xref: /freebsd/sys/kern/uipc_mbuf.c (revision a2aef24aa3c8458e4036735dd6928b4ef77294e5)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_param.h"
36 #include "opt_mbuf_stress_test.h"
37 #include "opt_mbuf_profiling.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/limits.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/sysctl.h>
47 #include <sys/domain.h>
48 #include <sys/protosw.h>
49 #include <sys/uio.h>
50 #include <sys/sdt.h>
51 
52 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__init,
53     "struct mbuf *", "mbufinfo_t *",
54     "uint32_t", "uint32_t",
55     "uint16_t", "uint16_t",
56     "uint32_t", "uint32_t",
57     "uint32_t", "uint32_t");
58 
59 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr,
60     "uint32_t", "uint32_t",
61     "uint16_t", "uint16_t",
62     "struct mbuf *", "mbufinfo_t *");
63 
64 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get,
65     "uint32_t", "uint32_t",
66     "uint16_t", "uint16_t",
67     "struct mbuf *", "mbufinfo_t *");
68 
69 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__getcl,
70     "uint32_t", "uint32_t",
71     "uint16_t", "uint16_t",
72     "uint32_t", "uint32_t",
73     "struct mbuf *", "mbufinfo_t *");
74 
75 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__clget,
76     "struct mbuf *", "mbufinfo_t *",
77     "uint32_t", "uint32_t",
78     "uint32_t", "uint32_t");
79 
80 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__cljget,
81     "struct mbuf *", "mbufinfo_t *",
82     "uint32_t", "uint32_t",
83     "uint32_t", "uint32_t",
84     "void*", "void*");
85 
86 SDT_PROBE_DEFINE(sdt, , , m__cljset);
87 
88 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__free,
89         "struct mbuf *", "mbufinfo_t *");
90 
91 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__freem,
92     "struct mbuf *", "mbufinfo_t *");
93 
94 #include <security/mac/mac_framework.h>
95 
96 int	max_linkhdr;
97 int	max_protohdr;
98 int	max_hdr;
99 int	max_datalen;
100 #ifdef MBUF_STRESS_TEST
101 int	m_defragpackets;
102 int	m_defragbytes;
103 int	m_defraguseless;
104 int	m_defragfailure;
105 int	m_defragrandomfailures;
106 #endif
107 
108 /*
109  * sysctl(8) exported objects
110  */
111 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
112 	   &max_linkhdr, 0, "Size of largest link layer header");
113 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
114 	   &max_protohdr, 0, "Size of largest protocol layer header");
115 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
116 	   &max_hdr, 0, "Size of largest link plus protocol header");
117 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
118 	   &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
119 #ifdef MBUF_STRESS_TEST
120 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
121 	   &m_defragpackets, 0, "");
122 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
123 	   &m_defragbytes, 0, "");
124 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
125 	   &m_defraguseless, 0, "");
126 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
127 	   &m_defragfailure, 0, "");
128 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
129 	   &m_defragrandomfailures, 0, "");
130 #endif
131 
132 /*
133  * Ensure the correct size of various mbuf parameters.  It could be off due
134  * to compiler-induced padding and alignment artifacts.
135  */
136 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN);
137 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN);
138 
139 /*
140  * mbuf data storage should be 64-bit aligned regardless of architectural
141  * pointer size; check this is the case with and without a packet header.
142  */
143 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0);
144 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0);
145 
146 /*
147  * While the specific values here don't matter too much (i.e., +/- a few
148  * words), we do want to ensure that changes to these values are carefully
149  * reasoned about and properly documented.  This is especially the case as
150  * network-protocol and device-driver modules encode these layouts, and must
151  * be recompiled if the structures change.  Check these values at compile time
152  * against the ones documented in comments in mbuf.h.
153  *
154  * NB: Possibly they should be documented there via #define's and not just
155  * comments.
156  */
157 #if defined(__LP64__)
158 CTASSERT(offsetof(struct mbuf, m_dat) == 32);
159 CTASSERT(sizeof(struct pkthdr) == 56);
160 CTASSERT(sizeof(struct m_ext) == 48);
161 #else
162 CTASSERT(offsetof(struct mbuf, m_dat) == 24);
163 CTASSERT(sizeof(struct pkthdr) == 48);
164 CTASSERT(sizeof(struct m_ext) == 28);
165 #endif
166 
167 /*
168  * Assert that the queue(3) macros produce code of the same size as an old
169  * plain pointer does.
170  */
171 #ifdef INVARIANTS
172 static struct mbuf __used m_assertbuf;
173 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next));
174 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next));
175 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt));
176 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt));
177 #endif
178 
179 /*
180  * Attach the cluster from *m to *n, set up m_ext in *n
181  * and bump the refcount of the cluster.
182  */
183 void
184 mb_dupcl(struct mbuf *n, struct mbuf *m)
185 {
186 	volatile u_int *refcnt;
187 
188 	KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m));
189 	KASSERT(!(n->m_flags & M_EXT), ("%s: M_EXT set on %p", __func__, n));
190 
191 	/*
192 	 * Cache access optimization.  For most kinds of external
193 	 * storage we don't need full copy of m_ext, since the
194 	 * holder of the 'ext_count' is responsible to carry the
195 	 * free routine and its arguments.  Exclusion is EXT_EXTREF,
196 	 * where 'ext_cnt' doesn't point into mbuf at all.
197 	 */
198 	if (m->m_ext.ext_type == EXT_EXTREF)
199 		bcopy(&m->m_ext, &n->m_ext, sizeof(struct m_ext));
200 	else
201 		bcopy(&m->m_ext, &n->m_ext, m_ext_copylen);
202 	n->m_flags |= M_EXT;
203 	n->m_flags |= m->m_flags & M_RDONLY;
204 
205 	/* See if this is the mbuf that holds the embedded refcount. */
206 	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
207 		refcnt = n->m_ext.ext_cnt = &m->m_ext.ext_count;
208 		n->m_ext.ext_flags &= ~EXT_FLAG_EMBREF;
209 	} else {
210 		KASSERT(m->m_ext.ext_cnt != NULL,
211 		    ("%s: no refcounting pointer on %p", __func__, m));
212 		refcnt = m->m_ext.ext_cnt;
213 	}
214 
215 	if (*refcnt == 1)
216 		*refcnt += 1;
217 	else
218 		atomic_add_int(refcnt, 1);
219 }
220 
221 void
222 m_demote_pkthdr(struct mbuf *m)
223 {
224 
225 	M_ASSERTPKTHDR(m);
226 
227 	m_tag_delete_chain(m, NULL);
228 	m->m_flags &= ~M_PKTHDR;
229 	bzero(&m->m_pkthdr, sizeof(struct pkthdr));
230 }
231 
232 /*
233  * Clean up mbuf (chain) from any tags and packet headers.
234  * If "all" is set then the first mbuf in the chain will be
235  * cleaned too.
236  */
237 void
238 m_demote(struct mbuf *m0, int all, int flags)
239 {
240 	struct mbuf *m;
241 
242 	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
243 		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p",
244 		    __func__, m, m0));
245 		if (m->m_flags & M_PKTHDR)
246 			m_demote_pkthdr(m);
247 		m->m_flags = m->m_flags & (M_EXT | M_RDONLY | M_NOFREE | flags);
248 	}
249 }
250 
251 /*
252  * Sanity checks on mbuf (chain) for use in KASSERT() and general
253  * debugging.
