPYFLAGS) | 440 (to->m_flags & (M_EXT | M_EXTPG)); 441 if ((to->m_flags & M_EXT) == 0) 442 to->m_data = to->m_pktdat; 443 to->m_pkthdr = from->m_pkthdr; 444 if (from->m_pkthdr.csum_flags & CSUM_SND_TAG) 445 m_snd_tag_ref(from->m_pkthdr.snd_tag); 446 SLIST_INIT(&to->m_pkthdr.tags); 447 return (m_tag_copy_chain(to, from, how)); 448 } 449 450 /* 451 * Lesser-used path for M_PREPEND: 452 * allocate new mbuf to prepend to chain, 453 * copy junk along. 454 */ 455 struct mbuf * 456 m_prepend(struct mbuf *m, int len, int how) 457 { 458 struct mbuf *mn; 459 460 if (m->m_flags & M_PKTHDR) 461 mn = m_gethdr(how, m->m_type); 462 else 463 mn = m_get(how, m->m_type); 464 if (mn == NULL) { 465 m_freem(m); 466 return (NULL); 467 } 468 if (m->m_flags & M_PKTHDR) 469 m_move_pkthdr(mn, m); 470 mn->m_next = m; 471 m = mn; 472 if (len < M_SIZE(m)) 473 M_ALIGN(m, len); 474 m->m_len = len; 475 return (m); 476 } 477 478 /* 479 * Make a copy of an mbuf chain starting "off0" bytes from the beginning, 480 * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf. 481 * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller. 482 * Note that the copy is read-only, because clusters are not copied, 483 * only their reference counts are incremented. 484 */ 485 struct mbuf * 486 m_copym(struct mbuf *m, int off0, int len, int wait) 487 { 488 struct mbuf *n, **np; 489 int off = off0; 490 struct mbuf *top; 491 int copyhdr = 0; 492 493 KASSERT(off >= 0, ("m_copym, negative off %d", off)); 494 KASSERT(len >= 0, ("m_copym, negative len %d", len)); 495 MBUF_CHECKSLEEP(wait); 496 if (off == 0 && m->m_flags & M_PKTHDR) 497 copyhdr = 1; 498 while (off > 0) { 499 KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain")); 500 if (off < m->m_len) 501 break; 502 off -= m->m_len; 503 m = m->m_next; 504 } 505 np = ⊤ 506 top = NULL; 507 while (len > 0) { 508 if (m == NULL) { 509 KASSERT(len == M_COPYALL, 510 ("m_copym, length > size of mbuf chain")); 511 break; 512 } 513 if (copyhdr) 514 n = m_gethdr(wait, m->m_type); 515 else 516 n = m_get(wait, m->m_type); 517 *np = n; 518 if (n == NULL) 519 goto nospace; 520 if (copyhdr) { 521 if (!m_dup_pkthdr(n, m, wait)) 522 goto nospace; 523 if (len == M_COPYALL) 524 n->m_pkthdr.len -= off0; 525 else 526 n->m_pkthdr.len = len; 527 copyhdr = 0; 528 } 529 n->m_len = min(len, m->m_len - off); 530 if (m->m_flags & (M_EXT|M_EXTPG)) { 531 n->m_data = m->m_data + off; 532 mb_dupcl(n, m); 533 } else 534 bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t), 535 (u_int)n->m_len); 536 if (len != M_COPYALL) 537 len -= n->m_len; 538 off = 0; 539 m = m->m_next; 540 np = &n->m_next; 541 } 542 543 return (top); 544 nospace: 545 m_freem(top); 546 return (NULL); 547 } 548 549 /* 550 * Copy an entire packet, including header (which must be present). 551 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'. 552 * Note that the copy is read-only, because clusters are not copied, 553 * only their reference counts are incremented. 554 * Preserve alignment of the first mbuf so if the creator has left 555 * some room at the beginning (e.g. for inserting protocol headers) 556 * the copies still have the room available. 557 */ 558 struct mbuf * 559 m_copypacket(struct mbuf *m, int how) 560 { 561 struct mbuf *top, *n, *o; 562 563 MBUF_CHECKSLEEP(how); 564 n = m_get(how, m->m_type); 565 top = n; 566 if (n == NULL) 567 goto nospace; 568 569 if (!m_dup_pkthdr(n, m, how)) 570 goto nospace; 571 n->m_len = m->m_len; 572 if (m->m_flags & (M_EXT|M_EXTPG)) { 573 n->m_data = m->m_data; 574 mb_dupcl(n, m); 575 } else { 576 n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat ); 577 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 578 } 579 580 m = m->m_next; 581 while (m) { 582 o = m_get(how, m->m_type); 583 if (o == NULL) 584 goto nospace; 585 586 n->m_next = o; 587 n = n->m_next; 588 589 n->m_len = m->m_len; 590 if (m->m_flags & (M_EXT|M_EXTPG)) { 591 n->m_data = m->m_data; 592 mb_dupcl(n, m); 593 } else { 594 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 595 } 596 597 m = m->m_next; 598 } 599 return top; 600 nospace: 601 m_freem(top); 602 return (NULL); 603 } 604 605 static void 606 m_copyfromunmapped(const struct mbuf *m, int off, int len, caddr_t cp) 607 { 608 struct iovec iov; 609 struct uio uio; 610 int error; 611 612 KASSERT(off >= 0, ("m_copyfromunmapped: negative off %d", off)); 613 KASSERT(len >= 0, ("m_copyfromunmapped: negative len %d", len)); 614 KASSERT(off < m->m_len, 615 ("m_copyfromunmapped: len exceeds mbuf length")); 616 iov.iov_base = cp; 617 iov.iov_len = len; 618 uio.uio_resid = len; 619 uio.uio_iov = &iov; 620 uio.uio_segflg = UIO_SYSSPACE; 621 uio.uio_iovcnt = 1; 622 uio.uio_offset = 0; 623 uio.uio_rw = UIO_READ; 624 error = m_unmappedtouio(m, off, &uio, len); 625 KASSERT(error == 0, ("m_unmappedtouio failed: off %d, len %d", off, 626 len)); 627 } 628 629 /* 630 * Copy data from an mbuf chain starting "off" bytes from the beginning, 631 * continuing for "len" bytes, into the indicated buffer. 632 */ 633 void 634 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp) 635 { 636 u_int count; 637 638 KASSERT(off >= 0, ("m_copydata, negative off %d", off)); 639 KASSERT(len >= 0, ("m_copydata, negative len %d", len)); 640 while (off > 0) { 641 KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain")); 642 if (off < m->m_len) 643 break; 644 off -= m->m_len; 645 m = m->m_next; 646 } 647 while (len > 0) { 648 KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain")); 649 count = min(m->m_len - off, len); 650 if ((m->m_flags & M_EXTPG) != 0) 651 m_copyfromunmapped(m, off, count, cp); 652 else 653 bcopy(mtod(m, caddr_t) + off, cp, count); 654 len -= count; 655 cp += count; 656 off = 0; 657 m = m->m_next; 658 } 659 } 660 661 /* 662 * Copy a packet header mbuf chain into a completely new chain, including 663 * copying any mbuf clusters. Use this instead of m_copypacket() when 664 * you need a writable copy of an mbuf chain. 