xref: /freebsd/sys/kern/uipc_mbuf.c (revision 6683132d54bd6d589889e43dabdc53d35e38a028)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_param.h"
38 #include "opt_mbuf_stress_test.h"
39 #include "opt_mbuf_profiling.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/limits.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/sysctl.h>
49 #include <sys/domain.h>
50 #include <sys/protosw.h>
51 #include <sys/uio.h>
52 #include <sys/vmmeter.h>
53 #include <sys/sdt.h>
54 #include <vm/vm.h>
55 #include <vm/vm_pageout.h>
56 #include <vm/vm_page.h>
57 
58 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__init,
59     "struct mbuf *", "mbufinfo_t *",
60     "uint32_t", "uint32_t",
61     "uint16_t", "uint16_t",
62     "uint32_t", "uint32_t",
63     "uint32_t", "uint32_t");
64 
65 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr,
66     "uint32_t", "uint32_t",
67     "uint16_t", "uint16_t",
68     "struct mbuf *", "mbufinfo_t *");
69 
70 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get,
71     "uint32_t", "uint32_t",
72     "uint16_t", "uint16_t",
73     "struct mbuf *", "mbufinfo_t *");
74 
75 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__getcl,
76     "uint32_t", "uint32_t",
77     "uint16_t", "uint16_t",
78     "uint32_t", "uint32_t",
79     "struct mbuf *", "mbufinfo_t *");
80 
81 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__clget,
82     "struct mbuf *", "mbufinfo_t *",
83     "uint32_t", "uint32_t",
84     "uint32_t", "uint32_t");
85 
86 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__cljget,
87     "struct mbuf *", "mbufinfo_t *",
88     "uint32_t", "uint32_t",
89     "uint32_t", "uint32_t",
90     "void*", "void*");
91 
92 SDT_PROBE_DEFINE(sdt, , , m__cljset);
93 
94 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__free,
95         "struct mbuf *", "mbufinfo_t *");
96 
97 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__freem,
98     "struct mbuf *", "mbufinfo_t *");
99 
100 #include <security/mac/mac_framework.h>
101 
102 int	max_linkhdr;
103 int	max_protohdr;
104 int	max_hdr;
105 int	max_datalen;
106 #ifdef MBUF_STRESS_TEST
107 int	m_defragpackets;
108 int	m_defragbytes;
109 int	m_defraguseless;
110 int	m_defragfailure;
111 int	m_defragrandomfailures;
112 #endif
113 
114 /*
115  * sysctl(8) exported objects
116  */
117 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
118 	   &max_linkhdr, 0, "Size of largest link layer header");
119 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
120 	   &max_protohdr, 0, "Size of largest protocol layer header");
121 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
122 	   &max_hdr, 0, "Size of largest link plus protocol header");
123 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
124 	   &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
125 #ifdef MBUF_STRESS_TEST
126 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
127 	   &m_defragpackets, 0, "");
128 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
129 	   &m_defragbytes, 0, "");
130 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
131 	   &m_defraguseless, 0, "");
132 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
133 	   &m_defragfailure, 0, "");
134 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
135 	   &m_defragrandomfailures, 0, "");
136 #endif
137 
138 /*
139  * Ensure the correct size of various mbuf parameters.  It could be off due
140  * to compiler-induced padding and alignment artifacts.
141  */
142 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN);
143 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN);
144 
145 /*
146  * mbuf data storage should be 64-bit aligned regardless of architectural
147  * pointer size; check this is the case with and without a packet header.
148  */
149 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0);
150 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0);
151 
152 /*
153  * While the specific values here don't matter too much (i.e., +/- a few
154  * words), we do want to ensure that changes to these values are carefully
155  * reasoned about and properly documented.  This is especially the case as
156  * network-protocol and device-driver modules encode these layouts, and must
157  * be recompiled if the structures change.  Check these values at compile time
158  * against the ones documented in comments in mbuf.h.
159  *
160  * NB: Possibly they should be documented there via #define's and not just
161  * comments.
