1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_param.h" 38 #include "opt_mbuf_stress_test.h" 39 #include "opt_mbuf_profiling.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/kernel.h> 44 #include <sys/limits.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/sysctl.h> 49 #include <sys/domain.h> 50 #include <sys/protosw.h> 51 #include <sys/uio.h> 52 #include <sys/vmmeter.h> 53 #include <sys/sdt.h> 54 #include <vm/vm.h> 55 #include <vm/vm_pageout.h> 56 #include <vm/vm_page.h> 57 58 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__init, 59 "struct mbuf *", "mbufinfo_t *", 60 "uint32_t", "uint32_t", 61 "uint16_t", "uint16_t", 62 "uint32_t", "uint32_t", 63 "uint32_t", "uint32_t"); 64 65 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr, 66 "uint32_t", "uint32_t", 67 "uint16_t", "uint16_t", 68 "struct mbuf *", "mbufinfo_t *"); 69 70 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get, 71 "uint32_t", "uint32_t", 72 "uint16_t", "uint16_t", 73 "struct mbuf *", "mbufinfo_t *"); 74 75 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__getcl, 76 "uint32_t", "uint32_t", 77 "uint16_t", "uint16_t", 78 "uint32_t", "uint32_t", 79 "struct mbuf *", "mbufinfo_t *"); 80 81 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__clget, 82 "struct mbuf *", "mbufinfo_t *", 83 "uint32_t", "uint32_t", 84 "uint32_t", "uint32_t"); 85 86 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__cljget, 87 "struct mbuf *", "mbufinfo_t *", 88 "uint32_t", "uint32_t", 89 "uint32_t", "uint32_t", 90 "void*", "void*"); 91 92 SDT_PROBE_DEFINE(sdt, , , m__cljset); 93 94 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__free, 95 "struct mbuf *", "mbufinfo_t *"); 96 97 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__freem, 98 "struct mbuf *", "mbufinfo_t *"); 99 100 #include <security/mac/mac_framework.h> 101 102 int max_linkhdr; 103 int max_protohdr; 104 int max_hdr; 105 int max_datalen; 106 #ifdef MBUF_STRESS_TEST 107 int m_defragpackets; 108 int m_defragbytes; 109 int m_defraguseless; 110 int m_defragfailure; 111 int m_defragrandomfailures; 112 #endif 113 114 /* 115 * sysctl(8) exported objects 116 */ 117 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD, 118 &max_linkhdr, 0, "Size of largest link layer header"); 119 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD, 120 &max_protohdr, 0, "Size of largest protocol layer header"); 121 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD, 122 &max_hdr, 0, "Size of largest link plus protocol header"); 123 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD, 124 &max_datalen, 0, "Minimum space left in mbuf after max_hdr"); 125 #ifdef MBUF_STRESS_TEST 126 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD, 127 &m_defragpackets, 0, ""); 128 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD, 129 &m_defragbytes, 0, ""); 130 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD, 131 &m_defraguseless, 0, ""); 132 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD, 133 &m_defragfailure, 0, ""); 134 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW, 135 &m_defragrandomfailures, 0, ""); 136 #endif 137 138 /* 139 * Ensure the correct size of various mbuf parameters. It could be off due 140 * to compiler-induced padding and alignment artifacts. 141 */ 142 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN); 143 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN); 144 145 /* 146 * mbuf data storage should be 64-bit aligned regardless of architectural 147 * pointer size; check this is the case with and without a packet header. 148 */ 149 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0); 150 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0); 151 152 /* 153 * While the specific values here don't matter too much (i.e., +/- a few 154 * words), we do want to ensure that changes to these values are carefully 155 * reasoned about and properly documented. This is especially the case as 156 * network-protocol and device-driver modules encode these layouts, and must 157 * be recompiled if the structures change. Check these values at compile time 158 * against the ones documented in comments in mbuf.h. 159 * 160 * NB: Possibly they should be documented there via #define's and not just 161 * comments. 162 */ 163 #if defined(__LP64__) 164 CTASSERT(offsetof(struct mbuf, m_dat) == 32); 165 CTASSERT(sizeof(struct pkthdr) == 56); 166 CTASSERT(sizeof(struct m_ext) == 160); 167 #else 168 CTASSERT(offsetof(struct mbuf, m_dat) == 24); 169 CTASSERT(sizeof(struct pkthdr) == 48); 170 CTASSERT(sizeof(struct m_ext) == 180); 171 #endif 172 173 /* 174 * Assert that the queue(3) macros produce code of the same size as an old 175 * plain pointer does. 176 */ 177 #ifdef INVARIANTS 178 static struct mbuf __used m_assertbuf; 179 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next)); 180 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next)); 181 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt)); 182 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt)); 183 #endif 184 185 /* 186 * Attach the cluster from *m to *n, set up m_ext in *n 187 * and bump the refcount of the cluster. 188 */ 189 void 190 mb_dupcl(struct mbuf *n, struct mbuf *m) 191 { 192 volatile u_int *refcnt; 193 194 KASSERT(m->m_flags & (M_EXT|M_EXTPG), 195 ("%s: M_EXT|M_EXTPG not set on %p", __func__, m)); 196 KASSERT(!(n->m_flags & (M_EXT|M_EXTPG)), 197 ("%s: M_EXT|M_EXTPG set on %p", __func__, n)); 198 199 /* 200 * Cache access optimization. 201 * 202 * o Regular M_EXT storage doesn't need full copy of m_ext, since 203 * the holder of the 'ext_count' is responsible to carry the free 204 * routine and its arguments. 205 * o M_EXTPG data is split between main part of mbuf and m_ext, the 206 * main part is copied in full, the m_ext part is similar to M_EXT. 207 * o EXT_EXTREF, where 'ext_cnt' doesn't point into mbuf at all, is 208 * special - it needs full copy of m_ext into each mbuf, since any 209 * copy could end up as the last to free. 210 */ 211 if (m->m_flags & M_EXTPG) { 212 bcopy(&m->m_epg_startcopy, &n->m_epg_startcopy, 213 __rangeof(struct mbuf, m_epg_startcopy, m_epg_endcopy)); 214 bcopy(&m->m_ext, &n->m_ext, m_epg_ext_copylen); 215 } else if (m->m_ext.ext_type == EXT_EXTREF) 216 bcopy(&m->m_ext, &n->m_ext, sizeof(struct m_ext)); 217 else 218 bcopy(&m->m_ext, &n->m_ext, m_ext_copylen); 219 220 n->m_flags |= m->m_flags & (M_RDONLY | M_EXT | M_EXTPG); 221 222 /* See if this is the mbuf that holds the embedded refcount. */ 223 if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) { 224 refcnt = n->m_ext.ext_cnt = &m->m_ext.ext_count; 225 n->m_ext.ext_flags &= ~EXT_FLAG_EMBREF; 226 } else { 227 KASSERT(m->m_ext.ext_cnt != NULL, 228 ("%s: no refcounting pointer on %p", __func__, m)); 229 refcnt = m->m_ext.ext_cnt; 230 } 231 232 if (*refcnt == 1) 233 *refcnt += 1; 234 else 235 atomic_add_int(refcnt, 1); 236 } 237 238 void 239 m_demote_pkthdr(struct mbuf *m) 240 { 241 242 M_ASSERTPKTHDR(m); 243 244 m_tag_delete_chain(m, NULL); 245 m->m_flags &= ~M_PKTHDR; 246 bzero(&m->m_pkthdr, sizeof(struct pkthdr)); 247 } 248 249 /* 250 * Clean up mbuf (chain) from any tags and packet headers. 