1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_param.h" 36 #include "opt_mbuf_stress_test.h" 37 #include "opt_mbuf_profiling.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/limits.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/sysctl.h> 47 #include <sys/domain.h> 48 #include <sys/protosw.h> 49 #include <sys/uio.h> 50 51 int max_linkhdr; 52 int max_protohdr; 53 int max_hdr; 54 int max_datalen; 55 #ifdef MBUF_STRESS_TEST 56 int m_defragpackets; 57 int m_defragbytes; 58 int m_defraguseless; 59 int m_defragfailure; 60 int m_defragrandomfailures; 61 #endif 62 63 /* 64 * sysctl(8) exported objects 65 */ 66 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD, 67 &max_linkhdr, 0, "Size of largest link layer header"); 68 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD, 69 &max_protohdr, 0, "Size of largest protocol layer header"); 70 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD, 71 &max_hdr, 0, "Size of largest link plus protocol header"); 72 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD, 73 &max_datalen, 0, "Minimum space left in mbuf after max_hdr"); 74 #ifdef MBUF_STRESS_TEST 75 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD, 76 &m_defragpackets, 0, ""); 77 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD, 78 &m_defragbytes, 0, ""); 79 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD, 80 &m_defraguseless, 0, ""); 81 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD, 82 &m_defragfailure, 0, ""); 83 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW, 84 &m_defragrandomfailures, 0, ""); 85 #endif 86 87 /* 88 * Allocate a given length worth of mbufs and/or clusters (whatever fits 89 * best) and return a pointer to the top of the allocated chain. If an 90 * existing mbuf chain is provided, then we will append the new chain 91 * to the existing one but still return the top of the newly allocated 92 * chain. 93 */ 94 struct mbuf * 95 m_getm2(struct mbuf *m, int len, int how, short type, int flags) 96 { 97 struct mbuf *mb, *nm = NULL, *mtail = NULL; 98 99 KASSERT(len >= 0, ("%s: len is < 0", __func__)); 100 101 /* Validate flags. */ 102 flags &= (M_PKTHDR | M_EOR); 103 104 /* Packet header mbuf must be first in chain. */ 105 if ((flags & M_PKTHDR) && m != NULL) 106 flags &= ~M_PKTHDR; 107 108 /* Loop and append maximum sized mbufs to the chain tail. */ 109 while (len > 0) { 110 if (len > MCLBYTES) 111 mb = m_getjcl(how, type, (flags & M_PKTHDR), 112 MJUMPAGESIZE); 113 else if (len >= MINCLSIZE) 114 mb = m_getcl(how, type, (flags & M_PKTHDR)); 115 else if (flags & M_PKTHDR) 116 mb = m_gethdr(how, type); 117 else 118 mb = m_get(how, type); 119 120 /* Fail the whole operation if one mbuf can't be allocated. */ 121 if (mb == NULL) { 122 if (nm != NULL) 123 m_freem(nm); 124 return (NULL); 125 } 126 127 /* Book keeping. */ 128 len -= (mb->m_flags & M_EXT) ? mb->m_ext.ext_size : 129 ((mb->m_flags & M_PKTHDR) ? MHLEN : MLEN); 130 if (mtail != NULL) 131 mtail->m_next = mb; 132 else 133 nm = mb; 134 mtail = mb; 135 flags &= ~M_PKTHDR; /* Only valid on the first mbuf. */ 136 } 137 if (flags & M_EOR) 138 mtail->m_flags |= M_EOR; /* Only valid on the last mbuf. */ 139 140 /* If mbuf was supplied, append new chain to the end of it. */ 141 if (m != NULL) { 142 for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next) 143 ; 144 mtail->m_next = nm; 145 mtail->m_flags &= ~M_EOR; 146 } else 147 m = nm; 148 149 return (m); 150 } 151 152 /* 153 * Free an entire chain of mbufs and associated external buffers, if 154 * applicable. 155 */ 156 void 157 m_freem(struct mbuf *mb) 158 { 159 160 while (mb != NULL) 161 mb = m_free(mb); 162 } 163 164 /*- 165 * Configure a provided mbuf to refer to the provided external storage 166 * buffer and setup a reference count for said buffer. If the setting 167 * up of the reference count fails, the M_EXT bit will not be set. If 168 * successfull, the M_EXT bit is set in the mbuf's flags. 169 * 170 * Arguments: 171 * mb The existing mbuf to which to attach the provided buffer. 172 * buf The address of the provided external storage buffer. 173 * size The size of the provided buffer. 174 * freef A pointer to a routine that is responsible for freeing the 175 * provided external storage buffer. 176 * args A pointer to an argument structure (of any type) to be passed 177 * to the provided freef routine (may be NULL). 178 * flags Any other flags to be passed to the provided mbuf. 179 * type The type that the external storage buffer should be 180 * labeled with. 181 * 182 * Returns: 183 * Nothing. 184 */ 185 void 186 m_extadd(struct mbuf *mb, caddr_t buf, u_int size, 187 void (*freef)(void *, void *), void *arg1, void *arg2, int flags, int type) 188 { 189 KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__)); 190 191 if (type != EXT_EXTREF) 192 mb->m_ext.ref_cnt = (u_int *)uma_zalloc(zone_ext_refcnt, M_NOWAIT); 193 if (mb->m_ext.ref_cnt != NULL) { 194 *(mb->m_ext.ref_cnt) = 1; 195 mb->m_flags |= (M_EXT | flags); 196 mb->m_ext.ext_buf = buf; 197 mb->m_data = mb->m_ext.ext_buf; 198 mb->m_ext.ext_size = size; 199 mb->m_ext.ext_free = freef; 200 mb->m_ext.ext_arg1 = arg1; 201 mb->m_ext.ext_arg2 = arg2; 202 mb->m_ext.ext_type = type; 203 } 204 } 205 206 /* 207 * Non-directly-exported function to clean up after mbufs with M_EXT 208 * storage attached to them if the reference count hits 1. 209 */ 210 void 211 mb_free_ext(struct mbuf *m) 212 { 213 int skipmbuf; 214 215 KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__)); 216 KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__)); 217 218 219 /* 220 * check if the header is embedded in the cluster 221 */ 222 skipmbuf = (m->m_flags & M_NOFREE); 223 224 /* Free attached storage if this mbuf is the only reference to it. */ 225 if (*(m->m_ext.ref_cnt) == 1 || 226 atomic_fetchadd_int(m->m_ext.ref_cnt, -1) == 1) { 227 switch (m->m_ext.ext_type) { 228 case EXT_PACKET: /* The packet zone is special. */ 229 if (*(m->m_ext.ref_cnt) == 0) 230 *(m->m_ext.ref_cnt) = 1; 231 uma_zfree(zone_pack, m); 232 return; /* Job done. */ 233 case EXT_CLUSTER: 234 uma_zfree(zone_clust, m->m_ext.ext_buf); 235 break; 236 case EXT_JUMBOP: 237 uma_zfree(zone_jumbop, m->m_ext.ext_buf); 238 break; 239 case EXT_JUMBO9: 240 uma_zfree(zone_jumbo9, m->m_ext.ext_buf); 241 break; 242 case EXT_JUMBO16: 243 uma_zfree(zone_jumbo16, m->m_ext.ext_buf); 244 break; 245 case EXT_SFBUF: 246 case EXT_NET_DRV: 247 case EXT_MOD_TYPE: 248 case EXT_DISPOSABLE: 249 *(m->m_ext.ref_cnt) = 0; 250 uma_zfree(zone_ext_refcnt, __DEVOLATILE(u_int *, 251 m->m_ext.ref_cnt)); 252 /* FALLTHROUGH */ 253 case EXT_EXTREF: 254 KASSERT(m->m_ext.ext_free != NULL, 255 ("%s: ext_free not set", __func__)); 256 (*(m->m_ext.ext_free))(m->m_ext.ext_arg1, 257 m->m_ext.ext_arg2); 258 break; 259 default: 260 KASSERT(m->m_ext.ext_type == 0, 261 ("%s: unknown ext_type", __func__)); 262 } 263 } 264 if (skipmbuf) 265 return; 266 267 /* 268 * Free this mbuf back to the mbuf zone with all m_ext 269 * information purged. 