162  */
163 #if defined(__LP64__)
164 CTASSERT(offsetof(struct mbuf, m_dat) == 32);
165 CTASSERT(sizeof(struct pkthdr) == 56);
166 CTASSERT(sizeof(struct m_ext) == 48);
167 #else
168 CTASSERT(offsetof(struct mbuf, m_dat) == 24);
169 CTASSERT(sizeof(struct pkthdr) == 48);
170 CTASSERT(sizeof(struct m_ext) == 28);
171 #endif
172 
173 /*
174  * Assert that the queue(3) macros produce code of the same size as an old
175  * plain pointer does.
176  */
177 #ifdef INVARIANTS
178 static struct mbuf __used m_assertbuf;
179 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next));
180 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next));
181 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt));
182 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt));
183 #endif
184 
185 /*
186  * Attach the cluster from *m to *n, set up m_ext in *n
187  * and bump the refcount of the cluster.
188  */
189 void
190 mb_dupcl(struct mbuf *n, struct mbuf *m)
191 {
192 	volatile u_int *refcnt;
193 
194 	KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m));
195 	KASSERT(!(n->m_flags & M_EXT), ("%s: M_EXT set on %p", __func__, n));
196 
197 	/*
198 	 * Cache access optimization.  For most kinds of external
199 	 * storage we don't need full copy of m_ext, since the
200 	 * holder of the 'ext_count' is responsible to carry the
201 	 * free routine and its arguments.  Exclusion is EXT_EXTREF,
202 	 * where 'ext_cnt' doesn't point into mbuf at all.
203 	 */
204 	if (m->m_ext.ext_type == EXT_EXTREF)
205 		bcopy(&m->m_ext, &n->m_ext, sizeof(struct m_ext));
206 	else
207 		bcopy(&m->m_ext, &n->m_ext, m_ext_copylen);
208 	n->m_flags |= M_EXT;
209 	n->m_flags |= m->m_flags & (M_RDONLY | M_NOMAP);
210 
211 	/* See if this is the mbuf that holds the embedded refcount. */
212 	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
213 		refcnt = n->m_ext.ext_cnt = &m->m_ext.ext_count;
214 		n->m_ext.ext_flags &= ~EXT_FLAG_EMBREF;
215 	} else {
216 		KASSERT(m->m_ext.ext_cnt != NULL,
217 		    ("%s: no refcounting pointer on %p", __func__, m));
218 		refcnt = m->m_ext.ext_cnt;
219 	}
220 
221 	if (*refcnt == 1)
222 		*refcnt += 1;
223 	else
224 		atomic_add_int(refcnt, 1);
225 }
226 
227 void
228 m_demote_pkthdr(struct mbuf *m)
229 {
230 
231 	M_ASSERTPKTHDR(m);
232 
233 	m_tag_delete_chain(m, NULL);
234 	m->m_flags &= ~M_PKTHDR;
235 	bzero(&m->m_pkthdr, sizeof(struct pkthdr));
236 }
237 
238 /*
239  * Clean up mbuf (chain) from any tags and packet headers.
240  * If "all" is set then the first mbuf in the chain will be
241  * cleaned too.
242  */
243 void
244 m_demote(struct mbuf *m0, int all, int flags)
245 {
246 	struct mbuf *m;
247 
248 	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
249 		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p",
250 		    __func__, m, m0));
251 		if (m->m_flags & M_PKTHDR)
252 			m_demote_pkthdr(m);
253 		m->m_flags = m->m_flags & (M_EXT | M_RDONLY | M_NOFREE |
254 		    M_NOMAP | flags);
255 	}
256 }
257 
258 /*
259  * Sanity checks on mbuf (chain) for use in KASSERT() and general
260  * debugging.
261  * Returns 0 or panics when bad and 1 on all tests passed.
262  * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
263  * blow up later.
264  */
265 int
266 m_sanity(struct mbuf *m0, int sanitize)
267 {
268 	struct mbuf *m;
269 	caddr_t a, b;
270 	int pktlen = 0;
271 
272 #ifdef INVARIANTS
273 #define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
274 #else
275 #define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
276 #endif
277 
278 	for (m = m0; m != NULL; m = m->m_next) {
279 		/*
280 		 * Basic pointer checks.  If any of these fails then some
281 		 * unrelated kernel memory before or after us is trashed.