254  * Returns 0 or panics when bad and 1 on all tests passed.
255  * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
256  * blow up later.
257  */
258 int
259 m_sanity(struct mbuf *m0, int sanitize)
260 {
261 	struct mbuf *m;
262 	caddr_t a, b;
263 	int pktlen = 0;
264 
265 #ifdef INVARIANTS
266 #define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
267 #else
268 #define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
269 #endif
270 
271 	for (m = m0; m != NULL; m = m->m_next) {
272 		/*
273 		 * Basic pointer checks.  If any of these fails then some
274 		 * unrelated kernel memory before or after us is trashed.
275 		 * No way to recover from that.
276 		 */
277 		a = M_START(m);
278 		b = a + M_SIZE(m);
279 		if ((caddr_t)m->m_data < a)
280 			M_SANITY_ACTION("m_data outside mbuf data range left");
281 		if ((caddr_t)m->m_data > b)
282 			M_SANITY_ACTION("m_data outside mbuf data range right");
283 		if ((caddr_t)m->m_data + m->m_len > b)
284 			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
285 
286 		/* m->m_nextpkt may only be set on first mbuf in chain. */
287 		if (m != m0 && m->m_nextpkt != NULL) {
288 			if (sanitize) {
289 				m_freem(m->m_nextpkt);
290 				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
291 			} else
292 				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
293 		}
294 
295 		/* packet length (not mbuf length!) calculation */
296 		if (m0->m_flags & M_PKTHDR)
297 			pktlen += m->m_len;
298 
299 		/* m_tags may only be attached to first mbuf in chain. */
300 		if (m != m0 && m->m_flags & M_PKTHDR &&
301 		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
302 			if (sanitize) {
303 				m_tag_delete_chain(m, NULL);
304 				/* put in 0xDEADC0DE perhaps? */
305 			} else
306 				M_SANITY_ACTION("m_tags on in-chain mbuf");
307 		}
308 
309 		/* M_PKTHDR may only be set on first mbuf in chain */
310 		if (m != m0 && m->m_flags & M_PKTHDR) {
311 			if (sanitize) {
312 				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
313 				m->m_flags &= ~M_PKTHDR;
314 				/* put in 0xDEADCODE and leave hdr flag in */
315 			} else
316 				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
317 		}
318 	}
319 	m = m0;
320 	if (pktlen && pktlen != m->m_pkthdr.len) {
321 		if (sanitize)
322 			m->m_pkthdr.len = 0;
323 		else
324 			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
325 	}
326 	return 1;
327 
328 #undef	M_SANITY_ACTION
329 }
330 
331 /*
332  * Non-inlined part of m_init().
333  */
334 int
335 m_pkthdr_init(struct mbuf *m, int how)
336 {
337 #ifdef MAC
338 	int error;
339 #endif
340 	m->m_data = m->m_pktdat;
341 	bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
342 #ifdef MAC
343 	/* If the label init fails, fail the alloc */
344 	error = mac_mbuf_init(m, how);
345 	if (error)
346 		return (error);
347 #endif
348 
349 	return (0);
350 }
351 
352 /*
353  * "Move" mbuf pkthdr from "from" to "to".
354  * "from" must have M_PKTHDR set, and "to" must be empty.
355  */
356 void
357 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
358 {
359 
360 #if 0
361 	/* see below for why these are not enabled */
362 	M_ASSERTPKTHDR(to);
363 	/* Note: with MAC, this may not be a good assertion. */
364 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
365 	    ("m_move_pkthdr: to has tags"));
366 #endif
367 #ifdef MAC
368 	/*
369 	 * XXXMAC: It could be this should also occur for non-MAC?
370 	 */
371 	if (to->m_flags & M_PKTHDR)
372 		m_tag_delete_chain(to, NULL);
373 #endif
374 	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
375 	if ((to->m_flags & M_EXT) == 0)
376 		to->m_data = to->m_pktdat;
377 	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
378 	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
379 	from->m_flags &= ~M_PKTHDR;
380 }
381 
382 /*
383  * Duplicate "from"'s mbuf pkthdr in "to".
384  * "from" must have M_PKTHDR set, and "to" must be empty.
385  * In particular, this does a deep copy of the packet tags.
386  */
387 int
388 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how)
389 {
390 
391 #if 0
392 	/*
393 	 * The mbuf allocator only initializes the pkthdr
394 	 * when the mbuf is allocated with m_gethdr(). Many users
395 	 * (e.g. m_copy*, m_prepend) use m_get() and then
396 	 * smash the pkthdr as needed causing these
397 	 * assertions to trip.  For now just disable them.
398 	 */
399 	M_ASSERTPKTHDR(to);
400 	/* Note: with MAC, this may not be a good assertion. */
401 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
402 #endif
403 	MBUF_CHECKSLEEP(how);
404 #ifdef MAC
405 	if (to->m_flags & M_PKTHDR)
406 		m_tag_delete_chain(to, NULL);
407 #endif
408 	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
409 	if ((to->m_flags & M_EXT) == 0)
410 		to->m_data = to->m_pktdat;
411 	to->m_pkthdr = from->m_pkthdr;
412 	SLIST_INIT(&to->m_pkthdr.tags);
413 	return (m_tag_copy_chain(to, from, how));
414 }
415 
416 /*
417  * Lesser-used path for M_PREPEND:
418  * allocate new mbuf to prepend to chain,
419  * copy junk along.
420  */
421 struct mbuf *
422 m_prepend(struct mbuf *m, int len, int how)
423 {
424 	struct mbuf *mn;
425 
426 	if (m->m_flags & M_PKTHDR)
427 		mn = m_gethdr(how, m->m_type);
428 	else
429 		mn = m_get(how, m->m_type);
430 	if (mn == NULL) {
431 		m_freem(m);
432 		return (NULL);
433 	}
434 	if (m->m_flags & M_PKTHDR)
435 		m_move_pkthdr(mn, m);
436 	mn->m_next = m;
437 	m = mn;
438 	if (len < M_SIZE(m))
439 		M_ALIGN(m, len);
440 	m->m_len = len;
441 	return (m);
442 }
443 
444 /*
445  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
446  * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
447  * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
448  * Note that the copy is read-only, because clusters are not copied,
449  * only their reference counts are incremented.
450  */
451 struct mbuf *
452 m_copym(struct mbuf *m, int off0, int len, int wait)
453 {
454 	struct mbuf *n, **np;
455 	int off = off0;
456 	struct mbuf *top;
457 	int copyhdr = 0;
458 
459 	KASSERT(off >= 0, ("m_copym, negative off %d", off));
460 	KASSERT(len >= 0, ("m_copym, negative len %d", len));
461 	MBUF_CHECKSLEEP(wait);
462 	if (off == 0 && m->m_flags & M_PKTHDR)
463 		copyhdr = 1;
464 	while (off > 0) {
465 		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
466 		if (off < m->m_len)
467 			break;
468 		off -= m->m_len;
469 		m = m->m_next;
470 	}
471 	np = &top;
472 	top = NULL;
473 	while (len > 0) {
474 		if (m == NULL) {
475 			KASSERT(len == M_COPYALL,
476 			    ("m_copym, length > size of mbuf chain"));
477 			break;
478 		}
479 		if (copyhdr)
480 			n = m_gethdr(wait, m->m_type);
481 		else
482 			n = m_get(wait, m->m_type);
483 		*np = n;
484 		if (n == NULL)
485 			goto nospace;
486 		if (copyhdr) {
487 			if (!m_dup_pkthdr(n, m, wait))
488 				goto nospace;
489 			if (len == M_COPYALL)
490 				n->m_pkthdr.len -= off0;
491 			else
492 				n->m_pkthdr.len = len;
493 			copyhdr = 0;
494 		}
495 		n->m_len = min(len, m->m_len - off);
496 		if (m->m_flags & M_EXT) {
497 			n->m_data = m->m_data + off;
498 			mb_dupcl(n, m);
499 		} else
500 			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
501 			    (u_int)n->m_len);
502 		if (len != M_COPYALL)
503 			len -= n->m_len;
504 		off = 0;
505 		m = m->m_next;
506 		np = &n->m_next;
507 	}
508 
509 	return (top);
510 nospace:
511 	m_freem(top);
512 	return (NULL);
513 }
514 
515 /*
516  * Copy an entire packet, including header (which must be present).