270 */ 271 m->m_ext.ext_buf = NULL; 272 m->m_ext.ext_free = NULL; 273 m->m_ext.ext_arg1 = NULL; 274 m->m_ext.ext_arg2 = NULL; 275 m->m_ext.ref_cnt = NULL; 276 m->m_ext.ext_size = 0; 277 m->m_ext.ext_type = 0; 278 m->m_flags &= ~M_EXT; 279 uma_zfree(zone_mbuf, m); 280 } 281 282 /* 283 * Attach the the cluster from *m to *n, set up m_ext in *n 284 * and bump the refcount of the cluster. 285 */ 286 static void 287 mb_dupcl(struct mbuf *n, struct mbuf *m) 288 { 289 KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__)); 290 KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__)); 291 KASSERT((n->m_flags & M_EXT) == 0, ("%s: M_EXT set", __func__)); 292 293 if (*(m->m_ext.ref_cnt) == 1) 294 *(m->m_ext.ref_cnt) += 1; 295 else 296 atomic_add_int(m->m_ext.ref_cnt, 1); 297 n->m_ext.ext_buf = m->m_ext.ext_buf; 298 n->m_ext.ext_free = m->m_ext.ext_free; 299 n->m_ext.ext_arg1 = m->m_ext.ext_arg1; 300 n->m_ext.ext_arg2 = m->m_ext.ext_arg2; 301 n->m_ext.ext_size = m->m_ext.ext_size; 302 n->m_ext.ref_cnt = m->m_ext.ref_cnt; 303 n->m_ext.ext_type = m->m_ext.ext_type; 304 n->m_flags |= M_EXT; 305 } 306 307 /* 308 * Clean up mbuf (chain) from any tags and packet headers. 309 * If "all" is set then the first mbuf in the chain will be 310 * cleaned too. 311 */ 312 void 313 m_demote(struct mbuf *m0, int all) 314 { 315 struct mbuf *m; 316 317 for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) { 318 if (m->m_flags & M_PKTHDR) { 319 m_tag_delete_chain(m, NULL); 320 m->m_flags &= ~M_PKTHDR; 321 bzero(&m->m_pkthdr, sizeof(struct pkthdr)); 322 } 323 if (m->m_type == MT_HEADER) 324 m->m_type = MT_DATA; 325 if (m != m0 && m->m_nextpkt != NULL) 326 m->m_nextpkt = NULL; 327 m->m_flags = m->m_flags & (M_EXT|M_EOR|M_RDONLY|M_FREELIST); 328 } 329 } 330 331 /* 332 * Sanity checks on mbuf (chain) for use in KASSERT() and general 333 * debugging. 334 * Returns 0 or panics when bad and 1 on all tests passed. 335 * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they 336 * blow up later. 337 */ 338 int 339 m_sanity(struct mbuf *m0, int sanitize) 340 { 341 struct mbuf *m; 342 caddr_t a, b; 343 int pktlen = 0; 344 345 #ifdef INVARIANTS 346 #define M_SANITY_ACTION(s) panic("mbuf %p: " s, m) 347 #else 348 #define M_SANITY_ACTION(s) printf("mbuf %p: " s, m) 349 #endif 350 351 for (m = m0; m != NULL; m = m->m_next) { 352 /* 353 * Basic pointer checks. If any of these fails then some 354 * unrelated kernel memory before or after us is trashed. 355 * No way to recover from that. 356 */ 357 a = ((m->m_flags & M_EXT) ? m->m_ext.ext_buf : 358 ((m->m_flags & M_PKTHDR) ? (caddr_t)(&m->m_pktdat) : 359 (caddr_t)(&m->m_dat)) ); 360 b = (caddr_t)(a + (m->m_flags & M_EXT ? m->m_ext.ext_size : 361 ((m->m_flags & M_PKTHDR) ? MHLEN : MLEN))); 362 if ((caddr_t)m->m_data < a) 363 M_SANITY_ACTION("m_data outside mbuf data range left"); 364 if ((caddr_t)m->m_data > b) 365 M_SANITY_ACTION("m_data outside mbuf data range right"); 366 if ((caddr_t)m->m_data + m->m_len > b) 367 M_SANITY_ACTION("m_data + m_len exeeds mbuf space"); 368 if ((m->m_flags & M_PKTHDR) && m->m_pkthdr.header) { 369 if ((caddr_t)m->m_pkthdr.header < a || 370 (caddr_t)m->m_pkthdr.header > b) 371 M_SANITY_ACTION("m_pkthdr.header outside mbuf data range"); 372 } 373 374 /* m->m_nextpkt may only be set on first mbuf in chain. */ 375 if (m != m0 && m->m_nextpkt != NULL) { 376 if (sanitize) { 377 m_freem(m->m_nextpkt); 378 m->m_nextpkt = (struct mbuf *)0xDEADC0DE; 379 } else 380 M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf"); 381 } 382 383 /* packet length (not mbuf length!) calculation */ 384 if (m0->m_flags & M_PKTHDR) 385 pktlen += m->m_len; 386 387 /* m_tags may only be attached to first mbuf in chain. */ 388 if (m != m0 && m->m_flags & M_PKTHDR && 389 !SLIST_EMPTY(&m->m_pkthdr.tags)) { 390 if (sanitize) { 391 m_tag_delete_chain(m, NULL); 392 /* put in 0xDEADC0DE perhaps? */ 393 } else 394 M_SANITY_ACTION("m_tags on in-chain mbuf"); 395 } 396 397 /* M_PKTHDR may only be set on first mbuf in chain */ 398 if (m != m0 && m->m_flags & M_PKTHDR) { 399 if (sanitize) { 400 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr)); 401 m->m_flags &= ~M_PKTHDR; 402 /* put in 0xDEADCODE and leave hdr flag in */ 403 } else 404 M_SANITY_ACTION("M_PKTHDR on in-chain mbuf"); 405 } 406 } 407 m = m0; 408 if (pktlen && pktlen != m->m_pkthdr.len) { 409 if (sanitize) 410 m->m_pkthdr.len = 0; 411 else 412 M_SANITY_ACTION("m_pkthdr.len != mbuf chain length"); 413 } 414 return 1; 415 416 #undef M_SANITY_ACTION 417 } 418 419 420 /* 421 * "Move" mbuf pkthdr from "from" to "to". 422 * "from" must have M_PKTHDR set, and "to" must be empty. 423 */ 424 void 425 m_move_pkthdr(struct mbuf *to, struct mbuf *from) 426 { 427 428 #if 0 429 /* see below for why these are not enabled */ 430 M_ASSERTPKTHDR(to); 431 /* Note: with MAC, this may not be a good assertion. */ 432 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), 433 ("m_move_pkthdr: to has tags")); 434 #endif 435 #ifdef MAC 436 /* 437 * XXXMAC: It could be this should also occur for non-MAC? 438 */ 439 if (to->m_flags & M_PKTHDR) 440 m_tag_delete_chain(to, NULL); 441 #endif 442 to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); 443 if ((to->m_flags & M_EXT) == 0) 444 to->m_data = to->m_pktdat; 445 to->m_pkthdr = from->m_pkthdr; /* especially tags */ 446 SLIST_INIT(&from->m_pkthdr.tags); /* purge tags from src */ 447 from->m_flags &= ~M_PKTHDR; 448 } 449 450 /* 451 * Duplicate "from"'s mbuf pkthdr in "to". 452 * "from" must have M_PKTHDR set, and "to" must be empty. 453 * In particular, this does a deep copy of the packet tags. 454 */ 455 int 456 m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how) 457 { 458 459 #if 0 460 /* 461 * The mbuf allocator only initializes the pkthdr 462 * when the mbuf is allocated with MGETHDR. Many users 463 * (e.g. m_copy*, m_prepend) use MGET and then 464 * smash the pkthdr as needed causing these 465 * assertions to trip. For now just disable them. 466 */ 467 M_ASSERTPKTHDR(to); 468 /* Note: with MAC, this may not be a good assertion. */ 469 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags")); 470 #endif 471 MBUF_CHECKSLEEP(how); 472 #ifdef MAC 473 if (to->m_flags & M_PKTHDR) 474 m_tag_delete_chain(to, NULL); 475 #endif 476 to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); 477 if ((to->m_flags & M_EXT) == 0) 478 to->m_data = to->m_pktdat; 479 to->m_pkthdr = from->m_pkthdr; 480 SLIST_INIT(&to->m_pkthdr.tags); 481 return (m_tag_copy_chain(to, from, MBTOM(how))); 482 } 483 484 /* 485 * Lesser-used path for M_PREPEND: 486 * allocate new mbuf to prepend to chain, 487 * copy junk along. 488 */ 489 struct mbuf * 490 m_prepend(struct mbuf *m, int len, int how) 491 { 492 struct mbuf *mn; 493 494 if (m->m_flags & M_PKTHDR) 495 MGETHDR(mn, how, m->m_type); 496 else 497 MGET(mn, how, m->m_type); 498 if (mn == NULL) { 499 m_freem(m); 500 return (NULL); 501 } 502 if (m->m_flags & M_PKTHDR) 503 M_MOVE_PKTHDR(mn, m); 504 mn->m_next = m; 505 m = mn; 506 if(m->m_flags & M_PKTHDR) { 507 if (len < MHLEN) 508 MH_ALIGN(m, len); 509 } else { 510 if (len < MLEN) 511 M_ALIGN(m, len); 512 } 513 m->m_len = len; 514 return (m); 515 } 516 517 /* 518 * Make a copy of an mbuf chain starting "off0" bytes from the beginning, 519 * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf. 520 * The wait parameter is a choice of M_WAIT/M_DONTWAIT from caller. 