251 * If "all" is set then the first mbuf in the chain will be 252 * cleaned too. 253 */ 254 void 255 m_demote(struct mbuf *m0, int all, int flags) 256 { 257 struct mbuf *m; 258 259 for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) { 260 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p", 261 __func__, m, m0)); 262 if (m->m_flags & M_PKTHDR) 263 m_demote_pkthdr(m); 264 m->m_flags = m->m_flags & (M_EXT | M_RDONLY | M_NOFREE | 265 M_EXTPG | flags); 266 } 267 } 268 269 /* 270 * Sanity checks on mbuf (chain) for use in KASSERT() and general 271 * debugging. 272 * Returns 0 or panics when bad and 1 on all tests passed. 273 * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they 274 * blow up later. 275 */ 276 int 277 m_sanity(struct mbuf *m0, int sanitize) 278 { 279 struct mbuf *m; 280 caddr_t a, b; 281 int pktlen = 0; 282 283 #ifdef INVARIANTS 284 #define M_SANITY_ACTION(s) panic("mbuf %p: " s, m) 285 #else 286 #define M_SANITY_ACTION(s) printf("mbuf %p: " s, m) 287 #endif 288 289 for (m = m0; m != NULL; m = m->m_next) { 290 /* 291 * Basic pointer checks. If any of these fails then some 292 * unrelated kernel memory before or after us is trashed. 293 * No way to recover from that. 294 */ 295 a = M_START(m); 296 b = a + M_SIZE(m); 297 if ((caddr_t)m->m_data < a) 298 M_SANITY_ACTION("m_data outside mbuf data range left"); 299 if ((caddr_t)m->m_data > b) 300 M_SANITY_ACTION("m_data outside mbuf data range right"); 301 if ((caddr_t)m->m_data + m->m_len > b) 302 M_SANITY_ACTION("m_data + m_len exeeds mbuf space"); 303 304 /* m->m_nextpkt may only be set on first mbuf in chain. */ 305 if (m != m0 && m->m_nextpkt != NULL) { 306 if (sanitize) { 307 m_freem(m->m_nextpkt); 308 m->m_nextpkt = (struct mbuf *)0xDEADC0DE; 309 } else 310 M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf"); 311 } 312 313 /* packet length (not mbuf length!) calculation */ 314 if (m0->m_flags & M_PKTHDR) 315 pktlen += m->m_len; 316 317 /* m_tags may only be attached to first mbuf in chain. */ 318 if (m != m0 && m->m_flags & M_PKTHDR && 319 !SLIST_EMPTY(&m->m_pkthdr.tags)) { 320 if (sanitize) { 321 m_tag_delete_chain(m, NULL); 322 /* put in 0xDEADC0DE perhaps? */ 323 } else 324 M_SANITY_ACTION("m_tags on in-chain mbuf"); 325 } 326 327 /* M_PKTHDR may only be set on first mbuf in chain */ 328 if (m != m0 && m->m_flags & M_PKTHDR) { 329 if (sanitize) { 330 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr)); 331 m->m_flags &= ~M_PKTHDR; 332 /* put in 0xDEADCODE and leave hdr flag in */ 333 } else 334 M_SANITY_ACTION("M_PKTHDR on in-chain mbuf"); 335 } 336 } 337 m = m0; 338 if (pktlen && pktlen != m->m_pkthdr.len) { 339 if (sanitize) 340 m->m_pkthdr.len = 0; 341 else 342 M_SANITY_ACTION("m_pkthdr.len != mbuf chain length"); 343 } 344 return 1; 345 346 #undef M_SANITY_ACTION 347 } 348 349 /* 350 * Non-inlined part of m_init(). 351 */ 352 int 353 m_pkthdr_init(struct mbuf *m, int how) 354 { 355 #ifdef MAC 356 int error; 357 #endif 358 m->m_data = m->m_pktdat; 359 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr)); 360 #ifdef NUMA 361 m->m_pkthdr.numa_domain = M_NODOM; 362 #endif 363 #ifdef MAC 364 /* If the label init fails, fail the alloc */ 365 error = mac_mbuf_init(m, how); 366 if (error) 367 return (error); 368 #endif 369 370 return (0); 371 } 372 373 /* 374 * "Move" mbuf pkthdr from "from" to "to". 375 * "from" must have M_PKTHDR set, and "to" must be empty. 376 */ 377 void 378 m_move_pkthdr(struct mbuf *to, struct mbuf *from) 379 { 380 381 #if 0 382 /* see below for why these are not enabled */ 383 M_ASSERTPKTHDR(to); 384 /* Note: with MAC, this may not be a good assertion. */ 385 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), 386 ("m_move_pkthdr: to has tags")); 387 #endif 388 #ifdef MAC 389 /* 390 * XXXMAC: It could be this should also occur for non-MAC? 391 */ 392 if (to->m_flags & M_PKTHDR) 393 m_tag_delete_chain(to, NULL); 394 #endif 395 to->m_flags = (from->m_flags & M_COPYFLAGS) | 396 (to->m_flags & (M_EXT | M_EXTPG)); 397 if ((to->m_flags & M_EXT) == 0) 398 to->m_data = to->m_pktdat; 399 to->m_pkthdr = from->m_pkthdr; /* especially tags */ 400 SLIST_INIT(&from->m_pkthdr.tags); /* purge tags from src */ 401 from->m_flags &= ~M_PKTHDR; 402 if (from->m_pkthdr.csum_flags & CSUM_SND_TAG) { 403 from->m_pkthdr.csum_flags &= ~CSUM_SND_TAG; 404 from->m_pkthdr.snd_tag = NULL; 405 } 406 } 407 408 /* 409 * Duplicate "from"'s mbuf pkthdr in "to". 410 * "from" must have M_PKTHDR set, and "to" must be empty. 411 * In particular, this does a deep copy of the packet tags. 412 */ 413 int 414 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how) 415 { 416 417 #if 0 418 /* 419 * The mbuf allocator only initializes the pkthdr 420 * when the mbuf is allocated with m_gethdr(). Many users 421 * (e.g. m_copy*, m_prepend) use m_get() and then 422 * smash the pkthdr as needed causing these 423 * assertions to trip. For now just disable them. 424 */ 425 M_ASSERTPKTHDR(to); 426 /* Note: with MAC, this may not be a good assertion. */ 427 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags")); 428 #endif 429 MBUF_CHECKSLEEP(how); 430 #ifdef MAC 431 if (to->m_flags & M_PKTHDR) 432 m_tag_delete_chain(to, NULL); 433 #endif 434 to->m_flags = (from->m_flags & M_COPYFLAGS) | 435 (to->m_flags & (M_EXT | M_EXTPG)); 436 if ((to->m_flags & M_EXT) == 0) 437 to->m_data = to->m_pktdat; 438 to->m_pkthdr = from->m_pkthdr; 439 if (from->m_pkthdr.csum_flags & CSUM_SND_TAG) 440 m_snd_tag_ref(from->m_pkthdr.snd_tag); 441 SLIST_INIT(&to->m_pkthdr.tags); 442 return (m_tag_copy_chain(to, from, how)); 443 } 444 445 /* 446 * Lesser-used path for M_PREPEND: 447 * allocate new mbuf to prepend to chain, 448 * copy junk along. 449 */ 450 struct mbuf * 451 m_prepend(struct mbuf *m, int len, int how) 452 { 453 struct mbuf *mn; 454 455 if (m->m_flags & M_PKTHDR) 456 mn = m_gethdr(how, m->m_type); 457 else 458 mn = m_get(how, m->m_type); 459 if (mn == NULL) { 460 m_freem(m); 461 return (NULL); 462 } 463 if (m->m_flags & M_PKTHDR) 464 m_move_pkthdr(mn, m); 465 mn->m_next = m; 466 m = mn; 467 if (len < M_SIZE(m)) 468 M_ALIGN(m, len); 469 m->m_len = len; 470 return (m); 471 } 472 473 /* 474 * Make a copy of an mbuf chain starting "off0" bytes from the beginning, 475 * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf. 476 * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller. 477 * Note that the copy is read-only, because clusters are not copied, 478 * only their reference counts are incremented. 