517  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
518  * Note that the copy is read-only, because clusters are not copied,
519  * only their reference counts are incremented.
520  * Preserve alignment of the first mbuf so if the creator has left
521  * some room at the beginning (e.g. for inserting protocol headers)
522  * the copies still have the room available.
523  */
524 struct mbuf *
525 m_copypacket(struct mbuf *m, int how)
526 {
527 	struct mbuf *top, *n, *o;
528 
529 	MBUF_CHECKSLEEP(how);
530 	n = m_get(how, m->m_type);
531 	top = n;
532 	if (n == NULL)
533 		goto nospace;
534 
535 	if (!m_dup_pkthdr(n, m, how))
536 		goto nospace;
537 	n->m_len = m->m_len;
538 	if (m->m_flags & M_EXT) {
539 		n->m_data = m->m_data;
540 		mb_dupcl(n, m);
541 	} else {
542 		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
543 		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
544 	}
545 
546 	m = m->m_next;
547 	while (m) {
548 		o = m_get(how, m->m_type);
549 		if (o == NULL)
550 			goto nospace;
551 
552 		n->m_next = o;
553 		n = n->m_next;
554 
555 		n->m_len = m->m_len;
556 		if (m->m_flags & M_EXT) {
557 			n->m_data = m->m_data;
558 			mb_dupcl(n, m);
559 		} else {
560 			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
561 		}
562 
563 		m = m->m_next;
564 	}
565 	return top;
566 nospace:
567 	m_freem(top);
568 	return (NULL);
569 }
570 
571 /*
572  * Copy data from an mbuf chain starting "off" bytes from the beginning,
573  * continuing for "len" bytes, into the indicated buffer.
574  */
575 void
576 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
577 {
578 	u_int count;
579 
580 	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
581 	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
582 	while (off > 0) {
583 		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
584 		if (off < m->m_len)
585 			break;
586 		off -= m->m_len;
587 		m = m->m_next;
588 	}
589 	while (len > 0) {
590 		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
591 		count = min(m->m_len - off, len);
592 		bcopy(mtod(m, caddr_t) + off, cp, count);
593 		len -= count;
594 		cp += count;
595 		off = 0;
596 		m = m->m_next;
597 	}
598 }
599 
600 /*
601  * Copy a packet header mbuf chain into a completely new chain, including
602  * copying any mbuf clusters.  Use this instead of m_copypacket() when
603  * you need a writable copy of an mbuf chain.
604  */
605 struct mbuf *
606 m_dup(const struct mbuf *m, int how)
607 {
608 	struct mbuf **p, *top = NULL;
609 	int remain, moff, nsize;
610 
611 	MBUF_CHECKSLEEP(how);
612 	/* Sanity check */
613 	if (m == NULL)
614 		return (NULL);
615 	M_ASSERTPKTHDR(m);
616 
617 	/* While there's more data, get a new mbuf, tack it on, and fill it */
618 	remain = m->m_pkthdr.len;
619 	moff = 0;
620 	p = &top;
621 	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
622 		struct mbuf *n;
623 
624 		/* Get the next new mbuf */
625 		if (remain >= MINCLSIZE) {
626 			n = m_getcl(how, m->m_type, 0);
627 			nsize = MCLBYTES;
628 		} else {
629 			n = m_get(how, m->m_type);
630 			nsize = MLEN;
631 		}
632 		if (n == NULL)
633 			goto nospace;
634 
635 		if (top == NULL) {		/* First one, must be PKTHDR */
636 			if (!m_dup_pkthdr(n, m, how)) {
637 				m_free(n);
638 				goto nospace;
639 			}
640 			if ((n->m_flags & M_EXT) == 0)
641 				nsize = MHLEN;
642 			n->m_flags &= ~M_RDONLY;
643 		}
644 		n->m_len = 0;
645 
646 		/* Link it into the new chain */
647 		*p = n;
648 		p = &n->m_next;
649 
650 		/* Copy data from original mbuf(s) into new mbuf */
651 		while (n->m_len < nsize && m != NULL) {
652 			int chunk = min(nsize - n->m_len, m->m_len - moff);
653 
654 			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
655 			moff += chunk;
656 			n->m_len += chunk;
657 			remain -= chunk;
658 			if (moff == m->m_len) {
659 				m = m->m_next;
660 				moff = 0;
661 			}
662 		}
663 
664 		/* Check correct total mbuf length */
665 		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
666 		    	("%s: bogus m_pkthdr.len", __func__));
667 	}
668 	return (top);
669 
670 nospace:
671 	m_freem(top);
672 	return (NULL);
673 }
674 
675 /*
676  * Concatenate mbuf chain n to m.
677  * Both chains must be of the same type (e.g. MT_DATA).
678  * Any m_pkthdr is not updated.
679  */
680 void
681 m_cat(struct mbuf *m, struct mbuf *n)
682 {
683 	while (m->m_next)
684 		m = m->m_next;
685 	while (n) {
686 		if (!M_WRITABLE(m) ||
687 		    M_TRAILINGSPACE(m) < n->m_len) {
688 			/* just join the two chains */
689 			m->m_next = n;
690 			return;
691 		}
692 		/* splat the data from one into the other */
693 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
694 		    (u_int)n->m_len);
695 		m->m_len += n->m_len;
696 		n = m_free(n);
697 	}
698 }
699 
700 /*
701  * Concatenate two pkthdr mbuf chains.
702  */
703 void
704 m_catpkt(struct mbuf *m, struct mbuf *n)
705 {
706 
707 	M_ASSERTPKTHDR(m);
708 	M_ASSERTPKTHDR(n);
709 
710 	m->m_pkthdr.len += n->m_pkthdr.len;
711 	m_demote(n, 1, 0);
712 
713 	m_cat(m, n);
714 }
715 
716 void
717 m_adj(struct mbuf *mp, int req_len)
718 {
719 	int len = req_len;
720 	struct mbuf *m;
721 	int count;
722 
723 	if ((m = mp) == NULL)
724 		return;
725 	if (len >= 0) {
726 		/*
727 		 * Trim from head.
728 		 */
729 		while (m != NULL && len > 0) {
730 			if (m->m_len <= len) {
731 				len -= m->m_len;
732 				m->m_len = 0;
733 				m = m->m_next;
734 			} else {
735 				m->m_len -= len;
736 				m->m_data += len;
737 				len = 0;
738 			}
739 		}
740 		if (mp->m_flags & M_PKTHDR)
741 			mp->m_pkthdr.len -= (req_len - len);
742 	} else {
743 		/*
744 		 * Trim from tail.  Scan the mbuf chain,
745 		 * calculating its length and finding the last mbuf.