282 		 * No way to recover from that.
283 		 */
284 		a = M_START(m);
285 		b = a + M_SIZE(m);
286 		if ((caddr_t)m->m_data < a)
287 			M_SANITY_ACTION("m_data outside mbuf data range left");
288 		if ((caddr_t)m->m_data > b)
289 			M_SANITY_ACTION("m_data outside mbuf data range right");
290 		if ((caddr_t)m->m_data + m->m_len > b)
291 			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
292 
293 		/* m->m_nextpkt may only be set on first mbuf in chain. */
294 		if (m != m0 && m->m_nextpkt != NULL) {
295 			if (sanitize) {
296 				m_freem(m->m_nextpkt);
297 				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
298 			} else
299 				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
300 		}
301 
302 		/* packet length (not mbuf length!) calculation */
303 		if (m0->m_flags & M_PKTHDR)
304 			pktlen += m->m_len;
305 
306 		/* m_tags may only be attached to first mbuf in chain. */
307 		if (m != m0 && m->m_flags & M_PKTHDR &&
308 		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
309 			if (sanitize) {
310 				m_tag_delete_chain(m, NULL);
311 				/* put in 0xDEADC0DE perhaps? */
312 			} else
313 				M_SANITY_ACTION("m_tags on in-chain mbuf");
314 		}
315 
316 		/* M_PKTHDR may only be set on first mbuf in chain */
317 		if (m != m0 && m->m_flags & M_PKTHDR) {
318 			if (sanitize) {
319 				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
320 				m->m_flags &= ~M_PKTHDR;
321 				/* put in 0xDEADCODE and leave hdr flag in */
322 			} else
323 				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
324 		}
325 	}
326 	m = m0;
327 	if (pktlen && pktlen != m->m_pkthdr.len) {
328 		if (sanitize)
329 			m->m_pkthdr.len = 0;
330 		else
331 			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
332 	}
333 	return 1;
334 
335 #undef	M_SANITY_ACTION
336 }
337 
338 /*
339  * Non-inlined part of m_init().
340  */
341 int
342 m_pkthdr_init(struct mbuf *m, int how)
343 {
344 #ifdef MAC
345 	int error;
346 #endif
347 	m->m_data = m->m_pktdat;
348 	bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
349 #ifdef NUMA
350 	m->m_pkthdr.numa_domain = M_NODOM;
351 #endif
352 #ifdef MAC
353 	/* If the label init fails, fail the alloc */
354 	error = mac_mbuf_init(m, how);
355 	if (error)
356 		return (error);
357 #endif
358 
359 	return (0);
360 }
361 
362 /*
363  * "Move" mbuf pkthdr from "from" to "to".
364  * "from" must have M_PKTHDR set, and "to" must be empty.
365  */
366 void
367 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
368 {
369 
370 #if 0
371 	/* see below for why these are not enabled */
372 	M_ASSERTPKTHDR(to);
373 	/* Note: with MAC, this may not be a good assertion. */
374 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
375 	    ("m_move_pkthdr: to has tags"));
376 #endif
377 #ifdef MAC
378 	/*
379 	 * XXXMAC: It could be this should also occur for non-MAC?
380 	 */
381 	if (to->m_flags & M_PKTHDR)
382 		m_tag_delete_chain(to, NULL);
383 #endif
384 	to->m_flags = (from->m_flags & M_COPYFLAGS) |
385 	    (to->m_flags & (M_EXT | M_NOMAP));
386 	if ((to->m_flags & M_EXT) == 0)
387 		to->m_data = to->m_pktdat;
388 	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
389 	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
390 	from->m_flags &= ~M_PKTHDR;
391 	if (from->m_pkthdr.csum_flags & CSUM_SND_TAG) {
392 		from->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
393 		from->m_pkthdr.snd_tag = NULL;
394 	}
395 }
396 
397 /*
398  * Duplicate "from"'s mbuf pkthdr in "to".