665 */ 666 struct mbuf * 667 m_dup(const struct mbuf *m, int how) 668 { 669 struct mbuf **p, *top = NULL; 670 int remain, moff, nsize; 671 672 MBUF_CHECKSLEEP(how); 673 /* Sanity check */ 674 if (m == NULL) 675 return (NULL); 676 M_ASSERTPKTHDR(m); 677 678 /* While there's more data, get a new mbuf, tack it on, and fill it */ 679 remain = m->m_pkthdr.len; 680 moff = 0; 681 p = ⊤ 682 while (remain > 0 || top == NULL) { /* allow m->m_pkthdr.len == 0 */ 683 struct mbuf *n; 684 685 /* Get the next new mbuf */ 686 if (remain >= MINCLSIZE) { 687 n = m_getcl(how, m->m_type, 0); 688 nsize = MCLBYTES; 689 } else { 690 n = m_get(how, m->m_type); 691 nsize = MLEN; 692 } 693 if (n == NULL) 694 goto nospace; 695 696 if (top == NULL) { /* First one, must be PKTHDR */ 697 if (!m_dup_pkthdr(n, m, how)) { 698 m_free(n); 699 goto nospace; 700 } 701 if ((n->m_flags & M_EXT) == 0) 702 nsize = MHLEN; 703 n->m_flags &= ~M_RDONLY; 704 } 705 n->m_len = 0; 706 707 /* Link it into the new chain */ 708 *p = n; 709 p = &n->m_next; 710 711 /* Copy data from original mbuf(s) into new mbuf */ 712 while (n->m_len < nsize && m != NULL) { 713 int chunk = min(nsize - n->m_len, m->m_len - moff); 714 715 bcopy(m->m_data + moff, n->m_data + n->m_len, chunk); 716 moff += chunk; 717 n->m_len += chunk; 718 remain -= chunk; 719 if (moff == m->m_len) { 720 m = m->m_next; 721 moff = 0; 722 } 723 } 724 725 /* Check correct total mbuf length */ 726 KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL), 727 ("%s: bogus m_pkthdr.len", __func__)); 728 } 729 return (top); 730 731 nospace: 732 m_freem(top); 733 return (NULL); 734 } 735 736 /* 737 * Concatenate mbuf chain n to m. 738 * Both chains must be of the same type (e.g. MT_DATA). 739 * Any m_pkthdr is not updated. 740 */ 741 void 742 m_cat(struct mbuf *m, struct mbuf *n) 743 { 744 while (m->m_next) 745 m = m->m_next; 746 while (n) { 747 if (!M_WRITABLE(m) || 748 (n->m_flags & M_EXTPG) != 0 || 749 M_TRAILINGSPACE(m) < n->m_len) { 750 /* just join the two chains */ 751 m->m_next = n; 752 return; 753 } 754 /* splat the data from one into the other */ 755 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 756 (u_int)n->m_len); 757 m->m_len += n->m_len; 758 n = m_free(n); 759 } 760 } 761 762 /* 763 * Concatenate two pkthdr mbuf chains. 764 */ 765 void 766 m_catpkt(struct mbuf *m, struct mbuf *n) 767 { 768 769 M_ASSERTPKTHDR(m); 770 M_ASSERTPKTHDR(n); 771 772 m->m_pkthdr.len += n->m_pkthdr.len; 773 m_demote(n, 1, 0); 774 775 m_cat(m, n); 776 } 777 778 void 779 m_adj(struct mbuf *mp, int req_len) 780 { 781 int len = req_len; 782 struct mbuf *m; 783 int count; 784 785 if ((m = mp) == NULL) 786 return; 787 if (len >= 0) { 788 /* 789 * Trim from head. 790 */ 791 while (m != NULL && len > 0) { 792 if (m->m_len <= len) { 793 len -= m->m_len; 794 m->m_len = 0; 795 m = m->m_next; 796 } else { 797 m->m_len -= len; 798 m->m_data += len; 799 len = 0; 800 } 801 } 802 if (mp->m_flags & M_PKTHDR) 803 mp->m_pkthdr.len -= (req_len - len); 804 } else { 805 /* 806 * Trim from tail. Scan the mbuf chain, 807 * calculating its length and finding the last mbuf. 808 * If the adjustment only affects this mbuf, then just 809 * adjust and return. Otherwise, rescan and truncate 810 * after the remaining size. 811 */ 812 len = -len; 813 count = 0; 814 for (;;) { 815 count += m->m_len; 816 if (m->m_next == (struct mbuf *)0) 817 break; 818 m = m->m_next; 819 } 820 if (m->m_len >= len) { 821 m->m_len -= len; 822 if (mp->m_flags & M_PKTHDR) 823 mp->m_pkthdr.len -= len; 824 return; 825 } 826 count -= len; 827 if (count < 0) 828 count = 0; 829 /* 830 * Correct length for chain is "count". 831 * Find the mbuf with last data, adjust its length, 832 * and toss data from remaining mbufs on chain. 833 */ 834 m = mp; 835 if (m->m_flags & M_PKTHDR) 836 m->m_pkthdr.len = count; 837 for (; m; m = m->m_next) { 838 if (m->m_len >= count) { 839 m->m_len = count; 840 if (m->m_next != NULL) { 841 m_freem(m->m_next); 842 m->m_next = NULL; 843 } 844 break; 845 } 846 count -= m->m_len; 847 } 848 } 849 } 850 851 /* 852 * Rearange an mbuf chain so that len bytes are contiguous 853 * and in the data area of an mbuf (so that mtod will work 854 * for a structure of size len). Returns the resulting 855 * mbuf chain on success, frees it and returns null on failure. 856 * If there is room, it will add up to max_protohdr-len extra bytes to the 857 * contiguous region in an attempt to avoid being called next time. 858 */ 859 struct mbuf * 860 m_pullup(struct mbuf *n, int len) 861 { 862 struct mbuf *m; 863 int count; 864 int space; 865 866 KASSERT((n->m_flags & M_EXTPG) == 0, 867 ("%s: unmapped mbuf %p", __func__, n)); 868 869 /* 870 * If first mbuf has no cluster, and has room for len bytes 871 * without shifting current data, pullup into it, 872 * otherwise allocate a new mbuf to prepend to the chain. 