746 		 * If the adjustment only affects this mbuf, then just
747 		 * adjust and return.  Otherwise, rescan and truncate
748 		 * after the remaining size.
749 		 */
750 		len = -len;
751 		count = 0;
752 		for (;;) {
753 			count += m->m_len;
754 			if (m->m_next == (struct mbuf *)0)
755 				break;
756 			m = m->m_next;
757 		}
758 		if (m->m_len >= len) {
759 			m->m_len -= len;
760 			if (mp->m_flags & M_PKTHDR)
761 				mp->m_pkthdr.len -= len;
762 			return;
763 		}
764 		count -= len;
765 		if (count < 0)
766 			count = 0;
767 		/*
768 		 * Correct length for chain is "count".
769 		 * Find the mbuf with last data, adjust its length,
770 		 * and toss data from remaining mbufs on chain.
771 		 */
772 		m = mp;
773 		if (m->m_flags & M_PKTHDR)
774 			m->m_pkthdr.len = count;
775 		for (; m; m = m->m_next) {
776 			if (m->m_len >= count) {
777 				m->m_len = count;
778 				if (m->m_next != NULL) {
779 					m_freem(m->m_next);
780 					m->m_next = NULL;
781 				}
782 				break;
783 			}
784 			count -= m->m_len;
785 		}
786 	}
787 }
788 
789 /*
790  * Rearange an mbuf chain so that len bytes are contiguous
791  * and in the data area of an mbuf (so that mtod will work
792  * for a structure of size len).  Returns the resulting
793  * mbuf chain on success, frees it and returns null on failure.
794  * If there is room, it will add up to max_protohdr-len extra bytes to the
795  * contiguous region in an attempt to avoid being called next time.
796  */
797 struct mbuf *
798 m_pullup(struct mbuf *n, int len)
799 {
800 	struct mbuf *m;
801 	int count;
802 	int space;
803 
804 	/*
805 	 * If first mbuf has no cluster, and has room for len bytes
806 	 * without shifting current data, pullup into it,
807 	 * otherwise allocate a new mbuf to prepend to the chain.
808 	 */
809 	if ((n->m_flags & M_EXT) == 0 &&
810 	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
811 		if (n->m_len >= len)
812 			return (n);
813 		m = n;
814 		n = n->m_next;
815 		len -= m->m_len;
816 	} else {
817 		if (len > MHLEN)
818 			goto bad;
819 		m = m_get(M_NOWAIT, n->m_type);
820 		if (m == NULL)
821 			goto bad;
822 		if (n->m_flags & M_PKTHDR)
823 			m_move_pkthdr(m, n);
824 	}
825 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
826 	do {
827 		count = min(min(max(len, max_protohdr), space), n->m_len);
828 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
829 		  (u_int)count);
830 		len -= count;
831 		m->m_len += count;
832 		n->m_len -= count;
833 		space -= count;
834 		if (n->m_len)
835 			n->m_data += count;
836 		else
837 			n = m_free(n);
838 	} while (len > 0 && n);
839 	if (len > 0) {
840 		(void) m_free(m);
841 		goto bad;
842 	}
843 	m->m_next = n;
844 	return (m);
845 bad:
846 	m_freem(n);
847 	return (NULL);
848 }
849 
850 /*
851  * Like m_pullup(), except a new mbuf is always allocated, and we allow
852  * the amount of empty space before the data in the new mbuf to be specified
853  * (in the event that the caller expects to prepend later).
854  */
855 struct mbuf *
856 m_copyup(struct mbuf *n, int len, int dstoff)
857 {
858 	struct mbuf *m;
859 	int count, space;
860 
861 	if (len > (MHLEN - dstoff))
862 		goto bad;
863 	m = m_get(M_NOWAIT, n->m_type);
864 	if (m == NULL)
865 		goto bad;
866 	if (n->m_flags & M_PKTHDR)
867 		m_move_pkthdr(m, n);
868 	m->m_data += dstoff;
869 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
870 	do {
871 		count = min(min(max(len, max_protohdr), space), n->m_len);
872 		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
873 		    (unsigned)count);
874 		len -= count;
875 		m->m_len += count;
876 		n->m_len -= count;
877 		space -= count;
878 		if (n->m_len)
879 			n->m_data += count;
880 		else
881 			n = m_free(n);
882 	} while (len > 0 && n);
883 	if (len > 0) {
884 		(void) m_free(m);
885 		goto bad;
886 	}
887 	m->m_next = n;
888 	return (m);
889  bad:
890 	m_freem(n);
891 	return (NULL);
892 }
893 
894 /*
895  * Partition an mbuf chain in two pieces, returning the tail --
896  * all but the first len0 bytes.  In case of failure, it returns NULL and
897  * attempts to restore the chain to its original state.
898  *
899  * Note that the resulting mbufs might be read-only, because the new
900  * mbuf can end up sharing an mbuf cluster with the original mbuf if
901  * the "breaking point" happens to lie within a cluster mbuf. Use the
902  * M_WRITABLE() macro to check for this case.
903  */
904 struct mbuf *
905 m_split(struct mbuf *m0, int len0, int wait)
906 {
907 	struct mbuf *m, *n;
908 	u_int len = len0, remain;
909 
910 	MBUF_CHECKSLEEP(wait);
911 	for (m = m0; m && len > m->m_len; m = m->m_next)
912 		len -= m->m_len;
913 	if (m == NULL)
914 		return (NULL);
915 	remain = m->m_len - len;
916 	if (m0->m_flags & M_PKTHDR && remain == 0) {
917 		n = m_gethdr(wait, m0->m_type);
918 		if (n == NULL)
919 			return (NULL);
920 		n->m_next = m->m_next;
921 		m->m_next = NULL;
922 		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
923 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
924 		m0->m_pkthdr.len = len0;
925 		return (n);
926 	} else if (m0->m_flags & M_PKTHDR) {
927 		n = m_gethdr(wait, m0->m_type);
928 		if (n == NULL)
929 			return (NULL);
930 		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
931 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
932 		m0->m_pkthdr.len = len0;
933 		if (m->m_flags & M_EXT)
934 			goto extpacket;
935 		if (remain > MHLEN) {
936 			/* m can't be the lead packet */
937 			M_ALIGN(n, 0);
938 			n->m_next = m_split(m, len, wait);
939 			if (n->m_next == NULL) {
940 				(void) m_free(n);
941 				return (NULL);
942 			} else {
943 				n->m_len = 0;
944 				return (n);
945 			}
946 		} else
947 			M_ALIGN(n, remain);
948 	} else if (remain == 0) {
949 		n = m->m_next;
950 		m->m_next = NULL;
951 		return (n);
952 	} else {
953 		n = m_get(wait, m->m_type);
954 		if (n == NULL)
955 			return (NULL);
956 		M_ALIGN(n, remain);
957 	}
958 extpacket:
959 	if (m->m_flags & M_EXT) {
960 		n->m_data = m->m_data + len;
961 		mb_dupcl(n, m);
962 	} else {
963 		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
964 	}
965 	n->m_len = remain;
966 	m->m_len = len;
967 	n->m_next = m->m_next;
968 	m->m_next = NULL;
969 	return (n);
970 }
971 /*
972  * Routine to copy from device local memory into mbufs.
973  * Note that `off' argument is offset into first mbuf of target chain from
974  * which to begin copying the data to.