399  * "from" must have M_PKTHDR set, and "to" must be empty.
400  * In particular, this does a deep copy of the packet tags.
401  */
402 int
403 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how)
404 {
405 
406 #if 0
407 	/*
408 	 * The mbuf allocator only initializes the pkthdr
409 	 * when the mbuf is allocated with m_gethdr(). Many users
410 	 * (e.g. m_copy*, m_prepend) use m_get() and then
411 	 * smash the pkthdr as needed causing these
412 	 * assertions to trip.  For now just disable them.
413 	 */
414 	M_ASSERTPKTHDR(to);
415 	/* Note: with MAC, this may not be a good assertion. */
416 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
417 #endif
418 	MBUF_CHECKSLEEP(how);
419 #ifdef MAC
420 	if (to->m_flags & M_PKTHDR)
421 		m_tag_delete_chain(to, NULL);
422 #endif
423 	to->m_flags = (from->m_flags & M_COPYFLAGS) |
424 	    (to->m_flags & (M_EXT | M_NOMAP));
425 	if ((to->m_flags & M_EXT) == 0)
426 		to->m_data = to->m_pktdat;
427 	to->m_pkthdr = from->m_pkthdr;
428 	if (from->m_pkthdr.csum_flags & CSUM_SND_TAG)
429 		m_snd_tag_ref(from->m_pkthdr.snd_tag);
430 	SLIST_INIT(&to->m_pkthdr.tags);
431 	return (m_tag_copy_chain(to, from, how));
432 }
433 
434 /*
435  * Lesser-used path for M_PREPEND:
436  * allocate new mbuf to prepend to chain,
437  * copy junk along.
438  */
439 struct mbuf *
440 m_prepend(struct mbuf *m, int len, int how)
441 {
442 	struct mbuf *mn;
443 
444 	if (m->m_flags & M_PKTHDR)
445 		mn = m_gethdr(how, m->m_type);
446 	else
447 		mn = m_get(how, m->m_type);
448 	if (mn == NULL) {
449 		m_freem(m);
450 		return (NULL);
451 	}
452 	if (m->m_flags & M_PKTHDR)
453 		m_move_pkthdr(mn, m);
454 	mn->m_next = m;
455 	m = mn;
456 	if (len < M_SIZE(m))
457 		M_ALIGN(m, len);
458 	m->m_len = len;
459 	return (m);
460 }
461 
462 /*
463  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
464  * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
465  * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
466  * Note that the copy is read-only, because clusters are not copied,
467  * only their reference counts are incremented.
468  */
469 struct mbuf *
470 m_copym(struct mbuf *m, int off0, int len, int wait)
471 {
472 	struct mbuf *n, **np;
473 	int off = off0;
474 	struct mbuf *top;
475 	int copyhdr = 0;
476 
477 	KASSERT(off >= 0, ("m_copym, negative off %d", off));
478 	KASSERT(len >= 0, ("m_copym, negative len %d", len));
479 	MBUF_CHECKSLEEP(wait);
480 	if (off == 0 && m->m_flags & M_PKTHDR)
481 		copyhdr = 1;
482 	while (off > 0) {
483 		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
484 		if (off < m->m_len)
485 			break;
486 		off -= m->m_len;
487 		m = m->m_next;
488 	}
489 	np = &top;
490 	top = NULL;
491 	while (len > 0) {
492 		if (m == NULL) {
493 			KASSERT(len == M_COPYALL,
494 			    ("m_copym, length > size of mbuf chain"));
495 			break;
496 		}
497 		if (copyhdr)
498 			n = m_gethdr(wait, m->m_type);
499 		else
500 			n = m_get(wait, m->m_type);
501 		*np = n;
502 		if (n == NULL)
503 			goto nospace;
504 		if (copyhdr) {
505 			if (!m_dup_pkthdr(n, m, wait))
506 				goto nospace;
507 			if (len == M_COPYALL)
508 				n->m_pkthdr.len -= off0;
509 			else
510 				n->m_pkthdr.len = len;
511 			copyhdr = 0;
512 		}
513 		n->m_len = min(len, m->m_len - off);
514 		if (m->m_flags & M_EXT) {
515 			n->m_data = m->m_data + off;
516 			mb_dupcl(n, m);
517 		} else
518 			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
519 			    (u_int)n->m_len);
520 		if (len != M_COPYALL)
521 			len -= n->m_len;
522 		off = 0;
523 		m = m->m_next;
524 		np = &n->m_next;
525 	}
526 
527 	return (top);
528 nospace:
529 	m_freem(top);
530 	return (NULL);
531 }
532 
533 /*
534  * Copy an entire packet, including header (which must be present).