873 */ 874 if ((n->m_flags & M_EXT) == 0 && 875 n->m_data + len < &n->m_dat[MLEN] && n->m_next) { 876 if (n->m_len >= len) 877 return (n); 878 m = n; 879 n = n->m_next; 880 len -= m->m_len; 881 } else { 882 if (len > MHLEN) 883 goto bad; 884 m = m_get(M_NOWAIT, n->m_type); 885 if (m == NULL) 886 goto bad; 887 if (n->m_flags & M_PKTHDR) 888 m_move_pkthdr(m, n); 889 } 890 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 891 do { 892 count = min(min(max(len, max_protohdr), space), n->m_len); 893 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 894 (u_int)count); 895 len -= count; 896 m->m_len += count; 897 n->m_len -= count; 898 space -= count; 899 if (n->m_len) 900 n->m_data += count; 901 else 902 n = m_free(n); 903 } while (len > 0 && n); 904 if (len > 0) { 905 (void) m_free(m); 906 goto bad; 907 } 908 m->m_next = n; 909 return (m); 910 bad: 911 m_freem(n); 912 return (NULL); 913 } 914 915 /* 916 * Like m_pullup(), except a new mbuf is always allocated, and we allow 917 * the amount of empty space before the data in the new mbuf to be specified 918 * (in the event that the caller expects to prepend later). 919 */ 920 struct mbuf * 921 m_copyup(struct mbuf *n, int len, int dstoff) 922 { 923 struct mbuf *m; 924 int count, space; 925 926 if (len > (MHLEN - dstoff)) 927 goto bad; 928 m = m_get(M_NOWAIT, n->m_type); 929 if (m == NULL) 930 goto bad; 931 if (n->m_flags & M_PKTHDR) 932 m_move_pkthdr(m, n); 933 m->m_data += dstoff; 934 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 935 do { 936 count = min(min(max(len, max_protohdr), space), n->m_len); 937 memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t), 938 (unsigned)count); 939 len -= count; 940 m->m_len += count; 941 n->m_len -= count; 942 space -= count; 943 if (n->m_len) 944 n->m_data += count; 945 else 946 n = m_free(n); 947 } while (len > 0 && n); 948 if (len > 0) { 949 (void) m_free(m); 950 goto bad; 951 } 952 m->m_next = n; 953 return (m); 954 bad: 955 m_freem(n); 956 return (NULL); 957 } 958 959 /* 960 * Partition an mbuf chain in two pieces, returning the tail -- 961 * all but the first len0 bytes. In case of failure, it returns NULL and 962 * attempts to restore the chain to its original state. 963 * 964 * Note that the resulting mbufs might be read-only, because the new 965 * mbuf can end up sharing an mbuf cluster with the original mbuf if 966 * the "breaking point" happens to lie within a cluster mbuf. Use the 967 * M_WRITABLE() macro to check for this case. 968 */ 969 struct mbuf * 970 m_split(struct mbuf *m0, int len0, int wait) 971 { 972 struct mbuf *m, *n; 973 u_int len = len0, remain; 974 975 MBUF_CHECKSLEEP(wait); 976 for (m = m0; m && len > m->m_len; m = m->m_next) 977 len -= m->m_len; 978 if (m == NULL) 979 return (NULL); 980 remain = m->m_len - len; 981 if (m0->m_flags & M_PKTHDR && remain == 0) { 982 n = m_gethdr(wait, m0->m_type); 983 if (n == NULL) 984 return (NULL); 985 n->m_next = m->m_next; 986 m->m_next = NULL; 987 if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) { 988 n->m_pkthdr.snd_tag = 989 m_snd_tag_ref(m0->m_pkthdr.snd_tag); 990 n->m_pkthdr.csum_flags |= CSUM_SND_TAG; 991 } else 992 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; 993 n->m_pkthdr.len = m0->m_pkthdr.len - len0; 994 m0->m_pkthdr.len = len0; 995 return (n); 996 } else if (m0->m_flags & M_PKTHDR) { 997 n = m_gethdr(wait, m0->m_type); 998 if (n == NULL) 999 return (NULL); 1000 if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) { 1001 n->m_pkthdr.snd_tag = 1002 m_snd_tag_ref(m0->m_pkthdr.snd_tag); 1003 n->m_pkthdr.csum_flags |= CSUM_SND_TAG; 1004 } else 1005 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; 1006 n->m_pkthdr.len = m0->m_pkthdr.len - len0; 1007 m0->m_pkthdr.len = len0; 1008 if (m->m_flags & (M_EXT|M_EXTPG)) 1009 goto extpacket; 1010 if (remain > MHLEN) { 1011 /* m can't be the lead packet */ 1012 M_ALIGN(n, 0); 1013 n->m_next = m_split(m, len, wait); 1014 if (n->m_next == NULL) { 1015 (void) m_free(n); 1016 return (NULL); 1017 } else { 1018 n->m_len = 0; 1019 return (n); 1020 } 1021 } else 1022 M_ALIGN(n, remain); 1023 } else if (remain == 0) { 1024 n = m->m_next; 1025 m->m_next = NULL; 1026 return (n); 1027 } else { 1028 n = m_get(wait, m->m_type); 1029 if (n == NULL) 1030 return (NULL); 1031 M_ALIGN(n, remain); 1032 } 1033 extpacket: 1034 if (m->m_flags & (M_EXT|M_EXTPG)) { 1035 n->m_data = m->m_data + len; 1036 mb_dupcl(n, m); 1037 } else { 1038 bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain); 1039 } 1040 n->m_len = remain; 1041 m->m_len = len; 1042 n->m_next = m->m_next; 1043 m->m_next = NULL; 1044 return (n); 1045 } 1046 /* 1047 * Routine to copy from device local memory into mbufs. 1048 * Note that `off' argument is offset into first mbuf of target chain from 1049 * which to begin copying the data to. 1050 */ 1051 struct mbuf * 1052 m_devget(char *buf, int totlen, int off, struct ifnet *ifp, 1053 void (*copy)(char *from, caddr_t to, u_int len)) 1054 { 1055 struct mbuf *m; 1056 struct mbuf *top = NULL, **mp = ⊤ 1057 int len; 1058 1059 if (off < 0 || off > MHLEN) 1060 return (NULL); 1061 1062 while (totlen > 0) { 1063 if (top == NULL) { /* First one, must be PKTHDR */ 1064 if (totlen + off >= MINCLSIZE) { 1065 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1066 len = MCLBYTES; 1067 } else { 1068 m = m_gethdr(M_NOWAIT, MT_DATA); 1069 len = MHLEN; 1070 1071 /* Place initial small packet/header at end of mbuf */ 1072 if (m && totlen + off + max_linkhdr <= MHLEN) { 1073 m->m_data += max_linkhdr; 1074 len -= max_linkhdr; 1075 } 1076 } 1077 if (m == NULL) 1078 return NULL; 1079 m->m_pkthdr.rcvif = ifp; 1080 m->m_pkthdr.len = totlen; 1081 } else { 1082 if (totlen + off >= MINCLSIZE) { 1083 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1084 len = MCLBYTES; 1085 } else { 1086 m = m_get(M_NOWAIT, MT_DATA); 1087 len = MLEN; 1088 } 1089 if (m == NULL) { 1090 m_freem(top); 1091 return NULL; 1092 } 1093 } 1094 if (off) { 1095 m->m_data += off; 1096 len -= off; 1097 off = 0; 1098 } 1099 m->m_len = len = min(totlen, len); 1100 if (copy) 1101 copy(buf, mtod(m, caddr_t), (u_int)len); 1102 else 1103 bcopy(buf, mtod(m, caddr_t), (u_int)len); 1104 buf += len; 1105 *mp = m; 1106 mp = &m->m_next; 1107 totlen -= len; 1108 } 1109 return (top); 1110 } 1111 1112 /* 1113 * Copy data from a buffer back into the indicated mbuf chain, 1114 * starting "off" bytes from the beginning, extending the mbuf 1115 * chain if necessary. 