479 */ 480 struct mbuf * 481 m_copym(struct mbuf *m, int off0, int len, int wait) 482 { 483 struct mbuf *n, **np; 484 int off = off0; 485 struct mbuf *top; 486 int copyhdr = 0; 487 488 KASSERT(off >= 0, ("m_copym, negative off %d", off)); 489 KASSERT(len >= 0, ("m_copym, negative len %d", len)); 490 MBUF_CHECKSLEEP(wait); 491 if (off == 0 && m->m_flags & M_PKTHDR) 492 copyhdr = 1; 493 while (off > 0) { 494 KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain")); 495 if (off < m->m_len) 496 break; 497 off -= m->m_len; 498 m = m->m_next; 499 } 500 np = ⊤ 501 top = NULL; 502 while (len > 0) { 503 if (m == NULL) { 504 KASSERT(len == M_COPYALL, 505 ("m_copym, length > size of mbuf chain")); 506 break; 507 } 508 if (copyhdr) 509 n = m_gethdr(wait, m->m_type); 510 else 511 n = m_get(wait, m->m_type); 512 *np = n; 513 if (n == NULL) 514 goto nospace; 515 if (copyhdr) { 516 if (!m_dup_pkthdr(n, m, wait)) 517 goto nospace; 518 if (len == M_COPYALL) 519 n->m_pkthdr.len -= off0; 520 else 521 n->m_pkthdr.len = len; 522 copyhdr = 0; 523 } 524 n->m_len = min(len, m->m_len - off); 525 if (m->m_flags & (M_EXT|M_EXTPG)) { 526 n->m_data = m->m_data + off; 527 mb_dupcl(n, m); 528 } else 529 bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t), 530 (u_int)n->m_len); 531 if (len != M_COPYALL) 532 len -= n->m_len; 533 off = 0; 534 m = m->m_next; 535 np = &n->m_next; 536 } 537 538 return (top); 539 nospace: 540 m_freem(top); 541 return (NULL); 542 } 543 544 /* 545 * Copy an entire packet, including header (which must be present). 546 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'. 547 * Note that the copy is read-only, because clusters are not copied, 548 * only their reference counts are incremented. 549 * Preserve alignment of the first mbuf so if the creator has left 550 * some room at the beginning (e.g. for inserting protocol headers) 551 * the copies still have the room available. 552 */ 553 struct mbuf * 554 m_copypacket(struct mbuf *m, int how) 555 { 556 struct mbuf *top, *n, *o; 557 558 MBUF_CHECKSLEEP(how); 559 n = m_get(how, m->m_type); 560 top = n; 561 if (n == NULL) 562 goto nospace; 563 564 if (!m_dup_pkthdr(n, m, how)) 565 goto nospace; 566 n->m_len = m->m_len; 567 if (m->m_flags & (M_EXT|M_EXTPG)) { 568 n->m_data = m->m_data; 569 mb_dupcl(n, m); 570 } else { 571 n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat ); 572 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 573 } 574 575 m = m->m_next; 576 while (m) { 577 o = m_get(how, m->m_type); 578 if (o == NULL) 579 goto nospace; 580 581 n->m_next = o; 582 n = n->m_next; 583 584 n->m_len = m->m_len; 585 if (m->m_flags & (M_EXT|M_EXTPG)) { 586 n->m_data = m->m_data; 587 mb_dupcl(n, m); 588 } else { 589 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 590 } 591 592 m = m->m_next; 593 } 594 return top; 595 nospace: 596 m_freem(top); 597 return (NULL); 598 } 599 600 static void 601 m_copyfromunmapped(const struct mbuf *m, int off, int len, caddr_t cp) 602 { 603 struct iovec iov; 604 struct uio uio; 605 int error; 606 607 KASSERT(off >= 0, ("m_copyfromunmapped: negative off %d", off)); 608 KASSERT(len >= 0, ("m_copyfromunmapped: negative len %d", len)); 609 KASSERT(off < m->m_len, 610 ("m_copyfromunmapped: len exceeds mbuf length")); 611 iov.iov_base = cp; 612 iov.iov_len = len; 613 uio.uio_resid = len; 614 uio.uio_iov = &iov; 615 uio.uio_segflg = UIO_SYSSPACE; 616 uio.uio_iovcnt = 1; 617 uio.uio_offset = 0; 618 uio.uio_rw = UIO_READ; 619 error = m_unmappedtouio(m, off, &uio, len); 620 KASSERT(error == 0, ("m_unmappedtouio failed: off %d, len %d", off, 621 len)); 622 } 623 624 /* 625 * Copy data from an mbuf chain starting "off" bytes from the beginning, 626 * continuing for "len" bytes, into the indicated buffer. 627 */ 628 void 629 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp) 630 { 631 u_int count; 632 633 KASSERT(off >= 0, ("m_copydata, negative off %d", off)); 634 KASSERT(len >= 0, ("m_copydata, negative len %d", len)); 635 while (off > 0) { 636 KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain")); 637 if (off < m->m_len) 638 break; 639 off -= m->m_len; 640 m = m->m_next; 641 } 642 while (len > 0) { 643 KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain")); 644 count = min(m->m_len - off, len); 645 if ((m->m_flags & M_EXTPG) != 0) 646 m_copyfromunmapped(m, off, count, cp); 647 else 648 bcopy(mtod(m, caddr_t) + off, cp, count); 649 len -= count; 650 cp += count; 651 off = 0; 652 m = m->m_next; 653 } 654 } 655 656 /* 657 * Copy a packet header mbuf chain into a completely new chain, including 658 * copying any mbuf clusters. Use this instead of m_copypacket() when 659 * you need a writable copy of an mbuf chain. 660 */ 661 struct mbuf * 662 m_dup(const struct mbuf *m, int how) 663 { 664 struct mbuf **p, *top = NULL; 665 int remain, moff, nsize; 666 667 MBUF_CHECKSLEEP(how); 668 /* Sanity check */ 669 if (m == NULL) 670 return (NULL); 671 M_ASSERTPKTHDR(m); 672 673 /* While there's more data, get a new mbuf, tack it on, and fill it */ 674 remain = m->m_pkthdr.len; 675 moff = 0; 676 p = ⊤ 677 while (remain > 0 || top == NULL) { /* allow m->m_pkthdr.len == 0 */ 678 struct mbuf *n; 679 680 /* Get the next new mbuf */ 681 if (remain >= MINCLSIZE) { 682 n = m_getcl(how, m->m_type, 0); 683 nsize = MCLBYTES; 684 } else { 685 n = m_get(how, m->m_type); 686 nsize = MLEN; 687 } 688 if (n == NULL) 689 goto nospace; 690 691 if (top == NULL) { /* First one, must be PKTHDR */ 692 if (!m_dup_pkthdr(n, m, how)) { 693 m_free(n); 694 goto nospace; 695 } 696 if ((n->m_flags & M_EXT) == 0) 697 nsize = MHLEN; 698 n->m_flags &= ~M_RDONLY; 699 } 700 n->m_len = 0; 701 702 /* Link it into the new chain */ 703 *p = n; 704 p = &n->m_next; 705 706 /* Copy data from original mbuf(s) into new mbuf */ 707 while (n->m_len < nsize && m != NULL) { 708 int chunk = min(nsize - n->m_len, m->m_len - moff); 709 710 bcopy(m->m_data + moff, n->m_data + n->m_len, chunk); 711 moff += chunk; 712 n->m_len += chunk; 713 remain -= chunk; 714 if (moff == m->m_len) { 715 m = m->m_next; 716 moff = 0; 717 } 718 } 719 720 /* Check correct total mbuf length */ 721 KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL), 722 ("%s: bogus m_pkthdr.len", __func__)); 723 } 724 return (top); 725 726 nospace: 727 m_freem(top); 728 return (NULL); 729 } 730 731 /* 732 * Concatenate mbuf chain n to m. 733 * Both chains must be of the same type (e.g. MT_DATA). 734 * Any m_pkthdr is not updated. 735 */ 736 void 737 m_cat(struct mbuf *m, struct mbuf *n) 738 { 739 while (m->m_next) 740 m = m->m_next; 741 while (n) { 742 if (!M_WRITABLE(m) || 743 (n->m_flags & M_EXTPG) != 0 || 744 M_TRAILINGSPACE(m) < n->m_len) { 745 /* just join the two chains */ 746 m->m_next = n; 747 return; 748 } 749 /* splat the data from one into the other */ 750 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 751 (u_int)n->m_len); 752 m->m_len += n->m_len; 753 n = m_free(n); 754 } 755 } 756 757 /* 758 * Concatenate two pkthdr mbuf chains. 759 */ 760 void 761 m_catpkt(struct mbuf *m, struct mbuf *n) 762 { 763 764 M_ASSERTPKTHDR(m); 765 M_ASSERTPKTHDR(n); 766 767 m->m_pkthdr.len += n->m_pkthdr.len; 768 m_demote(n, 1, 0); 769 770 m_cat(m, n); 771 } 772 773 void 774 m_adj(struct mbuf *mp, int req_len) 775 { 776 int len = req_len; 777 struct mbuf *m; 778 int count; 779 780 if ((m = mp) == NULL) 781 return; 782 if (len >= 0) { 783 /* 784 * Trim from head. 785 */ 786 while (m != NULL && len > 0) { 787 if (m->m_len <= len) { 788 len -= m->m_len; 789 m->m_len = 0; 790 m = m->m_next; 791 } else { 792 m->m_len -= len; 793 m->m_data += len; 794 len = 0; 795 } 796 } 797 if (mp->m_flags & M_PKTHDR) 798 mp->m_pkthdr.len -= (req_len - len); 799 } else { 800 /* 801 * Trim from tail. Scan the mbuf chain, 802 * calculating its length and finding the last mbuf. 803 * If the adjustment only affects this mbuf, then just 804 * adjust and return. Otherwise, rescan and truncate 805 * after the remaining size. 806 */ 807 len = -len; 808 count = 0; 809 for (;;) { 810 count += m->m_len; 811 if (m->m_next == (struct mbuf *)0) 812 break; 813 m = m->m_next; 814 } 815 if (m->m_len >= len) { 816 m->m_len -= len; 817 if (mp->m_flags & M_PKTHDR) 818 mp->m_pkthdr.len -= len; 819 return; 820 } 821 count -= len; 822 if (count < 0) 823 count = 0; 824 /* 825 * Correct length for chain is "count". 