975  */
976 struct mbuf *
977 m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
978     void (*copy)(char *from, caddr_t to, u_int len))
979 {
980 	struct mbuf *m;
981 	struct mbuf *top = NULL, **mp = &top;
982 	int len;
983 
984 	if (off < 0 || off > MHLEN)
985 		return (NULL);
986 
987 	while (totlen > 0) {
988 		if (top == NULL) {	/* First one, must be PKTHDR */
989 			if (totlen + off >= MINCLSIZE) {
990 				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
991 				len = MCLBYTES;
992 			} else {
993 				m = m_gethdr(M_NOWAIT, MT_DATA);
994 				len = MHLEN;
995 
996 				/* Place initial small packet/header at end of mbuf */
997 				if (m && totlen + off + max_linkhdr <= MHLEN) {
998 					m->m_data += max_linkhdr;
999 					len -= max_linkhdr;
1000 				}
1001 			}
1002 			if (m == NULL)
1003 				return NULL;
1004 			m->m_pkthdr.rcvif = ifp;
1005 			m->m_pkthdr.len = totlen;
1006 		} else {
1007 			if (totlen + off >= MINCLSIZE) {
1008 				m = m_getcl(M_NOWAIT, MT_DATA, 0);
1009 				len = MCLBYTES;
1010 			} else {
1011 				m = m_get(M_NOWAIT, MT_DATA);
1012 				len = MLEN;
1013 			}
1014 			if (m == NULL) {
1015 				m_freem(top);
1016 				return NULL;
1017 			}
1018 		}
1019 		if (off) {
1020 			m->m_data += off;
1021 			len -= off;
1022 			off = 0;
1023 		}
1024 		m->m_len = len = min(totlen, len);
1025 		if (copy)
1026 			copy(buf, mtod(m, caddr_t), (u_int)len);
1027 		else
1028 			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1029 		buf += len;
1030 		*mp = m;
1031 		mp = &m->m_next;
1032 		totlen -= len;
1033 	}
1034 	return (top);
1035 }
1036 
1037 /*
1038  * Copy data from a buffer back into the indicated mbuf chain,
1039  * starting "off" bytes from the beginning, extending the mbuf
1040  * chain if necessary.
1041  */
1042 void
1043 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1044 {
1045 	int mlen;
1046 	struct mbuf *m = m0, *n;
1047 	int totlen = 0;
1048 
1049 	if (m0 == NULL)
1050 		return;
1051 	while (off > (mlen = m->m_len)) {
1052 		off -= mlen;
1053 		totlen += mlen;
1054 		if (m->m_next == NULL) {
1055 			n = m_get(M_NOWAIT, m->m_type);
1056 			if (n == NULL)
1057 				goto out;
1058 			bzero(mtod(n, caddr_t), MLEN);
1059 			n->m_len = min(MLEN, len + off);
1060 			m->m_next = n;
1061 		}
1062 		m = m->m_next;
1063 	}
1064 	while (len > 0) {
1065 		if (m->m_next == NULL && (len > m->m_len - off)) {
1066 			m->m_len += min(len - (m->m_len - off),
1067 			    M_TRAILINGSPACE(m));
1068 		}
1069 		mlen = min (m->m_len - off, len);
1070 		bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1071 		cp += mlen;
1072 		len -= mlen;
1073 		mlen += off;
1074 		off = 0;
1075 		totlen += mlen;
1076 		if (len == 0)
1077 			break;
1078 		if (m->m_next == NULL) {
1079 			n = m_get(M_NOWAIT, m->m_type);
1080 			if (n == NULL)
1081 				break;
1082 			n->m_len = min(MLEN, len);
1083 			m->m_next = n;
1084 		}
1085 		m = m->m_next;
1086 	}
1087 out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1088 		m->m_pkthdr.len = totlen;
1089 }
1090 
1091 /*
1092  * Append the specified data to the indicated mbuf chain,
1093  * Extend the mbuf chain if the new data does not fit in
1094  * existing space.
1095  *
1096  * Return 1 if able to complete the job; otherwise 0.
1097  */
1098 int
1099 m_append(struct mbuf *m0, int len, c_caddr_t cp)
1100 {
1101 	struct mbuf *m, *n;
1102 	int remainder, space;
1103 
1104 	for (m = m0; m->m_next != NULL; m = m->m_next)
1105 		;
1106 	remainder = len;
1107 	space = M_TRAILINGSPACE(m);
1108 	if (space > 0) {
1109 		/*
1110 		 * Copy into available space.
1111 		 */
1112 		if (space > remainder)
1113 			space = remainder;
1114 		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1115 		m->m_len += space;
1116 		cp += space, remainder -= space;
1117 	}
1118 	while (remainder > 0) {
1119 		/*
1120 		 * Allocate a new mbuf; could check space
1121 		 * and allocate a cluster instead.
1122 		 */
1123 		n = m_get(M_NOWAIT, m->m_type);
1124 		if (n == NULL)
1125 			break;
1126 		n->m_len = min(MLEN, remainder);
1127 		bcopy(cp, mtod(n, caddr_t), n->m_len);
1128 		cp += n->m_len, remainder -= n->m_len;
1129 		m->m_next = n;
1130 		m = n;
1131 	}
1132 	if (m0->m_flags & M_PKTHDR)
1133 		m0->m_pkthdr.len += len - remainder;
1134 	return (remainder == 0);
1135 }
1136 
1137 /*
1138  * Apply function f to the data in an mbuf chain starting "off" bytes from
1139  * the beginning, continuing for "len" bytes.
1140  */
1141 int
1142 m_apply(struct mbuf *m, int off, int len,
1143     int (*f)(void *, void *, u_int), void *arg)
1144 {
1145 	u_int count;
1146 	int rval;
1147 
1148 	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1149 	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1150 	while (off > 0) {
1151 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1152 		if (off < m->m_len)
1153 			break;
1154 		off -= m->m_len;
1155 		m = m->m_next;
1156 	}
1157 	while (len > 0) {
1158 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1159 		count = min(m->m_len - off, len);
1160 		rval = (*f)(arg, mtod(m, caddr_t) + off, count);
1161 		if (rval)
1162 			return (rval);
1163 		len -= count;
1164 		off = 0;
1165 		m = m->m_next;
1166 	}
1167 	return (0);
1168 }
1169 
1170 /*
1171  * Return a pointer to mbuf/offset of location in mbuf chain.