521 * Note that the copy is read-only, because clusters are not copied, 522 * only their reference counts are incremented. 523 */ 524 struct mbuf * 525 m_copym(struct mbuf *m, int off0, int len, int wait) 526 { 527 struct mbuf *n, **np; 528 int off = off0; 529 struct mbuf *top; 530 int copyhdr = 0; 531 532 KASSERT(off >= 0, ("m_copym, negative off %d", off)); 533 KASSERT(len >= 0, ("m_copym, negative len %d", len)); 534 MBUF_CHECKSLEEP(wait); 535 if (off == 0 && m->m_flags & M_PKTHDR) 536 copyhdr = 1; 537 while (off > 0) { 538 KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain")); 539 if (off < m->m_len) 540 break; 541 off -= m->m_len; 542 m = m->m_next; 543 } 544 np = ⊤ 545 top = 0; 546 while (len > 0) { 547 if (m == NULL) { 548 KASSERT(len == M_COPYALL, 549 ("m_copym, length > size of mbuf chain")); 550 break; 551 } 552 if (copyhdr) 553 MGETHDR(n, wait, m->m_type); 554 else 555 MGET(n, wait, m->m_type); 556 *np = n; 557 if (n == NULL) 558 goto nospace; 559 if (copyhdr) { 560 if (!m_dup_pkthdr(n, m, wait)) 561 goto nospace; 562 if (len == M_COPYALL) 563 n->m_pkthdr.len -= off0; 564 else 565 n->m_pkthdr.len = len; 566 copyhdr = 0; 567 } 568 n->m_len = min(len, m->m_len - off); 569 if (m->m_flags & M_EXT) { 570 n->m_data = m->m_data + off; 571 mb_dupcl(n, m); 572 } else 573 bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t), 574 (u_int)n->m_len); 575 if (len != M_COPYALL) 576 len -= n->m_len; 577 off = 0; 578 m = m->m_next; 579 np = &n->m_next; 580 } 581 if (top == NULL) 582 mbstat.m_mcfail++; /* XXX: No consistency. */ 583 584 return (top); 585 nospace: 586 m_freem(top); 587 mbstat.m_mcfail++; /* XXX: No consistency. */ 588 return (NULL); 589 } 590 591 /* 592 * Returns mbuf chain with new head for the prepending case. 593 * Copies from mbuf (chain) n from off for len to mbuf (chain) m 594 * either prepending or appending the data. 595 * The resulting mbuf (chain) m is fully writeable. 596 * m is destination (is made writeable) 597 * n is source, off is offset in source, len is len from offset 598 * dir, 0 append, 1 prepend 599 * how, wait or nowait 600 */ 601 602 static int 603 m_bcopyxxx(void *s, void *t, u_int len) 604 { 605 bcopy(s, t, (size_t)len); 606 return 0; 607 } 608 609 struct mbuf * 610 m_copymdata(struct mbuf *m, struct mbuf *n, int off, int len, 611 int prep, int how) 612 { 613 struct mbuf *mm, *x, *z, *prev = NULL; 614 caddr_t p; 615 int i, nlen = 0; 616 caddr_t buf[MLEN]; 617 618 KASSERT(m != NULL && n != NULL, ("m_copymdata, no target or source")); 619 KASSERT(off >= 0, ("m_copymdata, negative off %d", off)); 620 KASSERT(len >= 0, ("m_copymdata, negative len %d", len)); 621 KASSERT(prep == 0 || prep == 1, ("m_copymdata, unknown direction %d", prep)); 622 623 mm = m; 624 if (!prep) { 625 while(mm->m_next) { 626 prev = mm; 627 mm = mm->m_next; 628 } 629 } 630 for (z = n; z != NULL; z = z->m_next) 631 nlen += z->m_len; 632 if (len == M_COPYALL) 633 len = nlen - off; 634 if (off + len > nlen || len < 1) 635 return NULL; 636 637 if (!M_WRITABLE(mm)) { 638 /* XXX: Use proper m_xxx function instead. */ 639 x = m_getcl(how, MT_DATA, mm->m_flags); 640 if (x == NULL) 641 return NULL; 642 bcopy(mm->m_ext.ext_buf, x->m_ext.ext_buf, x->m_ext.ext_size); 643 p = x->m_ext.ext_buf + (mm->m_data - mm->m_ext.ext_buf); 644 x->m_data = p; 645 mm->m_next = NULL; 646 if (mm != m) 647 prev->m_next = x; 648 m_free(mm); 649 mm = x; 650 } 651 652 /* 653 * Append/prepend the data. Allocating mbufs as necessary. 654 */ 655 /* Shortcut if enough free space in first/last mbuf. */ 656 if (!prep && M_TRAILINGSPACE(mm) >= len) { 657 m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t) + 658 mm->m_len); 659 mm->m_len += len; 660 mm->m_pkthdr.len += len; 661 return m; 662 } 663 if (prep && M_LEADINGSPACE(mm) >= len) { 664 mm->m_data = mtod(mm, caddr_t) - len; 665 m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t)); 666 mm->m_len += len; 667 mm->m_pkthdr.len += len; 668 return mm; 669 } 670 671 /* Expand first/last mbuf to cluster if possible. */ 672 if (!prep && !(mm->m_flags & M_EXT) && len > M_TRAILINGSPACE(mm)) { 673 bcopy(mm->m_data, &buf, mm->m_len); 674 m_clget(mm, how); 675 if (!(mm->m_flags & M_EXT)) 676 return NULL; 677 bcopy(&buf, mm->m_ext.ext_buf, mm->m_len); 678 mm->m_data = mm->m_ext.ext_buf; 679 mm->m_pkthdr.header = NULL; 680 } 681 if (prep && !(mm->m_flags & M_EXT) && len > M_LEADINGSPACE(mm)) { 682 bcopy(mm->m_data, &buf, mm->m_len); 683 m_clget(mm, how); 684 if (!(mm->m_flags & M_EXT)) 685 return NULL; 686 bcopy(&buf, (caddr_t *)mm->m_ext.ext_buf + 687 mm->m_ext.ext_size - mm->m_len, mm->m_len); 688 mm->m_data = (caddr_t)mm->m_ext.ext_buf + 689 mm->m_ext.ext_size - mm->m_len; 690 mm->m_pkthdr.header = NULL; 691 } 692 693 /* Append/prepend as many mbuf (clusters) as necessary to fit len. */ 694 if (!prep && len > M_TRAILINGSPACE(mm)) { 695 if (!m_getm(mm, len - M_TRAILINGSPACE(mm), how, MT_DATA)) 696 return NULL; 697 } 698 if (prep && len > M_LEADINGSPACE(mm)) { 699 if (!(z = m_getm(NULL, len - M_LEADINGSPACE(mm), how, MT_DATA))) 700 return NULL; 701 i = 0; 702 for (x = z; x != NULL; x = x->m_next) { 703 i += x->m_flags & M_EXT ? x->m_ext.ext_size : 704 (x->m_flags & M_PKTHDR ? MHLEN : MLEN); 705 if (!x->m_next) 706 break; 707 } 708 z->m_data += i - len; 709 m_move_pkthdr(mm, z); 710 x->m_next = mm; 711 mm = z; 712 } 713 714 /* Seek to start position in source mbuf. Optimization for long chains. */ 715 while (off > 0) { 716 if (off < n->m_len) 717 break; 718 off -= n->m_len; 719 n = n->m_next; 720 } 721 722 /* Copy data into target mbuf. */ 723 z = mm; 724 while (len > 0) { 725 KASSERT(z != NULL, ("m_copymdata, falling off target edge")); 726 i = M_TRAILINGSPACE(z); 727 m_apply(n, off, i, m_bcopyxxx, mtod(z, caddr_t) + z->m_len); 728 z->m_len += i; 729 /* fixup pkthdr.len if necessary */ 730 if ((prep ? mm : m)->m_flags & M_PKTHDR) 731 (prep ? mm : m)->m_pkthdr.len += i; 732 off += i; 733 len -= i; 734 z = z->m_next; 735 } 736 return (prep ? mm : m); 737 } 738 739 /* 740 * Copy an entire packet, including header (which must be present). 741 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'. 742 * Note that the copy is read-only, because clusters are not copied, 743 * only their reference counts are incremented. 744 * Preserve alignment of the first mbuf so if the creator has left 745 * some room at the beginning (e.g. for inserting protocol headers) 746 * the copies still have the room available. 