535  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
536  * Note that the copy is read-only, because clusters are not copied,
537  * only their reference counts are incremented.
538  * Preserve alignment of the first mbuf so if the creator has left
539  * some room at the beginning (e.g. for inserting protocol headers)
540  * the copies still have the room available.
541  */
542 struct mbuf *
543 m_copypacket(struct mbuf *m, int how)
544 {
545 	struct mbuf *top, *n, *o;
546 
547 	MBUF_CHECKSLEEP(how);
548 	n = m_get(how, m->m_type);
549 	top = n;
550 	if (n == NULL)
551 		goto nospace;
552 
553 	if (!m_dup_pkthdr(n, m, how))
554 		goto nospace;
555 	n->m_len = m->m_len;
556 	if (m->m_flags & M_EXT) {
557 		n->m_data = m->m_data;
558 		mb_dupcl(n, m);
559 	} else {
560 		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
561 		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
562 	}
563 
564 	m = m->m_next;
565 	while (m) {
566 		o = m_get(how, m->m_type);
567 		if (o == NULL)
568 			goto nospace;
569 
570 		n->m_next = o;
571 		n = n->m_next;
572 
573 		n->m_len = m->m_len;
574 		if (m->m_flags & M_EXT) {
575 			n->m_data = m->m_data;
576 			mb_dupcl(n, m);
577 		} else {
578 			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
579 		}
580 
581 		m = m->m_next;
582 	}
583 	return top;
584 nospace:
585 	m_freem(top);
586 	return (NULL);
587 }
588 
589 static void
590 m_copyfromunmapped(const struct mbuf *m, int off, int len, caddr_t cp)
591 {
592 	struct iovec iov;
593 	struct uio uio;
594 	int error;
595 
596 	KASSERT(off >= 0, ("m_copyfromunmapped: negative off %d", off));
597 	KASSERT(len >= 0, ("m_copyfromunmapped: negative len %d", len));
598 	KASSERT(off < m->m_len,
599 	    ("m_copyfromunmapped: len exceeds mbuf length"));
600 	iov.iov_base = cp;
601 	iov.iov_len = len;
602 	uio.uio_resid = len;
603 	uio.uio_iov = &iov;
604 	uio.uio_segflg = UIO_SYSSPACE;
605 	uio.uio_iovcnt = 1;
606 	uio.uio_offset = 0;
607 	uio.uio_rw = UIO_READ;
608 	error = m_unmappedtouio(m, off, &uio, len);
609 	KASSERT(error == 0, ("m_unmappedtouio failed: off %d, len %d", off,
610 	   len));
611 }
612 
613 /*
614  * Copy data from an mbuf chain starting "off" bytes from the beginning,
615  * continuing for "len" bytes, into the indicated buffer.
616  */
617 void
618 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
619 {
620 	u_int count;
621 
622 	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
623 	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
624 	while (off > 0) {
625 		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
626 		if (off < m->m_len)
627 			break;
628 		off -= m->m_len;
629 		m = m->m_next;
630 	}
631 	while (len > 0) {
632 		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
633 		count = min(m->m_len - off, len);
634 		if ((m->m_flags & M_NOMAP) != 0)
635 			m_copyfromunmapped(m, off, count, cp);
636 		else
637 			bcopy(mtod(m, caddr_t) + off, cp, count);
638 		len -= count;
639 		cp += count;
640 		off = 0;
641 		m = m->m_next;
642 	}
643 }
644 
645 /*
646  * Copy a packet header mbuf chain into a completely new chain, including
647  * copying any mbuf clusters.  Use this instead of m_copypacket() when
648  * you need a writable copy of an mbuf chain.