1116 */ 1117 void 1118 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp) 1119 { 1120 int mlen; 1121 struct mbuf *m = m0, *n; 1122 int totlen = 0; 1123 1124 if (m0 == NULL) 1125 return; 1126 while (off > (mlen = m->m_len)) { 1127 off -= mlen; 1128 totlen += mlen; 1129 if (m->m_next == NULL) { 1130 n = m_get(M_NOWAIT, m->m_type); 1131 if (n == NULL) 1132 goto out; 1133 bzero(mtod(n, caddr_t), MLEN); 1134 n->m_len = min(MLEN, len + off); 1135 m->m_next = n; 1136 } 1137 m = m->m_next; 1138 } 1139 while (len > 0) { 1140 if (m->m_next == NULL && (len > m->m_len - off)) { 1141 m->m_len += min(len - (m->m_len - off), 1142 M_TRAILINGSPACE(m)); 1143 } 1144 mlen = min (m->m_len - off, len); 1145 bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen); 1146 cp += mlen; 1147 len -= mlen; 1148 mlen += off; 1149 off = 0; 1150 totlen += mlen; 1151 if (len == 0) 1152 break; 1153 if (m->m_next == NULL) { 1154 n = m_get(M_NOWAIT, m->m_type); 1155 if (n == NULL) 1156 break; 1157 n->m_len = min(MLEN, len); 1158 m->m_next = n; 1159 } 1160 m = m->m_next; 1161 } 1162 out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) 1163 m->m_pkthdr.len = totlen; 1164 } 1165 1166 /* 1167 * Append the specified data to the indicated mbuf chain, 1168 * Extend the mbuf chain if the new data does not fit in 1169 * existing space. 1170 * 1171 * Return 1 if able to complete the job; otherwise 0. 1172 */ 1173 int 1174 m_append(struct mbuf *m0, int len, c_caddr_t cp) 1175 { 1176 struct mbuf *m, *n; 1177 int remainder, space; 1178 1179 for (m = m0; m->m_next != NULL; m = m->m_next) 1180 ; 1181 remainder = len; 1182 space = M_TRAILINGSPACE(m); 1183 if (space > 0) { 1184 /* 1185 * Copy into available space. 1186 */ 1187 if (space > remainder) 1188 space = remainder; 1189 bcopy(cp, mtod(m, caddr_t) + m->m_len, space); 1190 m->m_len += space; 1191 cp += space, remainder -= space; 1192 } 1193 while (remainder > 0) { 1194 /* 1195 * Allocate a new mbuf; could check space 1196 * and allocate a cluster instead. 1197 */ 1198 n = m_get(M_NOWAIT, m->m_type); 1199 if (n == NULL) 1200 break; 1201 n->m_len = min(MLEN, remainder); 1202 bcopy(cp, mtod(n, caddr_t), n->m_len); 1203 cp += n->m_len, remainder -= n->m_len; 1204 m->m_next = n; 1205 m = n; 1206 } 1207 if (m0->m_flags & M_PKTHDR) 1208 m0->m_pkthdr.len += len - remainder; 1209 return (remainder == 0); 1210 } 1211 1212 /* 1213 * Apply function f to the data in an mbuf chain starting "off" bytes from 1214 * the beginning, continuing for "len" bytes. 1215 */ 1216 int 1217 m_apply(struct mbuf *m, int off, int len, 1218 int (*f)(void *, void *, u_int), void *arg) 1219 { 1220 u_int count; 1221 int rval; 1222 1223 KASSERT(off >= 0, ("m_apply, negative off %d", off)); 1224 KASSERT(len >= 0, ("m_apply, negative len %d", len)); 1225 while (off > 0) { 1226 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1227 if (off < m->m_len) 1228 break; 1229 off -= m->m_len; 1230 m = m->m_next; 1231 } 1232 while (len > 0) { 1233 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1234 count = min(m->m_len - off, len); 1235 rval = (*f)(arg, mtod(m, caddr_t) + off, count); 1236 if (rval) 1237 return (rval); 1238 len -= count; 1239 off = 0; 1240 m = m->m_next; 1241 } 1242 return (0); 1243 } 1244 1245 /* 1246 * Return a pointer to mbuf/offset of location in mbuf chain. 1247 */ 1248 struct mbuf * 1249 m_getptr(struct mbuf *m, int loc, int *off) 1250 { 1251 1252 while (loc >= 0) { 1253 /* Normal end of search. */ 1254 if (m->m_len > loc) { 1255 *off = loc; 1256 return (m); 1257 } else { 1258 loc -= m->m_len; 1259 if (m->m_next == NULL) { 1260 if (loc == 0) { 1261 /* Point at the end of valid data. */ 1262 *off = m->m_len; 1263 return (m); 1264 } 1265 return (NULL); 1266 } 1267 m = m->m_next; 1268 } 1269 } 1270 return (NULL); 1271 } 1272 1273 void 1274 m_print(const struct mbuf *m, int maxlen) 1275 { 1276 int len; 1277 int pdata; 1278 const struct mbuf *m2; 1279 1280 if (m == NULL) { 1281 printf("mbuf: %p\n", m); 1282 return; 1283 } 1284 1285 if (m->m_flags & M_PKTHDR) 1286 len = m->m_pkthdr.len; 1287 else 1288 len = -1; 1289 m2 = m; 1290 while (m2 != NULL && (len == -1 || len)) { 1291 pdata = m2->m_len; 1292 if (maxlen != -1 && pdata > maxlen) 1293 pdata = maxlen; 1294 printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len, 1295 m2->m_next, m2->m_flags, "\20\20freelist\17skipfw" 1296 "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly" 1297 "\3eor\2pkthdr\1ext", pdata ? "" : "\n"); 1298 if (pdata) 1299 printf(", %*D\n", pdata, (u_char *)m2->m_data, "-"); 1300 if (len != -1) 1301 len -= m2->m_len; 1302 m2 = m2->m_next; 1303 } 1304 if (len > 0) 1305 printf("%d bytes unaccounted for.\n", len); 1306 return; 1307 } 1308 1309 u_int 1310 m_fixhdr(struct mbuf *m0) 1311 { 1312 u_int len; 1313 1314 len = m_length(m0, NULL); 1315 m0->m_pkthdr.len = len; 1316 return (len); 1317 } 1318 1319 u_int 1320 m_length(struct mbuf *m0, struct mbuf **last) 1321 { 1322 struct mbuf *m; 1323 u_int len; 1324 1325 len = 0; 1326 for (m = m0; m != NULL; m = m->m_next) { 1327 len += m->m_len; 1328 if (m->m_next == NULL) 1329 break; 1330 } 1331 if (last != NULL) 1332 *last = m; 1333 return (len); 1334 } 1335 1336 /* 1337 * Defragment a mbuf chain, returning the shortest possible 1338 * chain of mbufs and clusters. If allocation fails and 1339 * this cannot be completed, NULL will be returned, but 1340 * the passed in chain will be unchanged. Upon success, 1341 * the original chain will be freed, and the new chain 1342 * will be returned. 