826 * Find the mbuf with last data, adjust its length, 827 * and toss data from remaining mbufs on chain. 828 */ 829 m = mp; 830 if (m->m_flags & M_PKTHDR) 831 m->m_pkthdr.len = count; 832 for (; m; m = m->m_next) { 833 if (m->m_len >= count) { 834 m->m_len = count; 835 if (m->m_next != NULL) { 836 m_freem(m->m_next); 837 m->m_next = NULL; 838 } 839 break; 840 } 841 count -= m->m_len; 842 } 843 } 844 } 845 846 /* 847 * Rearange an mbuf chain so that len bytes are contiguous 848 * and in the data area of an mbuf (so that mtod will work 849 * for a structure of size len). Returns the resulting 850 * mbuf chain on success, frees it and returns null on failure. 851 * If there is room, it will add up to max_protohdr-len extra bytes to the 852 * contiguous region in an attempt to avoid being called next time. 853 */ 854 struct mbuf * 855 m_pullup(struct mbuf *n, int len) 856 { 857 struct mbuf *m; 858 int count; 859 int space; 860 861 KASSERT((n->m_flags & M_EXTPG) == 0, 862 ("%s: unmapped mbuf %p", __func__, n)); 863 864 /* 865 * If first mbuf has no cluster, and has room for len bytes 866 * without shifting current data, pullup into it, 867 * otherwise allocate a new mbuf to prepend to the chain. 868 */ 869 if ((n->m_flags & M_EXT) == 0 && 870 n->m_data + len < &n->m_dat[MLEN] && n->m_next) { 871 if (n->m_len >= len) 872 return (n); 873 m = n; 874 n = n->m_next; 875 len -= m->m_len; 876 } else { 877 if (len > MHLEN) 878 goto bad; 879 m = m_get(M_NOWAIT, n->m_type); 880 if (m == NULL) 881 goto bad; 882 if (n->m_flags & M_PKTHDR) 883 m_move_pkthdr(m, n); 884 } 885 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 886 do { 887 count = min(min(max(len, max_protohdr), space), n->m_len); 888 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 889 (u_int)count); 890 len -= count; 891 m->m_len += count; 892 n->m_len -= count; 893 space -= count; 894 if (n->m_len) 895 n->m_data += count; 896 else 897 n = m_free(n); 898 } while (len > 0 && n); 899 if (len > 0) { 900 (void) m_free(m); 901 goto bad; 902 } 903 m->m_next = n; 904 return (m); 905 bad: 906 m_freem(n); 907 return (NULL); 908 } 909 910 /* 911 * Like m_pullup(), except a new mbuf is always allocated, and we allow 912 * the amount of empty space before the data in the new mbuf to be specified 913 * (in the event that the caller expects to prepend later). 914 */ 915 struct mbuf * 916 m_copyup(struct mbuf *n, int len, int dstoff) 917 { 918 struct mbuf *m; 919 int count, space; 920 921 if (len > (MHLEN - dstoff)) 922 goto bad; 923 m = m_get(M_NOWAIT, n->m_type); 924 if (m == NULL) 925 goto bad; 926 if (n->m_flags & M_PKTHDR) 927 m_move_pkthdr(m, n); 928 m->m_data += dstoff; 929 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 930 do { 931 count = min(min(max(len, max_protohdr), space), n->m_len); 932 memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t), 933 (unsigned)count); 934 len -= count; 935 m->m_len += count; 936 n->m_len -= count; 937 space -= count; 938 if (n->m_len) 939 n->m_data += count; 940 else 941 n = m_free(n); 942 } while (len > 0 && n); 943 if (len > 0) { 944 (void) m_free(m); 945 goto bad; 946 } 947 m->m_next = n; 948 return (m); 949 bad: 950 m_freem(n); 951 return (NULL); 952 } 953 954 /* 955 * Partition an mbuf chain in two pieces, returning the tail -- 956 * all but the first len0 bytes. In case of failure, it returns NULL and 957 * attempts to restore the chain to its original state. 958 * 959 * Note that the resulting mbufs might be read-only, because the new 960 * mbuf can end up sharing an mbuf cluster with the original mbuf if 961 * the "breaking point" happens to lie within a cluster mbuf. Use the 962 * M_WRITABLE() macro to check for this case. 963 */ 964 struct mbuf * 965 m_split(struct mbuf *m0, int len0, int wait) 966 { 967 struct mbuf *m, *n; 968 u_int len = len0, remain; 969 970 MBUF_CHECKSLEEP(wait); 971 for (m = m0; m && len > m->m_len; m = m->m_next) 972 len -= m->m_len; 973 if (m == NULL) 974 return (NULL); 975 remain = m->m_len - len; 976 if (m0->m_flags & M_PKTHDR && remain == 0) { 977 n = m_gethdr(wait, m0->m_type); 978 if (n == NULL) 979 return (NULL); 980 n->m_next = m->m_next; 981 m->m_next = NULL; 982 if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) { 983 n->m_pkthdr.snd_tag = 984 m_snd_tag_ref(m0->m_pkthdr.snd_tag); 985 n->m_pkthdr.csum_flags |= CSUM_SND_TAG; 986 } else 987 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; 988 n->m_pkthdr.len = m0->m_pkthdr.len - len0; 989 m0->m_pkthdr.len = len0; 990 return (n); 991 } else if (m0->m_flags & M_PKTHDR) { 992 n = m_gethdr(wait, m0->m_type); 993 if (n == NULL) 994 return (NULL); 995 if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) { 996 n->m_pkthdr.snd_tag = 997 m_snd_tag_ref(m0->m_pkthdr.snd_tag); 998 n->m_pkthdr.csum_flags |= CSUM_SND_TAG; 999 } else 1000 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; 1001 n->m_pkthdr.len = m0->m_pkthdr.len - len0; 1002 m0->m_pkthdr.len = len0; 1003 if (m->m_flags & (M_EXT|M_EXTPG)) 1004 goto extpacket; 1005 if (remain > MHLEN) { 1006 /* m can't be the lead packet */ 1007 M_ALIGN(n, 0); 1008 n->m_next = m_split(m, len, wait); 1009 if (n->m_next == NULL) { 1010 (void) m_free(n); 1011 return (NULL); 1012 } else { 1013 n->m_len = 0; 1014 return (n); 1015 } 1016 } else 1017 M_ALIGN(n, remain); 1018 } else if (remain == 0) { 1019 n = m->m_next; 1020 m->m_next = NULL; 1021 return (n); 1022 } else { 1023 n = m_get(wait, m->m_type); 1024 if (n == NULL) 1025 return (NULL); 1026 M_ALIGN(n, remain); 1027 } 1028 extpacket: 1029 if (m->m_flags & (M_EXT|M_EXTPG)) { 1030 n->m_data = m->m_data + len; 1031 mb_dupcl(n, m); 1032 } else { 1033 bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain); 1034 } 1035 n->m_len = remain; 1036 m->m_len = len; 1037 n->m_next = m->m_next; 1038 m->m_next = NULL; 1039 return (n); 1040 } 1041 /* 1042 * Routine to copy from device local memory into mbufs. 