1172  */
1173 struct mbuf *
1174 m_getptr(struct mbuf *m, int loc, int *off)
1175 {
1176 
1177 	while (loc >= 0) {
1178 		/* Normal end of search. */
1179 		if (m->m_len > loc) {
1180 			*off = loc;
1181 			return (m);
1182 		} else {
1183 			loc -= m->m_len;
1184 			if (m->m_next == NULL) {
1185 				if (loc == 0) {
1186 					/* Point at the end of valid data. */
1187 					*off = m->m_len;
1188 					return (m);
1189 				}
1190 				return (NULL);
1191 			}
1192 			m = m->m_next;
1193 		}
1194 	}
1195 	return (NULL);
1196 }
1197 
1198 void
1199 m_print(const struct mbuf *m, int maxlen)
1200 {
1201 	int len;
1202 	int pdata;
1203 	const struct mbuf *m2;
1204 
1205 	if (m == NULL) {
1206 		printf("mbuf: %p\n", m);
1207 		return;
1208 	}
1209 
1210 	if (m->m_flags & M_PKTHDR)
1211 		len = m->m_pkthdr.len;
1212 	else
1213 		len = -1;
1214 	m2 = m;
1215 	while (m2 != NULL && (len == -1 || len)) {
1216 		pdata = m2->m_len;
1217 		if (maxlen != -1 && pdata > maxlen)
1218 			pdata = maxlen;
1219 		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1220 		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1221 		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1222 		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1223 		if (pdata)
1224 			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1225 		if (len != -1)
1226 			len -= m2->m_len;
1227 		m2 = m2->m_next;
1228 	}
1229 	if (len > 0)
1230 		printf("%d bytes unaccounted for.\n", len);
1231 	return;
1232 }
1233 
1234 u_int
1235 m_fixhdr(struct mbuf *m0)
1236 {
1237 	u_int len;
1238 
1239 	len = m_length(m0, NULL);
1240 	m0->m_pkthdr.len = len;
1241 	return (len);
1242 }
1243 
1244 u_int
1245 m_length(struct mbuf *m0, struct mbuf **last)
1246 {
1247 	struct mbuf *m;
1248 	u_int len;
1249 
1250 	len = 0;
1251 	for (m = m0; m != NULL; m = m->m_next) {
1252 		len += m->m_len;
1253 		if (m->m_next == NULL)
1254 			break;
1255 	}
1256 	if (last != NULL)
1257 		*last = m;
1258 	return (len);
1259 }
1260 
1261 /*
1262  * Defragment a mbuf chain, returning the shortest possible
1263  * chain of mbufs and clusters.  If allocation fails and
1264  * this cannot be completed, NULL will be returned, but
1265  * the passed in chain will be unchanged.  Upon success,
1266  * the original chain will be freed, and the new chain
1267  * will be returned.
1268  *
1269  * If a non-packet header is passed in, the original
1270  * mbuf (chain?) will be returned unharmed.
1271  */
1272 struct mbuf *
1273 m_defrag(struct mbuf *m0, int how)
1274 {
1275 	struct mbuf *m_new = NULL, *m_final = NULL;
1276 	int progress = 0, length;
1277 
1278 	MBUF_CHECKSLEEP(how);
1279 	if (!(m0->m_flags & M_PKTHDR))
1280 		return (m0);
1281 
1282 	m_fixhdr(m0); /* Needed sanity check */
1283 
1284 #ifdef MBUF_STRESS_TEST
1285 	if (m_defragrandomfailures) {
1286 		int temp = arc4random() & 0xff;
1287 		if (temp == 0xba)
1288 			goto nospace;
1289 	}
1290 #endif
1291 
1292 	if (m0->m_pkthdr.len > MHLEN)
1293 		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1294 	else
1295 		m_final = m_gethdr(how, MT_DATA);
1296 
1297 	if (m_final == NULL)
1298 		goto nospace;
1299 
1300 	if (m_dup_pkthdr(m_final, m0, how) == 0)
1301 		goto nospace;
1302 
1303 	m_new = m_final;
1304 
1305 	while (progress < m0->m_pkthdr.len) {
1306 		length = m0->m_pkthdr.len - progress;
1307 		if (length > MCLBYTES)
1308 			length = MCLBYTES;
1309 
1310 		if (m_new == NULL) {
1311 			if (length > MLEN)
1312 				m_new = m_getcl(how, MT_DATA, 0);
1313 			else
1314 				m_new = m_get(how, MT_DATA);
1315 			if (m_new == NULL)
1316 				goto nospace;
1317 		}
1318 
1319 		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1320 		progress += length;
1321 		m_new->m_len = length;
1322 		if (m_new != m_final)
1323 			m_cat(m_final, m_new);
1324 		m_new = NULL;
1325 	}
1326 #ifdef MBUF_STRESS_TEST
1327 	if (m0->m_next == NULL)
1328 		m_defraguseless++;
1329 #endif
1330 	m_freem(m0);
1331 	m0 = m_final;
1332 #ifdef MBUF_STRESS_TEST
1333 	m_defragpackets++;
1334 	m_defragbytes += m0->m_pkthdr.len;
1335 #endif
1336 	return (m0);
1337 nospace:
1338 #ifdef MBUF_STRESS_TEST
1339 	m_defragfailure++;
1340 #endif
1341 	if (m_final)
1342 		m_freem(m_final);
1343 	return (NULL);
1344 }
1345 
1346 /*
1347  * Defragment an mbuf chain, returning at most maxfrags separate
1348  * mbufs+clusters.  If this is not possible NULL is returned and
1349  * the original mbuf chain is left in its present (potentially
1350  * modified) state.  We use two techniques: collapsing consecutive
1351  * mbufs and replacing consecutive mbufs by a cluster.
1352  *
1353  * NB: this should really be named m_defrag but that name is taken
1354  */
1355 struct mbuf *
1356 m_collapse(struct mbuf *m0, int how, int maxfrags)
1357 {
1358 	struct mbuf *m, *n, *n2, **prev;
1359 	u_int curfrags;
1360 
1361 	/*
1362 	 * Calculate the current number of frags.
1363 	 */
1364 	curfrags = 0;
1365 	for (m = m0; m != NULL; m = m->m_next)
1366 		curfrags++;
1367 	/*
1368 	 * First, try to collapse mbufs.  Note that we always collapse
1369 	 * towards the front so we don't need to deal with moving the
1370 	 * pkthdr.  This may be suboptimal if the first mbuf has much
1371 	 * less data than the following.
1372 	 */
1373 	m = m0;
1374 again:
1375 	for (;;) {
1376 		n = m->m_next;
1377 		if (n == NULL)
1378 			break;
1379 		if (M_WRITABLE(m) &&
1380 		    n->m_len < M_TRAILINGSPACE(m)) {
1381 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
1382 				n->m_len);
1383 			m->m_len += n->m_len;
1384 			m->m_next = n->m_next;
1385 			m_free(n);
1386 			if (--curfrags <= maxfrags)
1387 				return m0;
1388 		} else
1389 			m = n;
1390 	}
1391 	KASSERT(maxfrags > 1,
1392 		("maxfrags %u, but normal collapse failed", maxfrags));
1393 	/*
1394 	 * Collapse consecutive mbufs to a cluster.
1395 	 */
1396 	prev = &m0->m_next;		/* NB: not the first mbuf */
1397 	while ((n = *prev) != NULL) {
1398 		if ((n2 = n->m_next) != NULL &&
1399 		    n->m_len + n2->m_len < MCLBYTES) {
1400 			m = m_getcl(how, MT_DATA, 0);
1401 			if (m == NULL)
1402 				goto bad;
1403 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
1404 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
1405 				n2->m_len);
1406 			m->m_len = n->m_len + n2->m_len;
1407 			m->m_next = n2->m_next;
1408 			*prev = m;
1409 			m_free(n);
1410 			m_free(n2);
1411 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
1412 				return m0;
1413 			/*
1414 			 * Still not there, try the normal collapse
1415 			 * again before we allocate another cluster.
1416 			 */
1417 			goto again;
1418 		}
1419 		prev = &n->m_next;
1420 	}
1421 	/*
1422 	 * No place where we can collapse to a cluster; punt.
1423 	 * This can occur if, for example, you request 2 frags
1424 	 * but the packet requires that both be clusters (we
1425 	 * never reallocate the first mbuf to avoid moving the
1426 	 * packet header).