649  */
650 struct mbuf *
651 m_dup(const struct mbuf *m, int how)
652 {
653 	struct mbuf **p, *top = NULL;
654 	int remain, moff, nsize;
655 
656 	MBUF_CHECKSLEEP(how);
657 	/* Sanity check */
658 	if (m == NULL)
659 		return (NULL);
660 	M_ASSERTPKTHDR(m);
661 
662 	/* While there's more data, get a new mbuf, tack it on, and fill it */
663 	remain = m->m_pkthdr.len;
664 	moff = 0;
665 	p = &top;
666 	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
667 		struct mbuf *n;
668 
669 		/* Get the next new mbuf */
670 		if (remain >= MINCLSIZE) {
671 			n = m_getcl(how, m->m_type, 0);
672 			nsize = MCLBYTES;
673 		} else {
674 			n = m_get(how, m->m_type);
675 			nsize = MLEN;
676 		}
677 		if (n == NULL)
678 			goto nospace;
679 
680 		if (top == NULL) {		/* First one, must be PKTHDR */
681 			if (!m_dup_pkthdr(n, m, how)) {
682 				m_free(n);
683 				goto nospace;
684 			}
685 			if ((n->m_flags & M_EXT) == 0)
686 				nsize = MHLEN;
687 			n->m_flags &= ~M_RDONLY;
688 		}
689 		n->m_len = 0;
690 
691 		/* Link it into the new chain */
692 		*p = n;
693 		p = &n->m_next;
694 
695 		/* Copy data from original mbuf(s) into new mbuf */
696 		while (n->m_len < nsize && m != NULL) {
697 			int chunk = min(nsize - n->m_len, m->m_len - moff);
698 
699 			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
700 			moff += chunk;
701 			n->m_len += chunk;
702 			remain -= chunk;
703 			if (moff == m->m_len) {
704 				m = m->m_next;
705 				moff = 0;
706 			}
707 		}
708 
709 		/* Check correct total mbuf length */
710 		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
711 		    	("%s: bogus m_pkthdr.len", __func__));
712 	}
713 	return (top);
714 
715 nospace:
716 	m_freem(top);
717 	return (NULL);
718 }
719 
720 /*
721  * Concatenate mbuf chain n to m.
722  * Both chains must be of the same type (e.g. MT_DATA).
723  * Any m_pkthdr is not updated.
724  */
725 void
726 m_cat(struct mbuf *m, struct mbuf *n)
727 {
728 	while (m->m_next)
729 		m = m->m_next;
730 	while (n) {
731 		if (!M_WRITABLE(m) ||
732 		    (n->m_flags & M_NOMAP) != 0 ||
733 		    M_TRAILINGSPACE(m) < n->m_len) {
734 			/* just join the two chains */
735 			m->m_next = n;
736 			return;
737 		}
738 		/* splat the data from one into the other */
739 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
740 		    (u_int)n->m_len);
741 		m->m_len += n->m_len;
742 		n = m_free(n);
743 	}
744 }
745 
746 /*
747  * Concatenate two pkthdr mbuf chains.
748  */
749 void
750 m_catpkt(struct mbuf *m, struct mbuf *n)
751 {
752 
753 	M_ASSERTPKTHDR(m);
754 	M_ASSERTPKTHDR(n);
755 
756 	m->m_pkthdr.len += n->m_pkthdr.len;
757 	m_demote(n, 1, 0);
758 
759 	m_cat(m, n);
760 }
761 
762 void
763 m_adj(struct mbuf *mp, int req_len)
764 {
765 	int len = req_len;
766 	struct mbuf *m;
767 	int count;
768 
769 	if ((m = mp) == NULL)
770 		return;
771 	if (len >= 0) {
772 		/*
773 		 * Trim from head.