1043 * Note that `off' argument is offset into first mbuf of target chain from 1044 * which to begin copying the data to. 1045 */ 1046 struct mbuf * 1047 m_devget(char *buf, int totlen, int off, struct ifnet *ifp, 1048 void (*copy)(char *from, caddr_t to, u_int len)) 1049 { 1050 struct mbuf *m; 1051 struct mbuf *top = NULL, **mp = ⊤ 1052 int len; 1053 1054 if (off < 0 || off > MHLEN) 1055 return (NULL); 1056 1057 while (totlen > 0) { 1058 if (top == NULL) { /* First one, must be PKTHDR */ 1059 if (totlen + off >= MINCLSIZE) { 1060 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1061 len = MCLBYTES; 1062 } else { 1063 m = m_gethdr(M_NOWAIT, MT_DATA); 1064 len = MHLEN; 1065 1066 /* Place initial small packet/header at end of mbuf */ 1067 if (m && totlen + off + max_linkhdr <= MHLEN) { 1068 m->m_data += max_linkhdr; 1069 len -= max_linkhdr; 1070 } 1071 } 1072 if (m == NULL) 1073 return NULL; 1074 m->m_pkthdr.rcvif = ifp; 1075 m->m_pkthdr.len = totlen; 1076 } else { 1077 if (totlen + off >= MINCLSIZE) { 1078 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1079 len = MCLBYTES; 1080 } else { 1081 m = m_get(M_NOWAIT, MT_DATA); 1082 len = MLEN; 1083 } 1084 if (m == NULL) { 1085 m_freem(top); 1086 return NULL; 1087 } 1088 } 1089 if (off) { 1090 m->m_data += off; 1091 len -= off; 1092 off = 0; 1093 } 1094 m->m_len = len = min(totlen, len); 1095 if (copy) 1096 copy(buf, mtod(m, caddr_t), (u_int)len); 1097 else 1098 bcopy(buf, mtod(m, caddr_t), (u_int)len); 1099 buf += len; 1100 *mp = m; 1101 mp = &m->m_next; 1102 totlen -= len; 1103 } 1104 return (top); 1105 } 1106 1107 /* 1108 * Copy data from a buffer back into the indicated mbuf chain, 1109 * starting "off" bytes from the beginning, extending the mbuf 1110 * chain if necessary. 1111 */ 1112 void 1113 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp) 1114 { 1115 int mlen; 1116 struct mbuf *m = m0, *n; 1117 int totlen = 0; 1118 1119 if (m0 == NULL) 1120 return; 1121 while (off > (mlen = m->m_len)) { 1122 off -= mlen; 1123 totlen += mlen; 1124 if (m->m_next == NULL) { 1125 n = m_get(M_NOWAIT, m->m_type); 1126 if (n == NULL) 1127 goto out; 1128 bzero(mtod(n, caddr_t), MLEN); 1129 n->m_len = min(MLEN, len + off); 1130 m->m_next = n; 1131 } 1132 m = m->m_next; 1133 } 1134 while (len > 0) { 1135 if (m->m_next == NULL && (len > m->m_len - off)) { 1136 m->m_len += min(len - (m->m_len - off), 1137 M_TRAILINGSPACE(m)); 1138 } 1139 mlen = min (m->m_len - off, len); 1140 bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen); 1141 cp += mlen; 1142 len -= mlen; 1143 mlen += off; 1144 off = 0; 1145 totlen += mlen; 1146 if (len == 0) 1147 break; 1148 if (m->m_next == NULL) { 1149 n = m_get(M_NOWAIT, m->m_type); 1150 if (n == NULL) 1151 break; 1152 n->m_len = min(MLEN, len); 1153 m->m_next = n; 1154 } 1155 m = m->m_next; 1156 } 1157 out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) 1158 m->m_pkthdr.len = totlen; 1159 } 1160 1161 /* 1162 * Append the specified data to the indicated mbuf chain, 1163 * Extend the mbuf chain if the new data does not fit in 1164 * existing space. 1165 * 1166 * Return 1 if able to complete the job; otherwise 0. 1167 */ 1168 int 1169 m_append(struct mbuf *m0, int len, c_caddr_t cp) 1170 { 1171 struct mbuf *m, *n; 1172 int remainder, space; 1173 1174 for (m = m0; m->m_next != NULL; m = m->m_next) 1175 ; 1176 remainder = len; 1177 space = M_TRAILINGSPACE(m); 1178 if (space > 0) { 1179 /* 1180 * Copy into available space. 1181 */ 1182 if (space > remainder) 1183 space = remainder; 1184 bcopy(cp, mtod(m, caddr_t) + m->m_len, space); 1185 m->m_len += space; 1186 cp += space, remainder -= space; 1187 } 1188 while (remainder > 0) { 1189 /* 1190 * Allocate a new mbuf; could check space 1191 * and allocate a cluster instead. 1192 */ 1193 n = m_get(M_NOWAIT, m->m_type); 1194 if (n == NULL) 1195 break; 1196 n->m_len = min(MLEN, remainder); 1197 bcopy(cp, mtod(n, caddr_t), n->m_len); 1198 cp += n->m_len, remainder -= n->m_len; 1199 m->m_next = n; 1200 m = n; 1201 } 1202 if (m0->m_flags & M_PKTHDR) 1203 m0->m_pkthdr.len += len - remainder; 1204 return (remainder == 0); 1205 } 1206 1207 /* 1208 * Apply function f to the data in an mbuf chain starting "off" bytes from 1209 * the beginning, continuing for "len" bytes. 1210 */ 1211 int 1212 m_apply(struct mbuf *m, int off, int len, 1213 int (*f)(void *, void *, u_int), void *arg) 1214 { 1215 u_int count; 1216 int rval; 1217 1218 KASSERT(off >= 0, ("m_apply, negative off %d", off)); 1219 KASSERT(len >= 0, ("m_apply, negative len %d", len)); 1220 while (off > 0) { 1221 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1222 if (off < m->m_len) 1223 break; 1224 off -= m->m_len; 1225 m = m->m_next; 1226 } 1227 while (len > 0) { 1228 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1229 count = min(m->m_len - off, len); 1230 rval = (*f)(arg, mtod(m, caddr_t) + off, count); 1231 if (rval) 1232 return (rval); 1233 len -= count; 1234 off = 0; 1235 m = m->m_next; 1236 } 1237 return (0); 1238 } 1239 1240 /* 1241 * Return a pointer to mbuf/offset of location in mbuf chain. 1242 */ 1243 struct mbuf * 1244 m_getptr(struct mbuf *m, int loc, int *off) 1245 { 1246 1247 while (loc >= 0) { 1248 /* Normal end of search. */ 1249 if (m->m_len > loc) { 1250 *off = loc; 1251 return (m); 1252 } else { 1253 loc -= m->m_len; 1254 if (m->m_next == NULL) { 1255 if (loc == 0) { 1256 /* Point at the end of valid data. */ 1257 *off = m->m_len; 1258 return (m); 1259 } 1260 return (NULL); 1261 } 1262 m = m->m_next; 1263 } 1264 } 1265 return (NULL); 1266 } 1267 1268 void 1269 m_print(const struct mbuf *m, int maxlen) 1270 { 1271 int len; 1272 int pdata; 1273 const struct mbuf *m2; 1274 1275 if (m == NULL) { 1276 printf("mbuf: %p\n", m); 1277 return; 1278 } 1279 1280 if (m->m_flags & M_PKTHDR) 1281 len = m->m_pkthdr.len; 1282 else 1283 len = -1; 1284 m2 = m; 1285 while (m2 != NULL && (len == -1 || len)) { 1286 pdata = m2->m_len; 1287 if (maxlen != -1 && pdata > maxlen) 1288 pdata = maxlen; 1289 printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len, 1290 m2->m_next, m2->m_flags, "\20\20freelist\17skipfw" 1291 "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly" 1292 "\3eor\2pkthdr\1ext", pdata ? "" : "\n"); 1293 if (pdata) 1294 printf(", %*D\n", pdata, (u_char *)m2->m_data, "-"); 1295 if (len != -1) 1296 len -= m2->m_len; 1297 m2 = m2->m_next; 1298 } 1299 if (len > 0) 1300 printf("%d bytes unaccounted for.\n", len); 1301 return; 1302 } 1303 1304 u_int 1305 m_fixhdr(struct mbuf *m0) 1306 { 1307 u_int len; 1308 1309 len = m_length(m0, NULL); 1310 m0->m_pkthdr.len = len; 1311 return (len); 1312 } 1313 1314 u_int 1315 m_length(struct mbuf *m0, struct mbuf **last) 1316 { 1317 struct mbuf *m; 1318 u_int len; 1319 1320 len = 0; 1321 for (m = m0; m != NULL; m = m->m_next) { 1322 len += m->m_len; 1323 if (m->m_next == NULL) 1324 break; 1325 } 1326 if (last != NULL) 1327 *last = m; 1328 return (len); 1329 } 1330 1331 /* 1332 * Defragment a mbuf chain, returning the shortest possible 1333 * chain of mbufs and clusters. If allocation fails and 1334 * this cannot be completed, NULL will be returned, but 1335 * the passed in chain will be unchanged. Upon success, 1336 * the original chain will be freed, and the new chain 1337 * will be returned. 1338 * 1339 * If a non-packet header is passed in, the original 1340 * mbuf (chain?) will be returned unharmed. 1341 */ 1342 struct mbuf * 1343 m_defrag(struct mbuf *m0, int how) 1344 { 1345 struct mbuf *m_new = NULL, *m_final = NULL; 1346 int progress = 0, length; 1347 1348 MBUF_CHECKSLEEP(how); 1349 if (!