1343 * 1344 * If a non-packet header is passed in, the original 1345 * mbuf (chain?) will be returned unharmed. 1346 */ 1347 struct mbuf * 1348 m_defrag(struct mbuf *m0, int how) 1349 { 1350 struct mbuf *m_new = NULL, *m_final = NULL; 1351 int progress = 0, length; 1352 1353 MBUF_CHECKSLEEP(how); 1354 if (!(m0->m_flags & M_PKTHDR)) 1355 return (m0); 1356 1357 m_fixhdr(m0); /* Needed sanity check */ 1358 1359 #ifdef MBUF_STRESS_TEST 1360 if (m_defragrandomfailures) { 1361 int temp = arc4random() & 0xff; 1362 if (temp == 0xba) 1363 goto nospace; 1364 } 1365 #endif 1366 1367 if (m0->m_pkthdr.len > MHLEN) 1368 m_final = m_getcl(how, MT_DATA, M_PKTHDR); 1369 else 1370 m_final = m_gethdr(how, MT_DATA); 1371 1372 if (m_final == NULL) 1373 goto nospace; 1374 1375 if (m_dup_pkthdr(m_final, m0, how) == 0) 1376 goto nospace; 1377 1378 m_new = m_final; 1379 1380 while (progress < m0->m_pkthdr.len) { 1381 length = m0->m_pkthdr.len - progress; 1382 if (length > MCLBYTES) 1383 length = MCLBYTES; 1384 1385 if (m_new == NULL) { 1386 if (length > MLEN) 1387 m_new = m_getcl(how, MT_DATA, 0); 1388 else 1389 m_new = m_get(how, MT_DATA); 1390 if (m_new == NULL) 1391 goto nospace; 1392 } 1393 1394 m_copydata(m0, progress, length, mtod(m_new, caddr_t)); 1395 progress += length; 1396 m_new->m_len = length; 1397 if (m_new != m_final) 1398 m_cat(m_final, m_new); 1399 m_new = NULL; 1400 } 1401 #ifdef MBUF_STRESS_TEST 1402 if (m0->m_next == NULL) 1403 m_defraguseless++; 1404 #endif 1405 m_freem(m0); 1406 m0 = m_final; 1407 #ifdef MBUF_STRESS_TEST 1408 m_defragpackets++; 1409 m_defragbytes += m0->m_pkthdr.len; 1410 #endif 1411 return (m0); 1412 nospace: 1413 #ifdef MBUF_STRESS_TEST 1414 m_defragfailure++; 1415 #endif 1416 if (m_final) 1417 m_freem(m_final); 1418 return (NULL); 1419 } 1420 1421 /* 1422 * Return the number of fragments an mbuf will use. This is usually 1423 * used as a proxy for the number of scatter/gather elements needed by 1424 * a DMA engine to access an mbuf. In general mapped mbufs are 1425 * assumed to be backed by physically contiguous buffers that only 1426 * need a single fragment. Unmapped mbufs, on the other hand, can 1427 * span disjoint physical pages. 1428 */ 1429 static int 1430 frags_per_mbuf(struct mbuf *m) 1431 { 1432 int frags; 1433 1434 if ((m->m_flags & M_EXTPG) == 0) 1435 return (1); 1436 1437 /* 1438 * The header and trailer are counted as a single fragment 1439 * each when present. 1440 * 1441 * XXX: This overestimates the number of fragments by assuming 1442 * all the backing physical pages are disjoint. 1443 */ 1444 frags = 0; 1445 if (m->m_epg_hdrlen != 0) 1446 frags++; 1447 frags += m->m_epg_npgs; 1448 if (m->m_epg_trllen != 0) 1449 frags++; 1450 1451 return (frags); 1452 } 1453 1454 /* 1455 * Defragment an mbuf chain, returning at most maxfrags separate 1456 * mbufs+clusters. If this is not possible NULL is returned and 1457 * the original mbuf chain is left in its present (potentially 1458 * modified) state. We use two techniques: collapsing consecutive 1459 * mbufs and replacing consecutive mbufs by a cluster. 1460 * 1461 * NB: this should really be named m_defrag but that name is taken 1462 */ 1463 struct mbuf * 1464 m_collapse(struct mbuf *m0, int how, int maxfrags) 1465 { 1466 struct mbuf *m, *n, *n2, **prev; 1467 u_int curfrags; 1468 1469 /* 1470 * Calculate the current number of frags. 1471 */ 1472 curfrags = 0; 1473 for (m = m0; m != NULL; m = m->m_next) 1474 curfrags += frags_per_mbuf(m); 1475 /* 1476 * First, try to collapse mbufs. Note that we always collapse 1477 * towards the front so we don't need to deal with moving the 1478 * pkthdr. This may be suboptimal if the first mbuf has much 1479 * less data than the following. 1480 */ 1481 m = m0; 1482 again: 1483 for (;;) { 1484 n = m->m_next; 1485 if (n == NULL) 1486 break; 1487 if (M_WRITABLE(m) && 1488 n->m_len < M_TRAILINGSPACE(m)) { 1489 m_copydata(n, 0, n->m_len, 1490 mtod(m, char *) + m->m_len); 1491 m->m_len += n->m_len; 1492 m->m_next = n->m_next; 1493 curfrags -= frags_per_mbuf(n); 1494 m_free(n); 1495 if (curfrags <= maxfrags) 1496 return m0; 1497 } else 1498 m = n; 1499 } 1500 KASSERT(maxfrags > 1, 1501 ("maxfrags %u, but normal collapse failed", maxfrags)); 1502 /* 1503 * Collapse consecutive mbufs to a cluster. 1504 */ 1505 prev = &m0->m_next; /* NB: not the first mbuf */ 1506 while ((n = *prev) != NULL) { 1507 if ((n2 = n->m_next) != NULL && 1508 n->m_len + n2->m_len < MCLBYTES) { 1509 m = m_getcl(how, MT_DATA, 0); 1510 if (m == NULL) 1511 goto bad; 1512 m_copydata(n, 0, n->m_len, mtod(m, char *)); 1513 m_copydata(n2, 0, n2->m_len, 1514 mtod(m, char *) + n->m_len); 1515 m->m_len = n->m_len + n2->m_len; 1516 m->m_next = n2->m_next; 1517 *prev = m; 1518 curfrags += 1; /* For the new cluster */ 1519 curfrags -= frags_per_mbuf(n); 1520 curfrags -= frags_per_mbuf(n2); 1521 m_free(n); 1522 m_free(n2); 1523 if (curfrags <= maxfrags) 1524 return m0; 1525 /* 1526 * Still not there, try the normal collapse 1527 * again before we allocate another cluster. 1528 */ 1529 goto again; 1530 } 1531 prev = &n->m_next; 1532 } 1533 /* 1534 * No place where we can collapse to a cluster; punt. 1535 * This can occur if, for example, you request 2 frags 1536 * but the packet requires that both be clusters (we 1537 * never reallocate the first mbuf to avoid moving the 1538 * packet header). 