774 		 */
775 		while (m != NULL && len > 0) {
776 			if (m->m_len <= len) {
777 				len -= m->m_len;
778 				m->m_len = 0;
779 				m = m->m_next;
780 			} else {
781 				m->m_len -= len;
782 				m->m_data += len;
783 				len = 0;
784 			}
785 		}
786 		if (mp->m_flags & M_PKTHDR)
787 			mp->m_pkthdr.len -= (req_len - len);
788 	} else {
789 		/*
790 		 * Trim from tail.  Scan the mbuf chain,
791 		 * calculating its length and finding the last mbuf.
792 		 * If the adjustment only affects this mbuf, then just
793 		 * adjust and return.  Otherwise, rescan and truncate
794 		 * after the remaining size.
795 		 */
796 		len = -len;
797 		count = 0;
798 		for (;;) {
799 			count += m->m_len;
800 			if (m->m_next == (struct mbuf *)0)
801 				break;
802 			m = m->m_next;
803 		}
804 		if (m->m_len >= len) {
805 			m->m_len -= len;
806 			if (mp->m_flags & M_PKTHDR)
807 				mp->m_pkthdr.len -= len;
808 			return;
809 		}
810 		count -= len;
811 		if (count < 0)
812 			count = 0;
813 		/*
814 		 * Correct length for chain is "count".
815 		 * Find the mbuf with last data, adjust its length,
816 		 * and toss data from remaining mbufs on chain.
817 		 */
818 		m = mp;
819 		if (m->m_flags & M_PKTHDR)
820 			m->m_pkthdr.len = count;
821 		for (; m; m = m->m_next) {
822 			if (m->m_len >= count) {
823 				m->m_len = count;
824 				if (m->m_next != NULL) {
825 					m_freem(m->m_next);
826 					m->m_next = NULL;
827 				}
828 				break;
829 			}
830 			count -= m->m_len;
831 		}
832 	}
833 }
834 
835 /*
836  * Rearange an mbuf chain so that len bytes are contiguous
837  * and in the data area of an mbuf (so that mtod will work
838  * for a structure of size len).  Returns the resulting
839  * mbuf chain on success, frees it and returns null on failure.
840  * If there is room, it will add up to max_protohdr-len extra bytes to the
841  * contiguous region in an attempt to avoid being called next time.
842  */
843 struct mbuf *
844 m_pullup(struct mbuf *n, int len)
845 {
846 	struct mbuf *m;
847 	int count;
848 	int space;
849 
850 	KASSERT((n->m_flags & M_NOMAP) == 0,
851 	    ("%s: unmapped mbuf %p", __func__, n));
852 
853 	/*
854 	 * If first mbuf has no cluster, and has room for len bytes
855 	 * without shifting current data, pullup into it,
856 	 * otherwise allocate a new mbuf to prepend to the chain.
857 	 */
858 	if ((n->m_flags & M_EXT) == 0 &&
859 	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
860 		if (n->m_len >= len)
861 			return (n);
862 		m = n;
863 		n = n->m_next;
864 		len -= m->m_len;
865 	} else {
866 		if (len > MHLEN)
867 			goto bad;
868 		m = m_get(M_NOWAIT, n->m_type);
869 		if (m == NULL)
870 			goto bad;
871 		if (n->m_flags & M_PKTHDR)
872 			m_move_pkthdr(m, n);
873 	}
874 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
875 	do {
876 		count = min(min(max(len, max_protohdr), space), n->m_len);
877 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
878 		  (u_int)count);
879 		len -= count;
880 		m->m_len += count;
881 		n->m_len -= count;
882 		space -= count;
883 		if (n->m_len)
884 			n->m_data += count;
885 		else
886 			n = m_free(n);
887 	} while (len > 0 && n);
888 	if (len > 0) {
889 		(void) m_free(m);
890 		goto bad;
891 	}
892 	m->m_next = n;
893 	return (m);
894 bad:
895 	m_freem(n);
896 	return (NULL);
897 }
898 
899 /*
900  * Like m_pullup(), except a new mbuf is always allocated, and we allow
901  * the amount of empty space before the data in the new mbuf to be specified
902  * (in the event that the caller expects to prepend later).