(m0->m_flags & M_PKTHDR)) 1350 return (m0); 1351 1352 m_fixhdr(m0); /* Needed sanity check */ 1353 1354 #ifdef MBUF_STRESS_TEST 1355 if (m_defragrandomfailures) { 1356 int temp = arc4random() & 0xff; 1357 if (temp == 0xba) 1358 goto nospace; 1359 } 1360 #endif 1361 1362 if (m0->m_pkthdr.len > MHLEN) 1363 m_final = m_getcl(how, MT_DATA, M_PKTHDR); 1364 else 1365 m_final = m_gethdr(how, MT_DATA); 1366 1367 if (m_final == NULL) 1368 goto nospace; 1369 1370 if (m_dup_pkthdr(m_final, m0, how) == 0) 1371 goto nospace; 1372 1373 m_new = m_final; 1374 1375 while (progress < m0->m_pkthdr.len) { 1376 length = m0->m_pkthdr.len - progress; 1377 if (length > MCLBYTES) 1378 length = MCLBYTES; 1379 1380 if (m_new == NULL) { 1381 if (length > MLEN) 1382 m_new = m_getcl(how, MT_DATA, 0); 1383 else 1384 m_new = m_get(how, MT_DATA); 1385 if (m_new == NULL) 1386 goto nospace; 1387 } 1388 1389 m_copydata(m0, progress, length, mtod(m_new, caddr_t)); 1390 progress += length; 1391 m_new->m_len = length; 1392 if (m_new != m_final) 1393 m_cat(m_final, m_new); 1394 m_new = NULL; 1395 } 1396 #ifdef MBUF_STRESS_TEST 1397 if (m0->m_next == NULL) 1398 m_defraguseless++; 1399 #endif 1400 m_freem(m0); 1401 m0 = m_final; 1402 #ifdef MBUF_STRESS_TEST 1403 m_defragpackets++; 1404 m_defragbytes += m0->m_pkthdr.len; 1405 #endif 1406 return (m0); 1407 nospace: 1408 #ifdef MBUF_STRESS_TEST 1409 m_defragfailure++; 1410 #endif 1411 if (m_final) 1412 m_freem(m_final); 1413 return (NULL); 1414 } 1415 1416 /* 1417 * Return the number of fragments an mbuf will use. This is usually 1418 * used as a proxy for the number of scatter/gather elements needed by 1419 * a DMA engine to access an mbuf. In general mapped mbufs are 1420 * assumed to be backed by physically contiguous buffers that only 1421 * need a single fragment. Unmapped mbufs, on the other hand, can 1422 * span disjoint physical pages. 1423 */ 1424 static int 1425 frags_per_mbuf(struct mbuf *m) 1426 { 1427 int frags; 1428 1429 if ((m->m_flags & M_EXTPG) == 0) 1430 return (1); 1431 1432 /* 1433 * The header and trailer are counted as a single fragment 1434 * each when present. 1435 * 1436 * XXX: This overestimates the number of fragments by assuming 1437 * all the backing physical pages are disjoint. 1438 */ 1439 frags = 0; 1440 if (m->m_epg_hdrlen != 0) 1441 frags++; 1442 frags += m->m_epg_npgs; 1443 if (m->m_epg_trllen != 0) 1444 frags++; 1445 1446 return (frags); 1447 } 1448 1449 /* 1450 * Defragment an mbuf chain, returning at most maxfrags separate 1451 * mbufs+clusters. If this is not possible NULL is returned and 1452 * the original mbuf chain is left in its present (potentially 1453 * modified) state. We use two techniques: collapsing consecutive 1454 * mbufs and replacing consecutive mbufs by a cluster. 1455 * 1456 * NB: this should really be named m_defrag but that name is taken 1457 */ 1458 struct mbuf * 1459 m_collapse(struct mbuf *m0, int how, int maxfrags) 1460 { 1461 struct mbuf *m, *n, *n2, **prev; 1462 u_int curfrags; 1463 1464 /* 1465 * Calculate the current number of frags. 1466 */ 1467 curfrags = 0; 1468 for (m = m0; m != NULL; m = m->m_next) 1469 curfrags += frags_per_mbuf(m); 1470 /* 1471 * First, try to collapse mbufs. Note that we always collapse 1472 * towards the front so we don't need to deal with moving the 1473 * pkthdr. This may be suboptimal if the first mbuf has much 1474 * less data than the following. 1475 */ 1476 m = m0; 1477 again: 1478 for (;;) { 1479 n = m->m_next; 1480 if (n == NULL) 1481 break; 1482 if (M_WRITABLE(m) && 1483 n->m_len < M_TRAILINGSPACE(m)) { 1484 m_copydata(n, 0, n->m_len, 1485 mtod(m, char *) + m->m_len); 1486 m->m_len += n->m_len; 1487 m->m_next = n->m_next; 1488 curfrags -= frags_per_mbuf(n); 1489 m_free(n); 1490 if (curfrags <= maxfrags) 1491 return m0; 1492 } else 1493 m = n; 1494 } 1495 KASSERT(maxfrags > 1, 1496 ("maxfrags %u, but normal collapse failed", maxfrags)); 1497 /* 1498 * Collapse consecutive mbufs to a cluster. 1499 */ 1500 prev = &m0->m_next; /* NB: not the first mbuf */ 1501 while ((n = *prev) != NULL) { 1502 if ((n2 = n->m_next) != NULL && 1503 n->m_len + n2->m_len < MCLBYTES) { 1504 m = m_getcl(how, MT_DATA, 0); 1505 if (m == NULL) 1506 goto bad; 1507 m_copydata(n, 0, n->m_len, mtod(m, char *)); 1508 m_copydata(n2, 0, n2->m_len, 1509 mtod(m, char *) + n->m_len); 1510 m->m_len = n->m_len + n2->m_len; 1511 m->m_next = n2->m_next; 1512 *prev = m; 1513 curfrags += 1; /* For the new cluster */ 1514 curfrags -= frags_per_mbuf(n); 1515 curfrags -= frags_per_mbuf(n2); 1516 m_free(n); 1517 m_free(n2); 1518 if (curfrags <= maxfrags) 1519 return m0; 1520 /* 1521 * Still not there, try the normal collapse 1522 * again before we allocate another cluster. 1523 */ 1524 goto again; 1525 } 1526 prev = &n->m_next; 1527 } 1528 /* 1529 * No place where we can collapse to a cluster; punt. 1530 * This can occur if, for example, you request 2 frags 1531 * but the packet requires that both be clusters (we 1532 * never reallocate the first mbuf to avoid moving the 1533 * packet header). 1534 */ 1535 bad: 1536 return NULL; 1537 } 1538 1539 #ifdef MBUF_STRESS_TEST 1540 1541 /* 1542 * Fragment an mbuf chain. There's no reason you'd ever want to do 1543 * this in normal usage, but it's great for stress testing various 1544 * mbuf consumers. 1545 * 1546 * If fragmentation is not possible, the original chain will be 1547 * returned. 1548 * 1549 * Possible length values: 1550 * 0 no fragmentation will occur 1551 * > 0 each fragment will be of the specified length 1552 * -1 each fragment will be the same random value in length 1553 * -2 each fragment's length will be entirely random 1554 * (Random values range from 1 to 256) 1555 */ 1556 struct mbuf * 1557 m_fragment(struct mbuf *m0, int how, int length) 1558 { 1559 struct mbuf *m_first, *m_last; 1560 int divisor = 255, progress = 0, fraglen; 1561 1562 if (!(m0->m_flags & M_PKTHDR)) 1563 return (m0); 1564 1565 if (length == 0 || length < -2) 1566 return (m0); 1567 if (length > MCLBYTES) 1568 length = MCLBYTES; 1569 if (length < 0 && divisor > MCLBYTES) 1570 divisor = MCLBYTES; 1571 if (length == -1) 1572 length = 1 + (arc4random() % divisor); 1573 if (length > 0) 1574 fraglen = length; 1575 1576 m_fixhdr(m0); /* Needed sanity check */ 1577 1578 m_first = m_getcl(how, MT_DATA, M_PKTHDR); 1579 if (m_first == NULL) 1580 goto nospace; 1581 1582 if (m_dup_pkthdr(m_first, m0, how) == 0) 1583 goto nospace; 1584 1585 m_last = m_first; 1586 1587 while (progress < m0->m_pkthdr.len) { 1588 if (length == -2) 1589 fraglen = 1 + (arc4random() % divisor); 1590 if (fraglen > m0->m_pkthdr.len - progress) 1591 fraglen = m0->m_pkthdr.len - progress; 1592 1593 if (progress != 0) { 1594 struct mbuf *m_new = m_getcl(how, MT_DATA, 0); 1595 if (m_new == NULL) 1596 goto nospace; 1597 1598 m_last->m_next = m_new; 1599 m_last = m_new; 1600 } 1601 1602 m_copydata(m0, progress, fraglen, mtod(m_last, caddr_t)); 1603 progress += fraglen; 1604 m_last->m_len = fraglen; 1605 } 1606 m_freem(m0); 1607 m0 = m_first; 1608 return (m0); 1609 nospace: 1610 if (m_first) 1611 m_freem(m_first); 1612 /* Return the original chain on failure */ 1613 return (m0); 1614 } 1615 1616 #endif 1617 1618 /* 1619 * Free pages from mbuf_ext_pgs, assuming they were allocated via 1620 * vm_page_alloc() and aren't associated with any object. Complement 1621 * to allocator from m_uiotombuf_nomap(). 