1539 */ 1540 bad: 1541 return NULL; 1542 } 1543 1544 #ifdef MBUF_STRESS_TEST 1545 1546 /* 1547 * Fragment an mbuf chain. There's no reason you'd ever want to do 1548 * this in normal usage, but it's great for stress testing various 1549 * mbuf consumers. 1550 * 1551 * If fragmentation is not possible, the original chain will be 1552 * returned. 1553 * 1554 * Possible length values: 1555 * 0 no fragmentation will occur 1556 * > 0 each fragment will be of the specified length 1557 * -1 each fragment will be the same random value in length 1558 * -2 each fragment's length will be entirely random 1559 * (Random values range from 1 to 256) 1560 */ 1561 struct mbuf * 1562 m_fragment(struct mbuf *m0, int how, int length) 1563 { 1564 struct mbuf *m_first, *m_last; 1565 int divisor = 255, progress = 0, fraglen; 1566 1567 if (!(m0->m_flags & M_PKTHDR)) 1568 return (m0); 1569 1570 if (length == 0 || length < -2) 1571 return (m0); 1572 if (length > MCLBYTES) 1573 length = MCLBYTES; 1574 if (length < 0 && divisor > MCLBYTES) 1575 divisor = MCLBYTES; 1576 if (length == -1) 1577 length = 1 + (arc4random() % divisor); 1578 if (length > 0) 1579 fraglen = length; 1580 1581 m_fixhdr(m0); /* Needed sanity check */ 1582 1583 m_first = m_getcl(how, MT_DATA, M_PKTHDR); 1584 if (m_first == NULL) 1585 goto nospace; 1586 1587 if (m_dup_pkthdr(m_first, m0, how) == 0) 1588 goto nospace; 1589 1590 m_last = m_first; 1591 1592 while (progress < m0->m_pkthdr.len) { 1593 if (length == -2) 1594 fraglen = 1 + (arc4random() % divisor); 1595 if (fraglen > m0->m_pkthdr.len - progress) 1596 fraglen = m0->m_pkthdr.len - progress; 1597 1598 if (progress != 0) { 1599 struct mbuf *m_new = m_getcl(how, MT_DATA, 0); 1600 if (m_new == NULL) 1601 goto nospace; 1602 1603 m_last->m_next = m_new; 1604 m_last = m_new; 1605 } 1606 1607 m_copydata(m0, progress, fraglen, mtod(m_last, caddr_t)); 1608 progress += fraglen; 1609 m_last->m_len = fraglen; 1610 } 1611 m_freem(m0); 1612 m0 = m_first; 1613 return (m0); 1614 nospace: 1615 if (m_first) 1616 m_freem(m_first); 1617 /* Return the original chain on failure */ 1618 return (m0); 1619 } 1620 1621 #endif 1622 1623 /* 1624 * Free pages from mbuf_ext_pgs, assuming they were allocated via 1625 * vm_page_alloc() and aren't associated with any object. Complement 1626 * to allocator from m_uiotombuf_nomap(). 1627 */ 1628 void 1629 mb_free_mext_pgs(struct mbuf *m) 1630 { 1631 vm_page_t pg; 1632 1633 M_ASSERTEXTPG(m); 1634 for (int i = 0; i < m->m_epg_npgs; i++) { 1635 pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]); 1636 vm_page_unwire_noq(pg); 1637 vm_page_free(pg); 1638 } 1639 } 1640 1641 static struct mbuf * 1642 m_uiotombuf_nomap(struct uio *uio, int how, int len, int maxseg, int flags) 1643 { 1644 struct mbuf *m, *mb, *prev; 1645 vm_page_t pg_array[MBUF_PEXT_MAX_PGS]; 1646 int error, length, i, needed; 1647 ssize_t total; 1648 int pflags = malloc2vm_flags(how) | VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | 1649 VM_ALLOC_WIRED; 1650 1651 /* 1652 * len can be zero or an arbitrary large value bound by 1653 * the total data supplied by the uio. 1654 */ 1655 if (len > 0) 1656 total = MIN(uio->uio_resid, len); 1657 else 1658 total = uio->uio_resid; 1659 1660 if (maxseg == 0) 1661 maxseg = MBUF_PEXT_MAX_PGS * PAGE_SIZE; 1662 1663 /* 1664 * Allocate the pages 1665 */ 1666 m = NULL; 1667 MPASS((flags & M_PKTHDR) == 0); 1668 while (total > 0) { 1669 mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs); 1670 if (mb == NULL) 1671 goto failed; 1672 if (m == NULL) 1673 m = mb; 1674 else 1675 prev->m_next = mb; 1676 prev = mb; 1677 mb->m_epg_flags = EPG_FLAG_ANON; 1678 needed = length = MIN(maxseg, total); 1679 for (i = 0; needed > 0; i++, needed -= PAGE_SIZE) { 1680 retry_page: 1681 pg_array[i] = vm_page_alloc(NULL, 0, pflags); 1682 if (pg_array[i] == NULL) { 1683 if (how & M_NOWAIT) { 1684 goto failed; 1685 } else { 1686 vm_wait(NULL); 1687 goto retry_page; 1688 } 1689 } 1690 pg_array[i]->flags &= ~PG_ZERO; 1691 mb->m_epg_pa[i] = VM_PAGE_TO_PHYS(pg_array[i]); 1692 mb->m_epg_npgs++; 1693 } 1694 mb->m_epg_last_len = length - PAGE_SIZE * (mb->m_epg_npgs - 1); 1695 MBUF_EXT_PGS_ASSERT_SANITY(mb); 1696 total -= length; 1697 error = uiomove_fromphys(pg_array, 0, length, uio); 1698 if (error != 0) 1699 goto failed; 1700 mb->m_len = length; 1701 mb->m_ext.ext_size += PAGE_SIZE * mb->m_epg_npgs; 1702 if (flags & M_PKTHDR) 1703 m->m_pkthdr.len += length; 1704 } 1705 return (m); 1706 1707 failed: 1708 m_freem(m); 1709 return (NULL); 1710 } 1711 1712 /* 1713 * Copy the contents of uio into a properly sized mbuf chain. 1714 */ 1715 struct mbuf * 1716 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags) 1717 { 1718 struct mbuf *m, *mb; 1719 int error, length; 1720 ssize_t total; 1721 int progress = 0; 1722 1723 if (flags & M_EXTPG) 1724 return (m_uiotombuf_nomap(uio, how, len, align, flags)); 1725 1726 /* 1727 * len can be zero or an arbitrary large value bound by 1728 * the total data supplied by the uio. 1729 */ 1730 if (len > 0) 1731 total = (uio->uio_resid < len) ? uio->uio_resid : len; 1732 else 1733 total = uio->uio_resid; 1734 1735 /* 1736 * The smallest unit returned by m_getm2() is a single mbuf 1737 * with pkthdr. We can't align past it. 1738 */ 1739 if (align >= MHLEN) 1740 return (NULL); 1741 1742 /* 1743 * Give us the full allocation or nothing. 