747 */ 748 struct mbuf * 749 m_copypacket(struct mbuf *m, int how) 750 { 751 struct mbuf *top, *n, *o; 752 753 MBUF_CHECKSLEEP(how); 754 MGET(n, how, m->m_type); 755 top = n; 756 if (n == NULL) 757 goto nospace; 758 759 if (!m_dup_pkthdr(n, m, how)) 760 goto nospace; 761 n->m_len = m->m_len; 762 if (m->m_flags & M_EXT) { 763 n->m_data = m->m_data; 764 mb_dupcl(n, m); 765 } else { 766 n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat ); 767 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 768 } 769 770 m = m->m_next; 771 while (m) { 772 MGET(o, how, m->m_type); 773 if (o == NULL) 774 goto nospace; 775 776 n->m_next = o; 777 n = n->m_next; 778 779 n->m_len = m->m_len; 780 if (m->m_flags & M_EXT) { 781 n->m_data = m->m_data; 782 mb_dupcl(n, m); 783 } else { 784 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 785 } 786 787 m = m->m_next; 788 } 789 return top; 790 nospace: 791 m_freem(top); 792 mbstat.m_mcfail++; /* XXX: No consistency. */ 793 return (NULL); 794 } 795 796 /* 797 * Copy data from an mbuf chain starting "off" bytes from the beginning, 798 * continuing for "len" bytes, into the indicated buffer. 799 */ 800 void 801 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp) 802 { 803 u_int count; 804 805 KASSERT(off >= 0, ("m_copydata, negative off %d", off)); 806 KASSERT(len >= 0, ("m_copydata, negative len %d", len)); 807 while (off > 0) { 808 KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain")); 809 if (off < m->m_len) 810 break; 811 off -= m->m_len; 812 m = m->m_next; 813 } 814 while (len > 0) { 815 KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain")); 816 count = min(m->m_len - off, len); 817 bcopy(mtod(m, caddr_t) + off, cp, count); 818 len -= count; 819 cp += count; 820 off = 0; 821 m = m->m_next; 822 } 823 } 824 825 /* 826 * Copy a packet header mbuf chain into a completely new chain, including 827 * copying any mbuf clusters. Use this instead of m_copypacket() when 828 * you need a writable copy of an mbuf chain. 829 */ 830 struct mbuf * 831 m_dup(struct mbuf *m, int how) 832 { 833 struct mbuf **p, *top = NULL; 834 int remain, moff, nsize; 835 836 MBUF_CHECKSLEEP(how); 837 /* Sanity check */ 838 if (m == NULL) 839 return (NULL); 840 M_ASSERTPKTHDR(m); 841 842 /* While there's more data, get a new mbuf, tack it on, and fill it */ 843 remain = m->m_pkthdr.len; 844 moff = 0; 845 p = ⊤ 846 while (remain > 0 || top == NULL) { /* allow m->m_pkthdr.len == 0 */ 847 struct mbuf *n; 848 849 /* Get the next new mbuf */ 850 if (remain >= MINCLSIZE) { 851 n = m_getcl(how, m->m_type, 0); 852 nsize = MCLBYTES; 853 } else { 854 n = m_get(how, m->m_type); 855 nsize = MLEN; 856 } 857 if (n == NULL) 858 goto nospace; 859 860 if (top == NULL) { /* First one, must be PKTHDR */ 861 if (!m_dup_pkthdr(n, m, how)) { 862 m_free(n); 863 goto nospace; 864 } 865 if ((n->m_flags & M_EXT) == 0) 866 nsize = MHLEN; 867 } 868 n->m_len = 0; 869 870 /* Link it into the new chain */ 871 *p = n; 872 p = &n->m_next; 873 874 /* Copy data from original mbuf(s) into new mbuf */ 875 while (n->m_len < nsize && m != NULL) { 876 int chunk = min(nsize - n->m_len, m->m_len - moff); 877 878 bcopy(m->m_data + moff, n->m_data + n->m_len, chunk); 879 moff += chunk; 880 n->m_len += chunk; 881 remain -= chunk; 882 if (moff == m->m_len) { 883 m = m->m_next; 884 moff = 0; 885 } 886 } 887 888 /* Check correct total mbuf length */ 889 KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL), 890 ("%s: bogus m_pkthdr.len", __func__)); 891 } 892 return (top); 893 894 nospace: 895 m_freem(top); 896 mbstat.m_mcfail++; /* XXX: No consistency. */ 897 return (NULL); 898 } 899 900 /* 901 * Concatenate mbuf chain n to m. 902 * Both chains must be of the same type (e.g. MT_DATA). 903 * Any m_pkthdr is not updated. 904 */ 905 void 906 m_cat(struct mbuf *m, struct mbuf *n) 907 { 908 while (m->m_next) 909 m = m->m_next; 910 while (n) { 911 if (m->m_flags & M_EXT || 912 m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) { 913 /* just join the two chains */ 914 m->m_next = n; 915 return; 916 } 917 /* splat the data from one into the other */ 918 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 919 (u_int)n->m_len); 920 m->m_len += n->m_len; 921 n = m_free(n); 922 } 923 } 924 925 void 926 m_adj(struct mbuf *mp, int req_len) 927 { 928 int len = req_len; 929 struct mbuf *m; 930 int count; 931 932 if ((m = mp) == NULL) 933 return; 934 if (len >= 0) { 935 /* 936 * Trim from head. 937 */ 938 while (m != NULL && len > 0) { 939 if (m->m_len <= len) { 940 len -= m->m_len; 941 m->m_len = 0; 942 m = m->m_next; 943 } else { 944 m->m_len -= len; 945 m->m_data += len; 946 len = 0; 947 } 948 } 949 m = mp; 950 if (mp->m_flags & M_PKTHDR) 951 m->m_pkthdr.len -= (req_len - len); 952 } else { 953 /* 954 * Trim from tail. Scan the mbuf chain, 955 * calculating its length and finding the last mbuf. 956 * If the adjustment only affects this mbuf, then just 957 * adjust and return. Otherwise, rescan and truncate 958 * after the remaining size. 959 */ 960 len = -len; 961 count = 0; 962 for (;;) { 963 count += m->m_len; 964 if (m->m_next == (struct mbuf *)0) 965 break; 966 m = m->m_next; 967 } 968 if (m->m_len >= len) { 969 m->m_len -= len; 970 if (mp->m_flags & M_PKTHDR) 971 mp->m_pkthdr.len -= len; 972 return; 973 } 974 count -= len; 975 if (count < 0) 976 count = 0; 977 /* 978 * Correct length for chain is "count". 979 * Find the mbuf with last data, adjust its length, 980 * and toss data from remaining mbufs on chain. 981 */ 982 m = mp; 983 if (m->m_flags & M_PKTHDR) 984 m->m_pkthdr.len = count; 985 for (; m; m = m->m_next) { 986 if (m->m_len >= count) { 987 m->m_len = count; 988 if (m->m_next != NULL) { 989 m_freem(m->m_next); 990 m->m_next = NULL; 991 } 992 break; 993 } 994 count -= m->m_len; 995 } 996 } 997 } 998 999 /* 1000 * Rearange an mbuf chain so that len bytes are contiguous 1001 * and in the data area of an mbuf (so that mtod and dtom 1002 * will work for a structure of size len). Returns the resulting 1003 * mbuf chain on success, frees it and returns null on failure. 1004 * If there is room, it will add up to max_protohdr-len extra bytes to the 1005 * contiguous region in an attempt to avoid being called next time. 1006 */ 1007 struct mbuf * 1008 m_pullup(struct mbuf *n, int len) 1009 { 1010 struct mbuf *m; 1011 int count; 1012 int space; 1013 1014 /* 1015 * If first mbuf has no cluster, and has room for len bytes 1016 * without shifting current data, pullup into it, 1017 * otherwise allocate a new mbuf to prepend to the chain. 1018 */ 1019 if ((n->m_flags & M_EXT) == 0 && 1020 n->m_data + len < &n->m_dat[MLEN] && n->m_next) { 1021 if (n->m_len >= len) 1022 return (n); 1023 m = n; 1024 n = n->m_next; 1025 len -= m->m_len; 1026 } else { 1027 if (len > MHLEN) 1028 goto bad; 1029 MGET(m, M_DONTWAIT, n->m_type); 1030 if (m == NULL) 1031 goto bad; 1032 m->m_len = 0; 1033 if (n->m_flags & M_PKTHDR) 1034 M_MOVE_PKTHDR(m, n); 1035 } 1036 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 1037 do { 1038 count = min(min(max(len, max_protohdr), space), n->m_len); 1039 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 1040 (u_int)count); 1041 len -= count; 1042 m->m_len += count; 1043 n->m_len -= count; 1044 space -= count; 1045 if (n->m_len) 1046 n->m_data += count; 1047 else 1048 n = m_free(n); 1049 } while (len > 0 && n); 1050 if (len > 0) { 1051 (void) m_free(m); 1052 goto bad; 1053 } 1054 m->m_next = n; 1055 return (m); 1056 bad: 1057 m_freem(n); 1058 mbstat.m_mpfail++; /* XXX: No consistency. */ 1059 return (NULL); 1060 } 1061 1062 /* 1063 * Like m_pullup(), except a new mbuf is always allocated, and we allow 1064 * the amount of empty space before the data in the new mbuf to be specified 1065 * (in the event that the caller expects to prepend later). 