1622 */ 1623 void 1624 mb_free_mext_pgs(struct mbuf *m) 1625 { 1626 vm_page_t pg; 1627 1628 M_ASSERTEXTPG(m); 1629 for (int i = 0; i < m->m_epg_npgs; i++) { 1630 pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]); 1631 vm_page_unwire_noq(pg); 1632 vm_page_free(pg); 1633 } 1634 } 1635 1636 static struct mbuf * 1637 m_uiotombuf_nomap(struct uio *uio, int how, int len, int maxseg, int flags) 1638 { 1639 struct mbuf *m, *mb, *prev; 1640 vm_page_t pg_array[MBUF_PEXT_MAX_PGS]; 1641 int error, length, i, needed; 1642 ssize_t total; 1643 int pflags = malloc2vm_flags(how) | VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | 1644 VM_ALLOC_WIRED; 1645 1646 /* 1647 * len can be zero or an arbitrary large value bound by 1648 * the total data supplied by the uio. 1649 */ 1650 if (len > 0) 1651 total = MIN(uio->uio_resid, len); 1652 else 1653 total = uio->uio_resid; 1654 1655 if (maxseg == 0) 1656 maxseg = MBUF_PEXT_MAX_PGS * PAGE_SIZE; 1657 1658 /* 1659 * Allocate the pages 1660 */ 1661 m = NULL; 1662 MPASS((flags & M_PKTHDR) == 0); 1663 while (total > 0) { 1664 mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs); 1665 if (mb == NULL) 1666 goto failed; 1667 if (m == NULL) 1668 m = mb; 1669 else 1670 prev->m_next = mb; 1671 prev = mb; 1672 mb->m_epg_flags = EPG_FLAG_ANON; 1673 needed = length = MIN(maxseg, total); 1674 for (i = 0; needed > 0; i++, needed -= PAGE_SIZE) { 1675 retry_page: 1676 pg_array[i] = vm_page_alloc(NULL, 0, pflags); 1677 if (pg_array[i] == NULL) { 1678 if (how & M_NOWAIT) { 1679 goto failed; 1680 } else { 1681 vm_wait(NULL); 1682 goto retry_page; 1683 } 1684 } 1685 pg_array[i]->flags &= ~PG_ZERO; 1686 mb->m_epg_pa[i] = VM_PAGE_TO_PHYS(pg_array[i]); 1687 mb->m_epg_npgs++; 1688 } 1689 mb->m_epg_last_len = length - PAGE_SIZE * (mb->m_epg_npgs - 1); 1690 MBUF_EXT_PGS_ASSERT_SANITY(mb); 1691 total -= length; 1692 error = uiomove_fromphys(pg_array, 0, length, uio); 1693 if (error != 0) 1694 goto failed; 1695 mb->m_len = length; 1696 mb->m_ext.ext_size += PAGE_SIZE * mb->m_epg_npgs; 1697 if (flags & M_PKTHDR) 1698 m->m_pkthdr.len += length; 1699 } 1700 return (m); 1701 1702 failed: 1703 m_freem(m); 1704 return (NULL); 1705 } 1706 1707 /* 1708 * Copy the contents of uio into a properly sized mbuf chain. 1709 */ 1710 struct mbuf * 1711 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags) 1712 { 1713 struct mbuf *m, *mb; 1714 int error, length; 1715 ssize_t total; 1716 int progress = 0; 1717 1718 if (flags & M_EXTPG) 1719 return (m_uiotombuf_nomap(uio, how, len, align, flags)); 1720 1721 /* 1722 * len can be zero or an arbitrary large value bound by 1723 * the total data supplied by the uio. 1724 */ 1725 if (len > 0) 1726 total = (uio->uio_resid < len) ? uio->uio_resid : len; 1727 else 1728 total = uio->uio_resid; 1729 1730 /* 1731 * The smallest unit returned by m_getm2() is a single mbuf 1732 * with pkthdr. We can't align past it. 1733 */ 1734 if (align >= MHLEN) 1735 return (NULL); 1736 1737 /* 1738 * Give us the full allocation or nothing. 1739 * If len is zero return the smallest empty mbuf. 1740 */ 1741 m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags); 1742 if (m == NULL) 1743 return (NULL); 1744 m->m_data += align; 1745 1746 /* Fill all mbufs with uio data and update header information. */ 1747 for (mb = m; mb != NULL; mb = mb->m_next) { 1748 length = min(M_TRAILINGSPACE(mb), total - progress); 1749 1750 error = uiomove(mtod(mb, void *), length, uio); 1751 if (error) { 1752 m_freem(m); 1753 return (NULL); 1754 } 1755 1756 mb->m_len = length; 1757 progress += length; 1758 if (flags & M_PKTHDR) 1759 m->m_pkthdr.len += length; 1760 } 1761 KASSERT(progress == total, ("%s: progress != total", __func__)); 1762 1763 return (m); 1764 } 1765 1766 /* 1767 * Copy data from an unmapped mbuf into a uio limited by len if set. 1768 */ 1769 int 1770 m_unmappedtouio(const struct mbuf *m, int m_off, struct uio *uio, int len) 1771 { 1772 vm_page_t pg; 1773 int error, i, off, pglen, pgoff, seglen, segoff; 1774 1775 M_ASSERTEXTPG(m); 1776 error = 0; 1777 1778 /* Skip over any data removed from the front. */ 1779 off = mtod(m, vm_offset_t); 1780 1781 off += m_off; 1782 if (m->m_epg_hdrlen != 0) { 1783 if (off >= m->m_epg_hdrlen) { 1784 off -= m->m_epg_hdrlen; 1785 } else { 1786 seglen = m->m_epg_hdrlen - off; 1787 segoff = off; 1788 seglen = min(seglen, len); 1789 off = 0; 1790 len -= seglen; 1791 error = uiomove(__DECONST(void *, 1792 &m->m_epg_hdr[segoff]), seglen, uio); 1793 } 1794 } 1795 pgoff = m->m_epg_1st_off; 1796 for (i = 0; i < m->m_epg_npgs && error == 0 && len > 0; i++) { 1797 pglen = m_epg_pagelen(m, i, pgoff); 1798 if (off >= pglen) { 1799 off -= pglen; 1800 pgoff = 0; 1801 continue; 1802 } 1803 seglen = pglen - off; 1804 segoff = pgoff + off; 1805 off = 0; 1806 seglen = min(seglen, len); 1807 len -= seglen; 1808 pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]); 1809 error = uiomove_fromphys(&pg, segoff, seglen, uio); 1810 pgoff = 0; 1811 }; 1812 if (len != 0 && error == 0) { 1813 KASSERT((off + len) <= m->m_epg_trllen, 1814 ("off + len > trail (%d + %d > %d, m_off = %d)", off, len, 1815 m->m_epg_trllen, m_off)); 1816 error = uiomove(__DECONST(void *, &m->m_epg_trail[off]), 1817 len, uio); 1818 } 1819 return (error); 1820 } 1821 1822 /* 1823 * Copy an mbuf chain into a uio limited by len if set. 1824 */ 1825 int 1826 m_mbuftouio(struct uio *uio, const struct mbuf *m, int len) 1827 { 1828 int error, length, total; 1829 int progress = 0; 1830 1831 if (len > 0) 1832 total = min(uio->uio_resid, len); 1833 else 1834 total = uio->uio_resid; 1835 1836 /* Fill the uio with data from the mbufs. */ 1837 for (; m != NULL; m = m->m_next) { 1838 length = min(m->m_len, total - progress); 1839 1840 if ((m->m_flags & M_EXTPG) != 0) 1841 error = m_unmappedtouio(m, 0, uio, length); 1842 else 1843 error = uiomove(mtod(m, void *), length, uio); 1844 if (error) 1845 return (error); 1846 1847 progress += length; 1848 } 1849 1850 return (0); 1851 } 1852 1853 /* 1854 * Create a writable copy of the mbuf chain. While doing this 1855 * we compact the chain with a goal of producing a chain with 1856 * at most two mbufs. The second mbuf in this chain is likely 1857 * to be a cluster. The primary purpose of this work is to create 1858 * a writable packet for encryption, compression, etc. The 1859 * secondary goal is to linearize the data so the data can be 1860 * passed to crypto hardware in the most efficient manner possible. 1861 */ 1862 struct mbuf * 1863 m_unshare(struct mbuf *m0, int how) 1864 { 1865 struct mbuf *m, *mprev; 1866 struct mbuf *n, *mfirst, *mlast; 1867 int len, off; 1868 1869 mprev = NULL; 1870 for (m = m0; m != NULL; m = mprev->m_next) { 1871 /* 1872 * Regular mbufs are ignored unless there's a cluster 1873 * in front of it that we can use to coalesce. We do 1874 * the latter mainly so later clusters can be coalesced 1875 * also w/o having to handle them specially (i.e. convert 1876 * mbuf+cluster -> cluster). This optimization is heavily 1877 * influenced by the assumption that we're running over 1878 * Ethernet where MCLBYTES is large enough that the max 1879 * packet size will permit lots of coalescing into a 1880 * single cluster. This in turn permits efficient 1881 * crypto operations, especially when using hardware. 