1427 	 */
1428 bad:
1429 	return NULL;
1430 }
1431 
1432 #ifdef MBUF_STRESS_TEST
1433 
1434 /*
1435  * Fragment an mbuf chain.  There's no reason you'd ever want to do
1436  * this in normal usage, but it's great for stress testing various
1437  * mbuf consumers.
1438  *
1439  * If fragmentation is not possible, the original chain will be
1440  * returned.
1441  *
1442  * Possible length values:
1443  * 0	 no fragmentation will occur
1444  * > 0	each fragment will be of the specified length
1445  * -1	each fragment will be the same random value in length
1446  * -2	each fragment's length will be entirely random
1447  * (Random values range from 1 to 256)
1448  */
1449 struct mbuf *
1450 m_fragment(struct mbuf *m0, int how, int length)
1451 {
1452 	struct mbuf *m_first, *m_last;
1453 	int divisor = 255, progress = 0, fraglen;
1454 
1455 	if (!(m0->m_flags & M_PKTHDR))
1456 		return (m0);
1457 
1458 	if (length == 0 || length < -2)
1459 		return (m0);
1460 	if (length > MCLBYTES)
1461 		length = MCLBYTES;
1462 	if (length < 0 && divisor > MCLBYTES)
1463 		divisor = MCLBYTES;
1464 	if (length == -1)
1465 		length = 1 + (arc4random() % divisor);
1466 	if (length > 0)
1467 		fraglen = length;
1468 
1469 	m_fixhdr(m0); /* Needed sanity check */
1470 
1471 	m_first = m_getcl(how, MT_DATA, M_PKTHDR);
1472 	if (m_first == NULL)
1473 		goto nospace;
1474 
1475 	if (m_dup_pkthdr(m_first, m0, how) == 0)
1476 		goto nospace;
1477 
1478 	m_last = m_first;
1479 
1480 	while (progress < m0->m_pkthdr.len) {
1481 		if (length == -2)
1482 			fraglen = 1 + (arc4random() % divisor);
1483 		if (fraglen > m0->m_pkthdr.len - progress)
1484 			fraglen = m0->m_pkthdr.len - progress;
1485 
1486 		if (progress != 0) {
1487 			struct mbuf *m_new = m_getcl(how, MT_DATA, 0);
1488 			if (m_new == NULL)
1489 				goto nospace;
1490 
1491 			m_last->m_next = m_new;
1492 			m_last = m_new;
1493 		}
1494 
1495 		m_copydata(m0, progress, fraglen, mtod(m_last, caddr_t));
1496 		progress += fraglen;
1497 		m_last->m_len = fraglen;
1498 	}
1499 	m_freem(m0);
1500 	m0 = m_first;
1501 	return (m0);
1502 nospace:
1503 	if (m_first)
1504 		m_freem(m_first);
1505 	/* Return the original chain on failure */
1506 	return (m0);
1507 }
1508 
1509 #endif
1510 
1511 /*
1512  * Copy the contents of uio into a properly sized mbuf chain.
1513  */
1514 struct mbuf *
1515 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1516 {
1517 	struct mbuf *m, *mb;
1518 	int error, length;
1519 	ssize_t total;
1520 	int progress = 0;
1521 
1522 	/*
1523 	 * len can be zero or an arbitrary large value bound by
1524 	 * the total data supplied by the uio.
1525 	 */
1526 	if (len > 0)
1527 		total = (uio->uio_resid < len) ? uio->uio_resid : len;
1528 	else
1529 		total = uio->uio_resid;
1530 
1531 	/*
1532 	 * The smallest unit returned by m_getm2() is a single mbuf
1533 	 * with pkthdr.  We can't align past it.
1534 	 */
1535 	if (align >= MHLEN)
1536 		return (NULL);
1537 
1538 	/*
1539 	 * Give us the full allocation or nothing.
1540 	 * If len is zero return the smallest empty mbuf.
1541 	 */
1542 	m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1543 	if (m == NULL)
1544 		return (NULL);
1545 	m->m_data += align;
1546 
1547 	/* Fill all mbufs with uio data and update header information. */
1548 	for (mb = m; mb != NULL; mb = mb->m_next) {
1549 		length = min(M_TRAILINGSPACE(mb), total - progress);
1550 
1551 		error = uiomove(mtod(mb, void *), length, uio);
1552 		if (error) {
1553 			m_freem(m);
1554 			return (NULL);
1555 		}
1556 
1557 		mb->m_len = length;
1558 		progress += length;
1559 		if (flags & M_PKTHDR)
1560 			m->m_pkthdr.len += length;
1561 	}
1562 	KASSERT(progress == total, ("%s: progress != total", __func__));
1563 
1564 	return (m);
1565 }
1566 
1567 /*
1568  * Copy an mbuf chain into a uio limited by len if set.
1569  */
1570 int
1571 m_mbuftouio(struct uio *uio, const struct mbuf *m, int len)
1572 {
1573 	int error, length, total;
1574 	int progress = 0;
1575 
1576 	if (len > 0)
1577 		total = min(uio->uio_resid, len);
1578 	else
1579 		total = uio->uio_resid;
1580 
1581 	/* Fill the uio with data from the mbufs. */
1582 	for (; m != NULL; m = m->m_next) {
1583 		length = min(m->m_len, total - progress);
1584 
1585 		error = uiomove(mtod(m, void *), length, uio);
1586 		if (error)
1587 			return (error);
1588 
1589 		progress += length;
1590 	}
1591 
1592 	return (0);
1593 }
1594 
1595 /*
1596  * Create a writable copy of the mbuf chain.  While doing this
1597  * we compact the chain with a goal of producing a chain with
1598  * at most two mbufs.  The second mbuf in this chain is likely
1599  * to be a cluster.  The primary purpose of this work is to create
1600  * a writable packet for encryption, compression, etc.  The
1601  * secondary goal is to linearize the data so the data can be
1602  * passed to crypto hardware in the most efficient manner possible.
1603  */
1604 struct mbuf *
1605 m_unshare(struct mbuf *m0, int how)
1606 {
1607 	struct mbuf *m, *mprev;
1608 	struct mbuf *n, *mfirst, *mlast;
1609 	int len, off;
1610 
1611 	mprev = NULL;
1612 	for (m = m0; m != NULL; m = mprev->m_next) {
1613 		/*
1614 		 * Regular mbufs are ignored unless there's a cluster
1615 		 * in front of it that we can use to coalesce.  We do
1616 		 * the latter mainly so later clusters can be coalesced
1617 		 * also w/o having to handle them specially (i.e. convert
1618 		 * mbuf+cluster -> cluster).  This optimization is heavily
1619 		 * influenced by the assumption that we're running over
1620 		 * Ethernet where MCLBYTES is large enough that the max
1621 		 * packet size will permit lots of coalescing into a
1622 		 * single cluster.  This in turn permits efficient
1623 		 * crypto operations, especially when using hardware.
1624 		 */
1625 		if ((m->m_flags & M_EXT) == 0) {
1626 			if (mprev && (mprev->m_flags & M_EXT) &&
1627 			    m->m_len <= M_TRAILINGSPACE(mprev)) {
1628 				/* XXX: this ignores mbuf types */
1629 				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1630 				    mtod(m, caddr_t), m->m_len);
1631 				mprev->m_len += m->m_len;
1632 				mprev->m_next = m->m_next;	/* unlink from chain */
1633 				m_free(m);			/* reclaim mbuf */
1634 #if 0
1635 				newipsecstat.ips_mbcoalesced++;
1636 #endif
1637 			} else {
1638 				mprev = m;
1639 			}
1640 			continue;
1641 		}
1642 		/*
1643 		 * Writable mbufs are left alone (for now).