1066 */ 1067 int MSFail; 1068 1069 struct mbuf * 1070 m_copyup(struct mbuf *n, int len, int dstoff) 1071 { 1072 struct mbuf *m; 1073 int count, space; 1074 1075 if (len > (MHLEN - dstoff)) 1076 goto bad; 1077 MGET(m, M_DONTWAIT, n->m_type); 1078 if (m == NULL) 1079 goto bad; 1080 m->m_len = 0; 1081 if (n->m_flags & M_PKTHDR) 1082 M_MOVE_PKTHDR(m, n); 1083 m->m_data += dstoff; 1084 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 1085 do { 1086 count = min(min(max(len, max_protohdr), space), n->m_len); 1087 memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t), 1088 (unsigned)count); 1089 len -= count; 1090 m->m_len += count; 1091 n->m_len -= count; 1092 space -= count; 1093 if (n->m_len) 1094 n->m_data += count; 1095 else 1096 n = m_free(n); 1097 } while (len > 0 && n); 1098 if (len > 0) { 1099 (void) m_free(m); 1100 goto bad; 1101 } 1102 m->m_next = n; 1103 return (m); 1104 bad: 1105 m_freem(n); 1106 MSFail++; 1107 return (NULL); 1108 } 1109 1110 /* 1111 * Partition an mbuf chain in two pieces, returning the tail -- 1112 * all but the first len0 bytes. In case of failure, it returns NULL and 1113 * attempts to restore the chain to its original state. 1114 * 1115 * Note that the resulting mbufs might be read-only, because the new 1116 * mbuf can end up sharing an mbuf cluster with the original mbuf if 1117 * the "breaking point" happens to lie within a cluster mbuf. Use the 1118 * M_WRITABLE() macro to check for this case. 1119 */ 1120 struct mbuf * 1121 m_split(struct mbuf *m0, int len0, int wait) 1122 { 1123 struct mbuf *m, *n; 1124 u_int len = len0, remain; 1125 1126 MBUF_CHECKSLEEP(wait); 1127 for (m = m0; m && len > m->m_len; m = m->m_next) 1128 len -= m->m_len; 1129 if (m == NULL) 1130 return (NULL); 1131 remain = m->m_len - len; 1132 if (m0->m_flags & M_PKTHDR) { 1133 MGETHDR(n, wait, m0->m_type); 1134 if (n == NULL) 1135 return (NULL); 1136 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; 1137 n->m_pkthdr.len = m0->m_pkthdr.len - len0; 1138 m0->m_pkthdr.len = len0; 1139 if (m->m_flags & M_EXT) 1140 goto extpacket; 1141 if (remain > MHLEN) { 1142 /* m can't be the lead packet */ 1143 MH_ALIGN(n, 0); 1144 n->m_next = m_split(m, len, wait); 1145 if (n->m_next == NULL) { 1146 (void) m_free(n); 1147 return (NULL); 1148 } else { 1149 n->m_len = 0; 1150 return (n); 1151 } 1152 } else 1153 MH_ALIGN(n, remain); 1154 } else if (remain == 0) { 1155 n = m->m_next; 1156 m->m_next = NULL; 1157 return (n); 1158 } else { 1159 MGET(n, wait, m->m_type); 1160 if (n == NULL) 1161 return (NULL); 1162 M_ALIGN(n, remain); 1163 } 1164 extpacket: 1165 if (m->m_flags & M_EXT) { 1166 n->m_data = m->m_data + len; 1167 mb_dupcl(n, m); 1168 } else { 1169 bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain); 1170 } 1171 n->m_len = remain; 1172 m->m_len = len; 1173 n->m_next = m->m_next; 1174 m->m_next = NULL; 1175 return (n); 1176 } 1177 /* 1178 * Routine to copy from device local memory into mbufs. 1179 * Note that `off' argument is offset into first mbuf of target chain from 1180 * which to begin copying the data to. 1181 */ 1182 struct mbuf * 1183 m_devget(char *buf, int totlen, int off, struct ifnet *ifp, 1184 void (*copy)(char *from, caddr_t to, u_int len)) 1185 { 1186 struct mbuf *m; 1187 struct mbuf *top = NULL, **mp = ⊤ 1188 int len; 1189 1190 if (off < 0 || off > MHLEN) 1191 return (NULL); 1192 1193 while (totlen > 0) { 1194 if (top == NULL) { /* First one, must be PKTHDR */ 1195 if (totlen + off >= MINCLSIZE) { 1196 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1197 len = MCLBYTES; 1198 } else { 1199 m = m_gethdr(M_DONTWAIT, MT_DATA); 1200 len = MHLEN; 1201 1202 /* Place initial small packet/header at end of mbuf */ 1203 if (m && totlen + off + max_linkhdr <= MLEN) { 1204 m->m_data += max_linkhdr; 1205 len -= max_linkhdr; 1206 } 1207 } 1208 if (m == NULL) 1209 return NULL; 1210 m->m_pkthdr.rcvif = ifp; 1211 m->m_pkthdr.len = totlen; 1212 } else { 1213 if (totlen + off >= MINCLSIZE) { 1214 m = m_getcl(M_DONTWAIT, MT_DATA, 0); 1215 len = MCLBYTES; 1216 } else { 1217 m = m_get(M_DONTWAIT, MT_DATA); 1218 len = MLEN; 1219 } 1220 if (m == NULL) { 1221 m_freem(top); 1222 return NULL; 1223 } 1224 } 1225 if (off) { 1226 m->m_data += off; 1227 len -= off; 1228 off = 0; 1229 } 1230 m->m_len = len = min(totlen, len); 1231 if (copy) 1232 copy(buf, mtod(m, caddr_t), (u_int)len); 1233 else 1234 bcopy(buf, mtod(m, caddr_t), (u_int)len); 1235 buf += len; 1236 *mp = m; 1237 mp = &m->m_next; 1238 totlen -= len; 1239 } 1240 return (top); 1241 } 1242 1243 /* 1244 * Copy data from a buffer back into the indicated mbuf chain, 1245 * starting "off" bytes from the beginning, extending the mbuf 1246 * chain if necessary. 1247 */ 1248 void 1249 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp) 1250 { 1251 int mlen; 1252 struct mbuf *m = m0, *n; 1253 int totlen = 0; 1254 1255 if (m0 == NULL) 1256 return; 1257 while (off > (mlen = m->m_len)) { 1258 off -= mlen; 1259 totlen += mlen; 1260 if (m->m_next == NULL) { 1261 n = m_get(M_DONTWAIT, m->m_type); 1262 if (n == NULL) 1263 goto out; 1264 bzero(mtod(n, caddr_t), MLEN); 1265 n->m_len = min(MLEN, len + off); 1266 m->m_next = n; 1267 } 1268 m = m->m_next; 1269 } 1270 while (len > 0) { 1271 if (m->m_next == NULL && (len > m->m_len - off)) { 1272 m->m_len += min(len - (m->m_len - off), 1273 M_TRAILINGSPACE(m)); 1274 } 1275 mlen = min (m->m_len - off, len); 1276 bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen); 1277 cp += mlen; 1278 len -= mlen; 1279 mlen += off; 1280 off = 0; 1281 totlen += mlen; 1282 if (len == 0) 1283 break; 1284 if (m->m_next == NULL) { 1285 n = m_get(M_DONTWAIT, m->m_type); 1286 if (n == NULL) 1287 break; 1288 n->m_len = min(MLEN, len); 1289 m->m_next = n; 1290 } 1291 m = m->m_next; 1292 } 1293 out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) 1294 m->m_pkthdr.len = totlen; 1295 } 1296 1297 /* 1298 * Append the specified data to the indicated mbuf chain, 1299 * Extend the mbuf chain if the new data does not fit in 1300 * existing space. 1301 * 1302 * Return 1 if able to complete the job; otherwise 0. 1303 */ 1304 int 1305 m_append(struct mbuf *m0, int len, c_caddr_t cp) 1306 { 1307 struct mbuf *m, *n; 1308 int remainder, space; 1309 1310 for (m = m0; m->m_next != NULL; m = m->m_next) 1311 ; 1312 remainder = len; 1313 space = M_TRAILINGSPACE(m); 1314 if (space > 0) { 1315 /* 1316 * Copy into available space. 