1882 */ 1883 if ((m->m_flags & M_EXT) == 0) { 1884 if (mprev && (mprev->m_flags & M_EXT) && 1885 m->m_len <= M_TRAILINGSPACE(mprev)) { 1886 /* XXX: this ignores mbuf types */ 1887 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 1888 mtod(m, caddr_t), m->m_len); 1889 mprev->m_len += m->m_len; 1890 mprev->m_next = m->m_next; /* unlink from chain */ 1891 m_free(m); /* reclaim mbuf */ 1892 } else { 1893 mprev = m; 1894 } 1895 continue; 1896 } 1897 /* 1898 * Writable mbufs are left alone (for now). 1899 */ 1900 if (M_WRITABLE(m)) { 1901 mprev = m; 1902 continue; 1903 } 1904 1905 /* 1906 * Not writable, replace with a copy or coalesce with 1907 * the previous mbuf if possible (since we have to copy 1908 * it anyway, we try to reduce the number of mbufs and 1909 * clusters so that future work is easier). 1910 */ 1911 KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags)); 1912 /* NB: we only coalesce into a cluster or larger */ 1913 if (mprev != NULL && (mprev->m_flags & M_EXT) && 1914 m->m_len <= M_TRAILINGSPACE(mprev)) { 1915 /* XXX: this ignores mbuf types */ 1916 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 1917 mtod(m, caddr_t), m->m_len); 1918 mprev->m_len += m->m_len; 1919 mprev->m_next = m->m_next; /* unlink from chain */ 1920 m_free(m); /* reclaim mbuf */ 1921 continue; 1922 } 1923 1924 /* 1925 * Allocate new space to hold the copy and copy the data. 1926 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by 1927 * splitting them into clusters. We could just malloc a 1928 * buffer and make it external but too many device drivers 1929 * don't know how to break up the non-contiguous memory when 1930 * doing DMA. 1931 */ 1932 n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS); 1933 if (n == NULL) { 1934 m_freem(m0); 1935 return (NULL); 1936 } 1937 if (m->m_flags & M_PKTHDR) { 1938 KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR", 1939 __func__, m0, m)); 1940 m_move_pkthdr(n, m); 1941 } 1942 len = m->m_len; 1943 off = 0; 1944 mfirst = n; 1945 mlast = NULL; 1946 for (;;) { 1947 int cc = min(len, MCLBYTES); 1948 memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc); 1949 n->m_len = cc; 1950 if (mlast != NULL) 1951 mlast->m_next = n; 1952 mlast = n; 1953 #if 0 1954 newipsecstat.ips_clcopied++; 1955 #endif 1956 1957 len -= cc; 1958 if (len <= 0) 1959 break; 1960 off += cc; 1961 1962 n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS); 1963 if (n == NULL) { 1964 m_freem(mfirst); 1965 m_freem(m0); 1966 return (NULL); 1967 } 1968 } 1969 n->m_next = m->m_next; 1970 if (mprev == NULL) 1971 m0 = mfirst; /* new head of chain */ 1972 else 1973 mprev->m_next = mfirst; /* replace old mbuf */ 1974 m_free(m); /* release old mbuf */ 1975 mprev = mfirst; 1976 } 1977 return (m0); 1978 } 1979 1980 #ifdef MBUF_PROFILING 1981 1982 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/ 1983 struct mbufprofile { 1984 uintmax_t wasted[MP_BUCKETS]; 1985 uintmax_t used[MP_BUCKETS]; 1986 uintmax_t segments[MP_BUCKETS]; 1987 } mbprof; 1988 1989 #define MP_MAXDIGITS 21 /* strlen("16,000,000,000,000,000,000") == 21 */ 1990 #define MP_NUMLINES 6 1991 #define MP_NUMSPERLINE 16 1992 #define MP_EXTRABYTES 64 /* > strlen("used:\nwasted:\nsegments:\n") */ 1993 /* work out max space needed and add a bit of spare space too */ 1994 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE) 1995 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES) 1996 1997 char mbprofbuf[MP_BUFSIZE]; 1998 1999 void 2000 m_profile(struct mbuf *m) 2001 { 2002 int segments = 0; 2003 int used = 0; 2004 int wasted = 0; 2005 2006 while (m) { 2007 segments++; 2008 used += m->m_len; 2009 if (m->m_flags & M_EXT) { 2010 wasted += MHLEN - sizeof(m->m_ext) + 2011 m->m_ext.ext_size - m->m_len; 2012 } else { 2013 if (m->m_flags & M_PKTHDR) 2014 wasted += MHLEN - m->m_len; 2015 else 2016 wasted += MLEN - m->m_len; 2017 } 2018 m = m->m_next; 2019 } 2020 /* be paranoid.. it helps */ 2021 if (segments > MP_BUCKETS - 1) 2022 segments = MP_BUCKETS - 1; 2023 if (used > 100000) 2024 used = 100000; 2025 if (wasted > 100000) 2026 wasted = 100000; 2027 /* store in the appropriate bucket */ 2028 /* don't bother locking. if it's slightly off, so what? */ 2029 mbprof.segments[segments]++; 2030 mbprof.used[fls(used)]++; 2031 mbprof.wasted[fls(wasted)]++; 2032 } 2033 2034 static void 2035 mbprof_textify(void) 2036 { 2037 int offset; 2038 char *c; 2039 uint64_t *p; 2040 2041 p = &mbprof.wasted[0]; 2042 c = mbprofbuf; 2043 offset = snprintf(c, MP_MAXLINE + 10, 2044 "wasted:\n" 2045 "%ju %ju %ju %ju %ju %ju %ju %ju " 2046 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2047 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2048 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2049 #ifdef BIG_ARRAY 2050 p = &mbprof.wasted[16]; 2051 c += offset; 2052 offset = snprintf(c, MP_MAXLINE, 2053 "%ju %ju %ju %ju %ju %ju %ju %ju " 2054 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2055 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2056 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2057 #endif 2058 p = &mbprof.used[0]; 2059 c += offset; 2060 offset = snprintf(c, MP_MAXLINE + 10, 2061 "used:\n" 2062 "%ju %ju %ju %ju %ju %ju %ju %ju " 2063 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2064 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2065 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2066 #ifdef BIG_ARRAY 2067 p = &mbprof.used[16]; 2068 c += offset; 2069 offset = snprintf(c, MP_MAXLINE, 2070 "%ju %ju %ju %ju %ju %ju %ju %ju " 2071 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2072 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2073 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2074 #endif 2075 p = &mbprof.segments[0]; 2076 c += offset; 2077 offset = snprintf(c, MP_MAXLINE + 10, 2078 "segments:\n" 2079 "%ju %ju %ju %ju %ju %ju %ju %ju " 2080 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2081 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2082 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2083 #ifdef BIG_ARRAY 2084 p = &mbprof.segments[16]; 2085 c += offset; 2086 offset = snprintf(c, MP_MAXLINE, 2087 "%ju %ju %ju %ju %ju %ju %ju %ju " 2088 "%ju %ju %ju %ju %ju %ju %ju %jju", 2089 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2090 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2091 #endif 2092 } 2093 2094 static int 2095 mbprof_handler(SYSCTL_HANDLER_ARGS) 2096 { 2097 int error; 2098 2099 mbprof_textify(); 2100 error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1); 2101 return (error); 2102 } 2103 2104 static int 2105 mbprof_clr_handler(SYSCTL_HANDLER_ARGS) 2106 { 2107 int clear, error; 2108 2109 clear = 0; 2110 error = sysctl_handle_int(oidp, &clear, 0, req); 2111 if (error || !req->newptr) 2112 return (error); 2113 2114 if (clear) { 2115 bzero(&mbprof, sizeof(mbprof)); 2116 } 2117 2118 return (error); 2119 } 2120 2121 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, 2122 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, NULL, 0, 2123 mbprof_handler, "A", 2124 "mbuf profiling statistics"); 2125 2126 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, 2127 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 2128 mbprof_clr_handler, "I", 2129 "clear mbuf profiling statistics"); 2130 #endif 2131 2132