1744 * If len is zero return the smallest empty mbuf. 1745 */ 1746 m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags); 1747 if (m == NULL) 1748 return (NULL); 1749 m->m_data += align; 1750 1751 /* Fill all mbufs with uio data and update header information. */ 1752 for (mb = m; mb != NULL; mb = mb->m_next) { 1753 length = min(M_TRAILINGSPACE(mb), total - progress); 1754 1755 error = uiomove(mtod(mb, void *), length, uio); 1756 if (error) { 1757 m_freem(m); 1758 return (NULL); 1759 } 1760 1761 mb->m_len = length; 1762 progress += length; 1763 if (flags & M_PKTHDR) 1764 m->m_pkthdr.len += length; 1765 } 1766 KASSERT(progress == total, ("%s: progress != total", __func__)); 1767 1768 return (m); 1769 } 1770 1771 /* 1772 * Copy data from an unmapped mbuf into a uio limited by len if set. 1773 */ 1774 int 1775 m_unmappedtouio(const struct mbuf *m, int m_off, struct uio *uio, int len) 1776 { 1777 vm_page_t pg; 1778 int error, i, off, pglen, pgoff, seglen, segoff; 1779 1780 M_ASSERTEXTPG(m); 1781 error = 0; 1782 1783 /* Skip over any data removed from the front. */ 1784 off = mtod(m, vm_offset_t); 1785 1786 off += m_off; 1787 if (m->m_epg_hdrlen != 0) { 1788 if (off >= m->m_epg_hdrlen) { 1789 off -= m->m_epg_hdrlen; 1790 } else { 1791 seglen = m->m_epg_hdrlen - off; 1792 segoff = off; 1793 seglen = min(seglen, len); 1794 off = 0; 1795 len -= seglen; 1796 error = uiomove(__DECONST(void *, 1797 &m->m_epg_hdr[segoff]), seglen, uio); 1798 } 1799 } 1800 pgoff = m->m_epg_1st_off; 1801 for (i = 0; i < m->m_epg_npgs && error == 0 && len > 0; i++) { 1802 pglen = m_epg_pagelen(m, i, pgoff); 1803 if (off >= pglen) { 1804 off -= pglen; 1805 pgoff = 0; 1806 continue; 1807 } 1808 seglen = pglen - off; 1809 segoff = pgoff + off; 1810 off = 0; 1811 seglen = min(seglen, len); 1812 len -= seglen; 1813 pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]); 1814 error = uiomove_fromphys(&pg, segoff, seglen, uio); 1815 pgoff = 0; 1816 }; 1817 if (len != 0 && error == 0) { 1818 KASSERT((off + len) <= m->m_epg_trllen, 1819 ("off + len > trail (%d + %d > %d, m_off = %d)", off, len, 1820 m->m_epg_trllen, m_off)); 1821 error = uiomove(__DECONST(void *, &m->m_epg_trail[off]), 1822 len, uio); 1823 } 1824 return (error); 1825 } 1826 1827 /* 1828 * Copy an mbuf chain into a uio limited by len if set. 1829 */ 1830 int 1831 m_mbuftouio(struct uio *uio, const struct mbuf *m, int len) 1832 { 1833 int error, length, total; 1834 int progress = 0; 1835 1836 if (len > 0) 1837 total = min(uio->uio_resid, len); 1838 else 1839 total = uio->uio_resid; 1840 1841 /* Fill the uio with data from the mbufs. */ 1842 for (; m != NULL; m = m->m_next) { 1843 length = min(m->m_len, total - progress); 1844 1845 if ((m->m_flags & M_EXTPG) != 0) 1846 error = m_unmappedtouio(m, 0, uio, length); 1847 else 1848 error = uiomove(mtod(m, void *), length, uio); 1849 if (error) 1850 return (error); 1851 1852 progress += length; 1853 } 1854 1855 return (0); 1856 } 1857 1858 /* 1859 * Create a writable copy of the mbuf chain. While doing this 1860 * we compact the chain with a goal of producing a chain with 1861 * at most two mbufs. The second mbuf in this chain is likely 1862 * to be a cluster. The primary purpose of this work is to create 1863 * a writable packet for encryption, compression, etc. The 1864 * secondary goal is to linearize the data so the data can be 1865 * passed to crypto hardware in the most efficient manner possible. 1866 */ 1867 struct mbuf * 1868 m_unshare(struct mbuf *m0, int how) 1869 { 1870 struct mbuf *m, *mprev; 1871 struct mbuf *n, *mfirst, *mlast; 1872 int len, off; 1873 1874 mprev = NULL; 1875 for (m = m0; m != NULL; m = mprev->m_next) { 1876 /* 1877 * Regular mbufs are ignored unless there's a cluster 1878 * in front of it that we can use to coalesce. We do 1879 * the latter mainly so later clusters can be coalesced 1880 * also w/o having to handle them specially (i.e. convert 1881 * mbuf+cluster -> cluster). This optimization is heavily 1882 * influenced by the assumption that we're running over 1883 * Ethernet where MCLBYTES is large enough that the max 1884 * packet size will permit lots of coalescing into a 1885 * single cluster. This in turn permits efficient 1886 * crypto operations, especially when using hardware. 1887 */ 1888 if ((m->m_flags & M_EXT) == 0) { 1889 if (mprev && (mprev->m_flags & M_EXT) && 1890 m->m_len <= M_TRAILINGSPACE(mprev)) { 1891 /* XXX: this ignores mbuf types */ 1892 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 1893 mtod(m, caddr_t), m->m_len); 1894 mprev->m_len += m->m_len; 1895 mprev->m_next = m->m_next; /* unlink from chain */ 1896 m_free(m); /* reclaim mbuf */ 1897 } else { 1898 mprev = m; 1899 } 1900 continue; 1901 } 1902 /* 1903 * Writable mbufs are left alone (for now). 1904 */ 1905 if (M_WRITABLE(m)) { 1906 mprev = m; 1907 continue; 1908 } 1909 1910 /* 1911 * Not writable, replace with a copy or coalesce with 1912 * the previous mbuf if possible (since we have to copy 1913 * it anyway, we try to reduce the number of mbufs and 1914 * clusters so that future work is easier). 1915 */ 1916 KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags)); 1917 /* NB: we only coalesce into a cluster or larger */ 1918 if (mprev != NULL && (mprev->m_flags & M_EXT) && 1919 m->m_len <= M_TRAILINGSPACE(mprev)) { 1920 /* XXX: this ignores mbuf types */ 1921 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 1922 mtod(m, caddr_t), m->m_len); 1923 mprev->m_len += m->m_len; 1924 mprev->m_next = m->m_next; /* unlink from chain */ 1925 m_free(m); /* reclaim mbuf */ 1926 continue; 1927 } 1928 1929 /* 1930 * Allocate new space to hold the copy and copy the data. 1931 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by 1932 * splitting them into clusters. We could just malloc a 1933 * buffer and make it external but too many device drivers 1934 * don't know how to break up the non-contiguous memory when 1935 * doing DMA. 1936 */ 1937 