1317 */ 1318 if (space > remainder) 1319 space = remainder; 1320 bcopy(cp, mtod(m, caddr_t) + m->m_len, space); 1321 m->m_len += space; 1322 cp += space, remainder -= space; 1323 } 1324 while (remainder > 0) { 1325 /* 1326 * Allocate a new mbuf; could check space 1327 * and allocate a cluster instead. 1328 */ 1329 n = m_get(M_DONTWAIT, m->m_type); 1330 if (n == NULL) 1331 break; 1332 n->m_len = min(MLEN, remainder); 1333 bcopy(cp, mtod(n, caddr_t), n->m_len); 1334 cp += n->m_len, remainder -= n->m_len; 1335 m->m_next = n; 1336 m = n; 1337 } 1338 if (m0->m_flags & M_PKTHDR) 1339 m0->m_pkthdr.len += len - remainder; 1340 return (remainder == 0); 1341 } 1342 1343 /* 1344 * Apply function f to the data in an mbuf chain starting "off" bytes from 1345 * the beginning, continuing for "len" bytes. 1346 */ 1347 int 1348 m_apply(struct mbuf *m, int off, int len, 1349 int (*f)(void *, void *, u_int), void *arg) 1350 { 1351 u_int count; 1352 int rval; 1353 1354 KASSERT(off >= 0, ("m_apply, negative off %d", off)); 1355 KASSERT(len >= 0, ("m_apply, negative len %d", len)); 1356 while (off > 0) { 1357 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1358 if (off < m->m_len) 1359 break; 1360 off -= m->m_len; 1361 m = m->m_next; 1362 } 1363 while (len > 0) { 1364 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1365 count = min(m->m_len - off, len); 1366 rval = (*f)(arg, mtod(m, caddr_t) + off, count); 1367 if (rval) 1368 return (rval); 1369 len -= count; 1370 off = 0; 1371 m = m->m_next; 1372 } 1373 return (0); 1374 } 1375 1376 /* 1377 * Return a pointer to mbuf/offset of location in mbuf chain. 1378 */ 1379 struct mbuf * 1380 m_getptr(struct mbuf *m, int loc, int *off) 1381 { 1382 1383 while (loc >= 0) { 1384 /* Normal end of search. */ 1385 if (m->m_len > loc) { 1386 *off = loc; 1387 return (m); 1388 } else { 1389 loc -= m->m_len; 1390 if (m->m_next == NULL) { 1391 if (loc == 0) { 1392 /* Point at the end of valid data. */ 1393 *off = m->m_len; 1394 return (m); 1395 } 1396 return (NULL); 1397 } 1398 m = m->m_next; 1399 } 1400 } 1401 return (NULL); 1402 } 1403 1404 void 1405 m_print(const struct mbuf *m, int maxlen) 1406 { 1407 int len; 1408 int pdata; 1409 const struct mbuf *m2; 1410 1411 if (m->m_flags & M_PKTHDR) 1412 len = m->m_pkthdr.len; 1413 else 1414 len = -1; 1415 m2 = m; 1416 while (m2 != NULL && (len == -1 || len)) { 1417 pdata = m2->m_len; 1418 if (maxlen != -1 && pdata > maxlen) 1419 pdata = maxlen; 1420 printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len, 1421 m2->m_next, m2->m_flags, "\20\20freelist\17skipfw" 1422 "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly" 1423 "\3eor\2pkthdr\1ext", pdata ? "" : "\n"); 1424 if (pdata) 1425 printf(", %*D\n", pdata, (u_char *)m2->m_data, "-"); 1426 if (len != -1) 1427 len -= m2->m_len; 1428 m2 = m2->m_next; 1429 } 1430 if (len > 0) 1431 printf("%d bytes unaccounted for.\n", len); 1432 return; 1433 } 1434 1435 u_int 1436 m_fixhdr(struct mbuf *m0) 1437 { 1438 u_int len; 1439 1440 len = m_length(m0, NULL); 1441 m0->m_pkthdr.len = len; 1442 return (len); 1443 } 1444 1445 u_int 1446 m_length(struct mbuf *m0, struct mbuf **last) 1447 { 1448 struct mbuf *m; 1449 u_int len; 1450 1451 len = 0; 1452 for (m = m0; m != NULL; m = m->m_next) { 1453 len += m->m_len; 1454 if (m->m_next == NULL) 1455 break; 1456 } 1457 if (last != NULL) 1458 *last = m; 1459 return (len); 1460 } 1461 1462 /* 1463 * Defragment a mbuf chain, returning the shortest possible 1464 * chain of mbufs and clusters. If allocation fails and 1465 * this cannot be completed, NULL will be returned, but 1466 * the passed in chain will be unchanged. Upon success, 1467 * the original chain will be freed, and the new chain 1468 * will be returned. 1469 * 1470 * If a non-packet header is passed in, the original 1471 * mbuf (chain?) will be returned unharmed. 1472 */ 1473 struct mbuf * 1474 m_defrag(struct mbuf *m0, int how) 1475 { 1476 struct mbuf *m_new = NULL, *m_final = NULL; 1477 int progress = 0, length; 1478 1479 MBUF_CHECKSLEEP(how); 1480 if (!(m0->m_flags & M_PKTHDR)) 1481 return (m0); 1482 1483 m_fixhdr(m0); /* Needed sanity check */ 1484 1485 #ifdef MBUF_STRESS_TEST 1486 if (m_defragrandomfailures) { 1487 int temp = arc4random() & 0xff; 1488 if (temp == 0xba) 1489 goto nospace; 1490 } 1491 #endif 1492 1493 if (m0->m_pkthdr.len > MHLEN) 1494 m_final = m_getcl(how, MT_DATA, M_PKTHDR); 1495 else 1496 m_final = m_gethdr(how, MT_DATA); 1497 1498 if (m_final == NULL) 1499 goto nospace; 1500 1501 if (m_dup_pkthdr(m_final, m0, how) == 0) 1502 goto nospace; 1503 1504 m_new = m_final; 1505 1506 while (progress < m0->m_pkthdr.len) { 1507 length = m0->m_pkthdr.len - progress; 1508 if (length > MCLBYTES) 1509 length = MCLBYTES; 1510 1511 if (m_new == NULL) { 1512 if (length > MLEN) 1513 m_new = m_getcl(how, MT_DATA, 0); 1514 else 1515 m_new = m_get(how, MT_DATA); 1516 if (m_new == NULL) 1517 goto nospace; 1518 } 1519 1520 m_copydata(m0, progress, length, mtod(m_new, caddr_t)); 1521 progress += length; 1522 m_new->m_len = length; 1523 if (m_new != m_final) 1524 m_cat(m_final, m_new); 1525 m_new = NULL; 1526 } 1527 #ifdef MBUF_STRESS_TEST 1528 if (m0->m_next == NULL) 1529 m_defraguseless++; 1530 #endif 1531 m_freem(m0); 1532 m0 = m_final; 1533 #ifdef MBUF_STRESS_TEST 1534 m_defragpackets++; 1535 m_defragbytes += m0->m_pkthdr.len; 1536 #endif 1537 return (m0); 1538 nospace: 1539 #ifdef MBUF_STRESS_TEST 1540 m_defragfailure++; 1541 #endif 1542 if (m_final) 1543 m_freem(m_final); 1544 return (NULL); 1545 } 1546 1547 /* 1548 * Defragment an mbuf chain, returning at most maxfrags separate 1549 * mbufs+clusters. If this is not possible NULL is returned and 1550 * the original mbuf chain is left in it's present (potentially 1551 * modified) state. We use two techniques: collapsing consecutive 1552 * mbufs and replacing consecutive mbufs by a cluster. 1553 * 1554 * NB: this should really be named m_defrag but that name is taken 1555 */ 1556 struct mbuf * 1557 m_collapse(struct mbuf *m0, int how, int maxfrags) 1558 { 1559 struct mbuf *m, *n, *n2, **prev; 1560 u_int curfrags; 1561 1562 /* 1563 * Calculate the current number of frags. 1564 */ 1565 curfrags = 0; 1566 for (m = m0; m != NULL; m = m->m_next) 1567 curfrags++; 1568 /* 1569 * First, try to collapse mbufs. Note that we always collapse 1570 * towards the front so we don't need to deal with moving the 1571 * pkthdr. This may be suboptimal if the first mbuf has much 1572 * less data than the following. 1573 */ 1574 m = m0; 1575 again: 1576 for (;;) { 1577 n = m->m_next; 1578 if (n == NULL) 1579 break; 1580 if ((m->m_flags & M_RDONLY) == 0 && 1581 n->m_len < M_TRAILINGSPACE(m)) { 1582 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len, 1583 n->m_len); 1584 m->m_len += n->m_len; 1585 m->m_next = n->m_next; 1586 m_free(n); 1587 if (--curfrags <= maxfrags) 1588 return m0; 1589 } else 1590 m = n; 1591 } 1592 KASSERT(maxfrags > 1, 1593 ("maxfrags %u, but normal collapse failed", maxfrags)); 1594 /* 1595 * Collapse consecutive mbufs to a cluster. 