1644 		 */
1645 		if (M_WRITABLE(m)) {
1646 			mprev = m;
1647 			continue;
1648 		}
1649 
1650 		/*
1651 		 * Not writable, replace with a copy or coalesce with
1652 		 * the previous mbuf if possible (since we have to copy
1653 		 * it anyway, we try to reduce the number of mbufs and
1654 		 * clusters so that future work is easier).
1655 		 */
1656 		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
1657 		/* NB: we only coalesce into a cluster or larger */
1658 		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
1659 		    m->m_len <= M_TRAILINGSPACE(mprev)) {
1660 			/* XXX: this ignores mbuf types */
1661 			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1662 			    mtod(m, caddr_t), m->m_len);
1663 			mprev->m_len += m->m_len;
1664 			mprev->m_next = m->m_next;	/* unlink from chain */
1665 			m_free(m);			/* reclaim mbuf */
1666 #if 0
1667 			newipsecstat.ips_clcoalesced++;
1668 #endif
1669 			continue;
1670 		}
1671 
1672 		/*
1673 		 * Allocate new space to hold the copy and copy the data.
1674 		 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
1675 		 * splitting them into clusters.  We could just malloc a
1676 		 * buffer and make it external but too many device drivers
1677 		 * don't know how to break up the non-contiguous memory when
1678 		 * doing DMA.
1679 		 */
1680 		n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
1681 		if (n == NULL) {
1682 			m_freem(m0);
1683 			return (NULL);
1684 		}
1685 		if (m->m_flags & M_PKTHDR) {
1686 			KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR",
1687 			    __func__, m0, m));
1688 			m_move_pkthdr(n, m);
1689 		}
1690 		len = m->m_len;
1691 		off = 0;
1692 		mfirst = n;
1693 		mlast = NULL;
1694 		for (;;) {
1695 			int cc = min(len, MCLBYTES);
1696 			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
1697 			n->m_len = cc;
1698 			if (mlast != NULL)
1699 				mlast->m_next = n;
1700 			mlast = n;
1701 #if 0
1702 			newipsecstat.ips_clcopied++;
1703 #endif
1704 
1705 			len -= cc;
1706 			if (len <= 0)
1707 				break;
1708 			off += cc;
1709 
1710 			n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
1711 			if (n == NULL) {
1712 				m_freem(mfirst);
1713 				m_freem(m0);
1714 				return (NULL);
1715 			}
1716 		}
1717 		n->m_next = m->m_next;
1718 		if (mprev == NULL)
1719 			m0 = mfirst;		/* new head of chain */
1720 		else
1721 			mprev->m_next = mfirst;	/* replace old mbuf */
1722 		m_free(m);			/* release old mbuf */
1723 		mprev = mfirst;
1724 	}
1725 	return (m0);
1726 }
1727 
1728 #ifdef MBUF_PROFILING
1729 
1730 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
1731 struct mbufprofile {
1732 	uintmax_t wasted[MP_BUCKETS];
1733 	uintmax_t used[MP_BUCKETS];
1734 	uintmax_t segments[MP_BUCKETS];
1735 } mbprof;
1736 
1737 #define MP_MAXDIGITS 21	/* strlen("16,000,000,000,000,000,000") == 21 */
1738 #define MP_NUMLINES 6
1739 #define MP_NUMSPERLINE 16
1740 #define MP_EXTRABYTES 64	/* > strlen("used:\nwasted:\nsegments:\n") */
1741 /* work out max space needed and add a bit of spare space too */
1742 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
1743 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
1744 
1745 char mbprofbuf[MP_BUFSIZE];
1746 
1747 void
1748 m_profile(struct mbuf *m)
1749 {
1750 	int segments = 0;
1751 	int used = 0;
1752 	int wasted = 0;
1753 
1754 	while (m) {
1755 		segments++;
1756 		used += m->m_len;
1757 		if (m->m_flags & M_EXT) {
1758 			wasted += MHLEN - sizeof(m->m_ext) +
1759 			    m->m_ext.ext_size - m->m_len;
1760 		} else {
1761 			if (m->m_flags & M_PKTHDR)
1762 				wasted += MHLEN - m->m_len;
1763 			else
1764 				wasted += MLEN - m->m_len;
1765 		}
1766 		m = m->m_next;
1767 	}
1768 	/* be paranoid.. it helps */
1769 	if (segments > MP_BUCKETS - 1)
1770 		segments = MP_BUCKETS - 1;
1771 	if (used > 100000)
1772 		used = 100000;
1773 	if (wasted > 100000)
1774 		wasted = 100000;
1775 	/* store in the appropriate bucket */
1776 	/* don't bother locking. if it's slightly off, so what? */
1777 	mbprof.segments[segments]++;
1778 	mbprof.used[fls(used)]++;
1779 	mbprof.wasted[fls(wasted)]++;
1780 }
1781 
1782 static void
1783 mbprof_textify(void)
1784 {
1785 	int offset;
1786 	char *c;
1787 	uint64_t *p;
1788 
1789 	p = &mbprof.wasted[0];
1790 	c = mbprofbuf;
1791 	offset = snprintf(c, MP_MAXLINE + 10,
1792 	    "wasted:\n"
1793 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
1794 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
1795 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
1796 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
1797 #ifdef BIG_ARRAY
1798 	p = &mbprof.wasted[16];
1799 	c += offset;
1800 	offset = snprintf(c, MP_MAXLINE,
1801 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
1802 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
1803 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
1804 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
1805 #endif
1806 	p = &mbprof.used[0];
1807 	c += offset;
1808 	offset = snprintf(c, MP_MAXLINE + 10,
1809 	    "used:\n"
1810 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
1811 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
1812 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
1813 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
1814 #ifdef BIG_ARRAY
1815 	p = &mbprof.used[16];
1816 	c += offset;
1817 	offset = snprintf(c, MP_MAXLINE,
1818 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
1819 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
1820 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
1821 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
1822 #endif
1823 	p = &mbprof.segments[0];
1824 	c += offset;
1825 	offset = snprintf(c, MP_MAXLINE + 10,
1826 	    "segments:\n"
1827 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
1828 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
1829 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
1830 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
1831 #ifdef BIG_ARRAY
1832 	p = &mbprof.segments[16];
1833 	c += offset;
1834 	offset = snprintf(c, MP_MAXLINE,
1835 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
1836 	    "%ju %ju %ju %ju %ju %ju %ju %jju",
1837 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
1838 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
1839 #endif
1840 }
1841 
1842 static int
1843 mbprof_handler(SYSCTL_HANDLER_ARGS)
1844 {
1845 	int error;
1846 
1847 	mbprof_textify();
1848 	error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
1849 	return (error);
1850 }
1851 
1852 static int
1853 mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
1854 {
1855 	int clear, error;
1856 
1857 	clear = 0;
1858 	error = sysctl_handle_int(oidp, &clear, 0, req);
1859 	if (error || !req->newptr)
1860 		return (error);
1861 
1862 	if (clear) {
1863 		bzero(&mbprof, sizeof(mbprof));
1864 	}
1865 
1866 	return (error);
1867 }
1868 
1869 
1870 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD,
1871 	    NULL, 0, mbprof_handler, "A", "mbuf profiling statistics");
1872 
1873 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW,
1874 	    NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics");
1875 #endif
1876 
1877