n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS); 1938 if (n == NULL) { 1939 m_freem(m0); 1940 return (NULL); 1941 } 1942 if (m->m_flags & M_PKTHDR) { 1943 KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR", 1944 __func__, m0, m)); 1945 m_move_pkthdr(n, m); 1946 } 1947 len = m->m_len; 1948 off = 0; 1949 mfirst = n; 1950 mlast = NULL; 1951 for (;;) { 1952 int cc = min(len, MCLBYTES); 1953 memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc); 1954 n->m_len = cc; 1955 if (mlast != NULL) 1956 mlast->m_next = n; 1957 mlast = n; 1958 #if 0 1959 newipsecstat.ips_clcopied++; 1960 #endif 1961 1962 len -= cc; 1963 if (len <= 0) 1964 break; 1965 off += cc; 1966 1967 n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS); 1968 if (n == NULL) { 1969 m_freem(mfirst); 1970 m_freem(m0); 1971 return (NULL); 1972 } 1973 } 1974 n->m_next = m->m_next; 1975 if (mprev == NULL) 1976 m0 = mfirst; /* new head of chain */ 1977 else 1978 mprev->m_next = mfirst; /* replace old mbuf */ 1979 m_free(m); /* release old mbuf */ 1980 mprev = mfirst; 1981 } 1982 return (m0); 1983 } 1984 1985 #ifdef MBUF_PROFILING 1986 1987 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/ 1988 struct mbufprofile { 1989 uintmax_t wasted[MP_BUCKETS]; 1990 uintmax_t used[MP_BUCKETS]; 1991 uintmax_t segments[MP_BUCKETS]; 1992 } mbprof; 1993 1994 #define MP_MAXDIGITS 21 /* strlen("16,000,000,000,000,000,000") == 21 */ 1995 #define MP_NUMLINES 6 1996 #define MP_NUMSPERLINE 16 1997 #define MP_EXTRABYTES 64 /* > strlen("used:\nwasted:\nsegments:\n") */ 1998 /* work out max space needed and add a bit of spare space too */ 1999 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE) 2000 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES) 2001 2002 char mbprofbuf[MP_BUFSIZE]; 2003 2004 void 2005 m_profile(struct mbuf *m) 2006 { 2007 int segments = 0; 2008 int used = 0; 2009 int wasted = 0; 2010 2011 while (m) { 2012 segments++; 2013 used += m->m_len; 2014 if (m->m_flags & M_EXT) { 2015 wasted += MHLEN - sizeof(m->m_ext) + 2016 m->m_ext.ext_size - m->m_len; 2017 } else { 2018 if (m->m_flags & M_PKTHDR) 2019 wasted += MHLEN - m->m_len; 2020 else 2021 wasted += MLEN - m->m_len; 2022 } 2023 m = m->m_next; 2024 } 2025 /* be paranoid.. it helps */ 2026 if (segments > MP_BUCKETS - 1) 2027 segments = MP_BUCKETS - 1; 2028 if (used > 100000) 2029 used = 100000; 2030 if (wasted > 100000) 2031 wasted = 100000; 2032 /* store in the appropriate bucket */ 2033 /* don't bother locking. if it's slightly off, so what? */ 2034 mbprof.segments[segments]++; 2035 mbprof.used[fls(used)]++; 2036 mbprof.wasted[fls(wasted)]++; 2037 } 2038 2039 static void 2040 mbprof_textify(void) 2041 { 2042 int offset; 2043 char *c; 2044 uint64_t *p; 2045 2046 p = &mbprof.wasted[0]; 2047 c = mbprofbuf; 2048 offset = snprintf(c, MP_MAXLINE + 10, 2049 "wasted:\n" 2050 "%ju %ju %ju %ju %ju %ju %ju %ju " 2051 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2052 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2053 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2054 #ifdef BIG_ARRAY 2055 p = &mbprof.wasted[16]; 2056 c += offset; 2057 offset = snprintf(c, MP_MAXLINE, 2058 "%ju %ju %ju %ju %ju %ju %ju %ju " 2059 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2060 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2061 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2062 #endif 2063 p = &mbprof.used[0]; 2064 c += offset; 2065 offset = snprintf(c, MP_MAXLINE + 10, 2066 "used:\n" 2067 "%ju %ju %ju %ju %ju %ju %ju %ju " 2068 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2069 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2070 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2071 #ifdef BIG_ARRAY 2072 p = &mbprof.used[16]; 2073 c += offset; 2074 offset = snprintf(c, MP_MAXLINE, 2075 "%ju %ju %ju %ju %ju %ju %ju %ju " 2076 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2077 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2078 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2079 #endif 2080 p = &mbprof.segments[0]; 2081 c += offset; 2082 offset = snprintf(c, MP_MAXLINE + 10, 2083 "segments:\n" 2084 "%ju %ju %ju %ju %ju %ju %ju %ju " 2085 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2086 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2087 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2088 #ifdef BIG_ARRAY 2089 p = &mbprof.segments[16]; 2090 c += offset; 2091 offset = snprintf(c, MP_MAXLINE, 2092 "%ju %ju %ju %ju %ju %ju %ju %ju " 2093 "%ju %ju %ju %ju %ju %ju %ju %jju", 2094 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2095 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2096 #endif 2097 } 2098 2099 static int 2100 mbprof_handler(SYSCTL_HANDLER_ARGS) 2101 { 2102 int error; 2103 2104 mbprof_textify(); 2105 error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1); 2106 return (error); 2107 } 2108 2109 static int 2110 mbprof_clr_handler(SYSCTL_HANDLER_ARGS) 2111 { 2112 int clear, error; 2113 2114 clear = 0; 2115 error = sysctl_handle_int(oidp, &clear, 0, req); 2116 if (error || !req->newptr) 2117 return (error); 2118 2119 if (clear) { 2120 bzero(&mbprof, sizeof(mbprof)); 2121 } 2122 2123 return (error); 2124 } 2125 2126 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, 2127 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, NULL, 0, 2128 mbprof_handler, "A", 2129 "mbuf profiling statistics"); 2130 2131 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, 2132 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 2133 mbprof_clr_handler, "I", 2134 "clear mbuf profiling statistics"); 2135 #endif 2136 2137