1596 */ 1597 prev = &m0->m_next; /* NB: not the first mbuf */ 1598 while ((n = *prev) != NULL) { 1599 if ((n2 = n->m_next) != NULL && 1600 n->m_len + n2->m_len < MCLBYTES) { 1601 m = m_getcl(how, MT_DATA, 0); 1602 if (m == NULL) 1603 goto bad; 1604 bcopy(mtod(n, void *), mtod(m, void *), n->m_len); 1605 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len, 1606 n2->m_len); 1607 m->m_len = n->m_len + n2->m_len; 1608 m->m_next = n2->m_next; 1609 *prev = m; 1610 m_free(n); 1611 m_free(n2); 1612 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */ 1613 return m0; 1614 /* 1615 * Still not there, try the normal collapse 1616 * again before we allocate another cluster. 1617 */ 1618 goto again; 1619 } 1620 prev = &n->m_next; 1621 } 1622 /* 1623 * No place where we can collapse to a cluster; punt. 1624 * This can occur if, for example, you request 2 frags 1625 * but the packet requires that both be clusters (we 1626 * never reallocate the first mbuf to avoid moving the 1627 * packet header). 1628 */ 1629 bad: 1630 return NULL; 1631 } 1632 1633 #ifdef MBUF_STRESS_TEST 1634 1635 /* 1636 * Fragment an mbuf chain. There's no reason you'd ever want to do 1637 * this in normal usage, but it's great for stress testing various 1638 * mbuf consumers. 1639 * 1640 * If fragmentation is not possible, the original chain will be 1641 * returned. 1642 * 1643 * Possible length values: 1644 * 0 no fragmentation will occur 1645 * > 0 each fragment will be of the specified length 1646 * -1 each fragment will be the same random value in length 1647 * -2 each fragment's length will be entirely random 1648 * (Random values range from 1 to 256) 1649 */ 1650 struct mbuf * 1651 m_fragment(struct mbuf *m0, int how, int length) 1652 { 1653 struct mbuf *m_new = NULL, *m_final = NULL; 1654 int progress = 0; 1655 1656 if (!(m0->m_flags & M_PKTHDR)) 1657 return (m0); 1658 1659 if ((length == 0) || (length < -2)) 1660 return (m0); 1661 1662 m_fixhdr(m0); /* Needed sanity check */ 1663 1664 m_final = m_getcl(how, MT_DATA, M_PKTHDR); 1665 1666 if (m_final == NULL) 1667 goto nospace; 1668 1669 if (m_dup_pkthdr(m_final, m0, how) == 0) 1670 goto nospace; 1671 1672 m_new = m_final; 1673 1674 if (length == -1) 1675 length = 1 + (arc4random() & 255); 1676 1677 while (progress < m0->m_pkthdr.len) { 1678 int fraglen; 1679 1680 if (length > 0) 1681 fraglen = length; 1682 else 1683 fraglen = 1 + (arc4random() & 255); 1684 if (fraglen > m0->m_pkthdr.len - progress) 1685 fraglen = m0->m_pkthdr.len - progress; 1686 1687 if (fraglen > MCLBYTES) 1688 fraglen = MCLBYTES; 1689 1690 if (m_new == NULL) { 1691 m_new = m_getcl(how, MT_DATA, 0); 1692 if (m_new == NULL) 1693 goto nospace; 1694 } 1695 1696 m_copydata(m0, progress, fraglen, mtod(m_new, caddr_t)); 1697 progress += fraglen; 1698 m_new->m_len = fraglen; 1699 if (m_new != m_final) 1700 m_cat(m_final, m_new); 1701 m_new = NULL; 1702 } 1703 m_freem(m0); 1704 m0 = m_final; 1705 return (m0); 1706 nospace: 1707 if (m_final) 1708 m_freem(m_final); 1709 /* Return the original chain on failure */ 1710 return (m0); 1711 } 1712 1713 #endif 1714 1715 /* 1716 * Copy the contents of uio into a properly sized mbuf chain. 1717 */ 1718 struct mbuf * 1719 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags) 1720 { 1721 struct mbuf *m, *mb; 1722 int error, length, total; 1723 int progress = 0; 1724 1725 /* 1726 * len can be zero or an arbitrary large value bound by 1727 * the total data supplied by the uio. 1728 */ 1729 if (len > 0) 1730 total = min(uio->uio_resid, len); 1731 else 1732 total = uio->uio_resid; 1733 1734 /* 1735 * The smallest unit returned by m_getm2() is a single mbuf 1736 * with pkthdr. We can't align past it. 1737 */ 1738 if (align >= MHLEN) 1739 return (NULL); 1740 1741 /* 1742 * Give us the full allocation or nothing. 1743 * If len is zero return the smallest empty mbuf. 1744 */ 1745 m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags); 1746 if (m == NULL) 1747 return (NULL); 1748 m->m_data += align; 1749 1750 /* Fill all mbufs with uio data and update header information. */ 1751 for (mb = m; mb != NULL; mb = mb->m_next) { 1752 length = min(M_TRAILINGSPACE(mb), total - progress); 1753 1754 error = uiomove(mtod(mb, void *), length, uio); 1755 if (error) { 1756 m_freem(m); 1757 return (NULL); 1758 } 1759 1760 mb->m_len = length; 1761 progress += length; 1762 if (flags & M_PKTHDR) 1763 m->m_pkthdr.len += length; 1764 } 1765 KASSERT(progress == total, ("%s: progress != total", __func__)); 1766 1767 return (m); 1768 } 1769 1770 /* 1771 * Set the m_data pointer of a newly-allocated mbuf 1772 * to place an object of the specified size at the 1773 * end of the mbuf, longword aligned. 1774 */ 1775 void 1776 m_align(struct mbuf *m, int len) 1777 { 1778 int adjust; 1779 1780 if (m->m_flags & M_EXT) 1781 adjust = m->m_ext.ext_size - len; 1782 else if (m->m_flags & M_PKTHDR) 1783 adjust = MHLEN - len; 1784 else 1785 adjust = MLEN - len; 1786 m->m_data += adjust &~ (sizeof(long)-1); 1787 } 1788 1789 /* 1790 * Create a writable copy of the mbuf chain. While doing this 1791 * we compact the chain with a goal of producing a chain with 1792 * at most two mbufs. The second mbuf in this chain is likely 1793 * to be a cluster. The primary purpose of this work is to create 1794 * a writable packet for encryption, compression, etc. The 1795 * secondary goal is to linearize the data so the data can be 1796 * passed to crypto hardware in the most efficient manner possible. 1797 */ 1798 struct mbuf * 1799 m_unshare(struct mbuf *m0, int how) 1800 { 1801 struct mbuf *m, *mprev; 1802 struct mbuf *n, *mfirst, *mlast; 1803 int len, off; 1804 1805 mprev = NULL; 1806 for (m = m0; m != NULL; m = mprev->m_next) { 1807 /* 1808 * Regular mbufs are ignored unless there's a cluster 1809 * in front of it that we can use to coalesce. We do 1810 * the latter mainly so later clusters can be coalesced 1811 * also w/o having to handle them specially (i.e. convert 1812 * mbuf+cluster -> cluster). This optimization is heavily 1813 * influenced by the assumption that we're running over 1814 * Ethernet where MCLBYTES is large enough that the max 1815 * packet size will permit lots of coalescing into a 1816 * single cluster. This in turn permits efficient 1817 * crypto operations, especially when using hardware. 1818 */ 1819 if ((m->m_flags & M_EXT) == 0) { 1820 if (mprev && (mprev->m_flags & M_EXT) && 1821 m->m_len <= M_TRAILINGSPACE(mprev)) { 1822 /* XXX: this ignores mbuf types */ 1823 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 1824 mtod(m, caddr_t), m->m_len); 1825 mprev->m_len += m->m_len; 1826 mprev->m_next = m->m_next; /* unlink from chain */ 1827 m_free(m); /* reclaim mbuf */ 1828 #if 0 1829 newipsecstat.ips_mbcoalesced++; 1830 #endif 1831 } else { 1832 mprev = m; 1833 } 1834 continue; 1835 } 1836 /* 1837 * Writable mbufs are left alone (for now). 1838 */ 1839 if (M_WRITABLE(m)) { 1840 mprev = m; 1841 continue; 1842 } 1843 1844 /* 1845 * Not writable, replace with a copy or coalesce with 1846 * the previous mbuf if possible (since we have to copy 1847 * it anyway, we try to reduce the number of mbufs and 1848 * clusters so that future work is easier). 1849 */ 1850 KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags)); 1851 /* NB: we only coalesce into a cluster or larger */ 1852 if (mprev != NULL && (mprev->m_flags & M_EXT) && 1853 m->m_len <= M_TRAILINGSPACE(mprev)) { 1854 /* XXX: this ignores mbuf types */ 1855 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 1856 mtod(m, caddr_t), m->m_len); 1857 mprev->m_len += m->m_len; 1858 mprev->m_next = m->m_next; /* unlink from chain */ 1859 m_free(m); /* reclaim mbuf */ 1860 #if 0 1861 newipsecstat.ips_clcoalesced++; 1862 #endif 1863 continue; 1864 } 1865 1866 /* 1867 * Allocate new space to hold the copy... 1868 */ 1869 /* XXX why can M_PKTHDR be set past the first mbuf? */ 1870 if (mprev == NULL && (m->m_flags & M_PKTHDR)) { 1871 /* 1872 * NB: if a packet header is present we must 1873 * allocate the mbuf separately from any cluster 1874 * because M_MOVE_PKTHDR will smash the data 1875 * pointer and drop the M_EXT marker. 1876 */ 1877 MGETHDR(n, how, m->m_type); 1878 if (n == NULL) { 1879 m_freem(m0); 1880 return (NULL); 1881 } 1882 M_MOVE_PKTHDR(n, m); 1883 MCLGET(n, how); 1884 if ((n->m_flags & M_EXT) == 0) { 1885 m_free(n); 1886 m_freem(m0); 1887 return (NULL); 1888 } 1889 } else { 1890 n = m_getcl(how, m->m_type, m->m_flags); 1891 if (n == NULL) { 1892 m_freem(m0); 1893 return (NULL); 1894 } 1895 } 1896 /* 1897 * ... and copy the data. We deal with jumbo mbufs 1898 * (i.e. m_len > MCLBYTES) by splitting them into 1899 * clusters. We could just malloc a buffer and make 1900 * it external but too many device drivers don't know 1901 * how to break up the non-contiguous memory when 1902 * doing DMA. 1903 */ 1904 len = m->m_len; 1905 off = 0; 1906 mfirst = n; 1907 mlast = NULL; 1908 for (;;) { 1909 int cc = min(len, MCLBYTES); 1910 memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc); 1911 n->m_len = cc; 1912 if (mlast != NULL) 1913 mlast->m_next = n; 1914 mlast = n; 1915 #if 0 1916 newipsecstat.ips_clcopied++; 1917 #endif 1918 1919 len -= cc; 1920 if (len <= 0) 1921 break; 1922 off += cc; 1923 1924 n = m_getcl(how, m->m_type, m->m_flags); 1925 if (n == NULL) { 1926 m_freem(mfirst); 1927 m_freem(m0); 1928 return (NULL); 1929 } 1930 } 1931 n->m_next = m->m_next; 1932 if (mprev == NULL) 1933 m0 = mfirst; /* new head of chain */ 1934 else 1935 mprev->m_next = mfirst; /* replace old mbuf */ 1936 m_free(m); /* release old mbuf */ 1937 mprev = mfirst; 1938 } 1939 return (m0); 1940 } 1941 1942 #ifdef MBUF_PROFILING 1943 1944 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/ 1945 struct mbufprofile { 1946 uintmax_t wasted[MP_BUCKETS]; 1947 uintmax_t used[MP_BUCKETS]; 1948 uintmax_t segments[MP_BUCKETS]; 1949 } mbprof; 1950 1951 #define MP_MAXDIGITS 21 /* strlen("16,000,000,000,000,000,000") == 21 */ 1952 #define MP_NUMLINES 6 1953 #define MP_NUMSPERLINE 16 1954 #define MP_EXTRABYTES 64 /* > strlen("used:\nwasted:\nsegments:\n") */ 1955 /* work out max space needed and add a bit of spare space too */ 1956 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE) 1957 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES) 1958 1959 char mbprofbuf[MP_BUFSIZE]; 1960 1961 void 1962 m_profile(struct mbuf *m) 1963 { 1964 int segments = 0; 1965 int used = 0; 1966 int wasted = 0; 1967 1968 while (m) { 1969 segments++; 1970 used += m->m_len; 1971 if (m->m_flags & M_EXT) { 1972 wasted += MHLEN - sizeof(m->m_ext) + 1973 m->m_ext.ext_size - m->m_len; 1974 } else { 1975 if (m->m_flags & M_PKTHDR) 1976 wasted += MHLEN - m->m_len; 1977 else 1978 wasted += MLEN - m->m_len; 1979 } 1980 m = m->m_next; 1981 } 1982 /* be paranoid.. it helps */ 1983 if (segments > MP_BUCKETS - 1) 1984 segments = MP_BUCKETS - 1; 1985 if (used > 100000) 1986 used = 100000; 1987 if (wasted > 100000) 1988 wasted = 100000; 1989 /* store in the appropriate bucket */ 1990 /* don't bother locking. if it's slightly off, so what? */ 1991 mbprof.segments[segments]++; 1992 mbprof.used[fls(used)]++; 1993 mbprof.wasted[fls(wasted)]++; 1994 } 1995 1996 static void 1997 mbprof_textify(void) 1998 { 1999 int offset; 2000 char *c; 2001 u_int64_t *p; 2002 2003 2004 p = &mbprof.wasted[0]; 2005 c = mbprofbuf; 2006 offset = snprintf(c, MP_MAXLINE + 10, 2007 "wasted:\n" 2008 "%ju %ju %ju %ju %ju %ju %ju %ju " 2009 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2010 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2011 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2012 #ifdef BIG_ARRAY 2013 p = &mbprof.wasted[16]; 2014 c += offset; 2015 offset = snprintf(c, MP_MAXLINE, 2016 "%ju %ju %ju %ju %ju %ju %ju %ju " 2017 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2018 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2019 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2020 #endif 2021 p = &mbprof.used[0]; 2022 c += offset; 2023 offset = snprintf(c, MP_MAXLINE + 10, 2024 "used:\n" 2025 "%ju %ju %ju %ju %ju %ju %ju %ju " 2026 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2027 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2028 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2029 #ifdef BIG_ARRAY 2030 p = &mbprof.used[16]; 2031 c += offset; 2032 offset = snprintf(c, MP_MAXLINE, 2033 "%ju %ju %ju %ju %ju %ju %ju %ju " 2034 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2035 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2036 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2037 #endif 2038 p = &mbprof.segments[0]; 2039 c += offset; 2040 offset = snprintf(c, MP_MAXLINE + 10, 2041 "segments:\n" 2042 "%ju %ju %ju %ju %ju %ju %ju %ju " 2043 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2044 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2045 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2046 #ifdef BIG_ARRAY 2047 p = &mbprof.segments[16]; 2048 c += offset; 2049 offset = snprintf(c, MP_MAXLINE, 2050 "%ju %ju %ju %ju %ju %ju %ju %ju " 2051 "%ju %ju %ju %ju %ju %ju %ju %jju", 2052 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2053 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2054 #endif 2055 } 2056 2057 static int 2058 mbprof_handler(SYSCTL_HANDLER_ARGS) 2059 { 2060 int error; 2061 2062 mbprof_textify(); 2063 error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1); 2064 return (error); 2065 } 2066 2067 static int 2068 mbprof_clr_handler(SYSCTL_HANDLER_ARGS) 2069 { 2070 int clear, error; 2071 2072 clear = 0; 2073 error = sysctl_handle_int(oidp, &clear, 0, req); 2074 if (error || !req->newptr) 2075 return (error); 2076 2077 if (clear) { 2078 bzero(&mbprof, sizeof(mbprof)); 2079 } 2080 2081 return (error); 2082 } 2083 2084 2085 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD, 2086 NULL, 0, mbprof_handler, "A", "mbuf profiling statistics"); 2087 2088 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW, 2089 NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics"); 2090 #endif 2091 2092