903  */
904 struct mbuf *
905 m_copyup(struct mbuf *n, int len, int dstoff)
906 {
907 	struct mbuf *m;
908 	int count, space;
909 
910 	if (len > (MHLEN - dstoff))
911 		goto bad;
912 	m = m_get(M_NOWAIT, n->m_type);
913 	if (m == NULL)
914 		goto bad;
915 	if (n->m_flags & M_PKTHDR)
916 		m_move_pkthdr(m, n);
917 	m->m_data += dstoff;
918 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
919 	do {
920 		count = min(min(max(len, max_protohdr), space), n->m_len);
921 		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
922 		    (unsigned)count);
923 		len -= count;
924 		m->m_len += count;
925 		n->m_len -= count;
926 		space -= count;
927 		if (n->m_len)
928 			n->m_data += count;
929 		else
930 			n = m_free(n);
931 	} while (len > 0 && n);
932 	if (len > 0) {
933 		(void) m_free(m);
934 		goto bad;
935 	}
936 	m->m_next = n;
937 	return (m);
938  bad:
939 	m_freem(n);
940 	return (NULL);
941 }
942 
943 /*
944  * Partition an mbuf chain in two pieces, returning the tail --
945  * all but the first len0 bytes.  In case of failure, it returns NULL and
946  * attempts to restore the chain to its original state.
947  *
948  * Note that the resulting mbufs might be read-only, because the new
949  * mbuf can end up sharing an mbuf cluster with the original mbuf if
950  * the "breaking point" happens to lie within a cluster mbuf. Use the
951  * M_WRITABLE() macro to check for this case.
952  */
953 struct mbuf *
954 m_split(struct mbuf *m0, int len0, int wait)
955 {
956 	struct mbuf *m, *n;
957 	u_int len = len0, remain;
958 
959 	MBUF_CHECKSLEEP(wait);
960 	for (m = m0; m && len > m->m_len; m = m->m_next)
961 		len -= m->m_len;
962 	if (m == NULL)
963 		return (NULL);
964 	remain = m->m_len - len;
965 	if (m0->m_flags & M_PKTHDR && remain == 0) {
966 		n = m_gethdr(wait, m0->m_type);
967 		if (n == NULL)
968 			return (NULL);
969 		n->m_next = m->m_next;
970 		m->m_next = NULL;
971 		if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) {
972 			n->m_pkthdr.snd_tag =
973 			    m_snd_tag_ref(m0->m_pkthdr.snd_tag);
974 			n->m_pkthdr.csum_flags |= CSUM_SND_TAG;
975 		} else
976 			n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
977 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
978 		m0->m_pkthdr.len = len0;
979 		return (n);
980 	} else if (m0->m_flags & M_PKTHDR) {
981 		n = m_gethdr(wait, m0->m_type);
982 		if (n == NULL)
983 			return (NULL);
984 		if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) {
985 			n->m_pkthdr.snd_tag =
986 			    m_snd_tag_ref(m0->m_pkthdr.snd_tag);
987 			n->m_pkthdr.csum_flags |= CSUM_SND_TAG;
988 		} else
989 			n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
990 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
991 		m0->m_pkthdr.len = len0;
992 		if (m->m_flags & M_EXT)
993 			goto extpacket;
994 		if (remain > MHLEN) {
995 			/* m can't be the lead packet */
996 			M_ALIGN(n, 0);
997 			n->m_next = m_split(m, len, wait);
998 			if (n->m_next == NULL) {
999 				(void) m_free(n);
1000 				return (NULL);
1001 			} else {
1002 				n->m_len = 0;
1003 				return (n);
1004 			}
1005 		} else
1006 			M_ALIGN(n, remain);
1007 	} else if (remain == 0) {
1008 		n = m->m_next;
1009 		m->m_next = NULL;
1010 		return (n);
1011 	} else {
1012 		n = m_get(wait, m->m_type);
1013 		if (n == NULL)
1014 			return (NULL);
1015 		M_ALIGN(n, remain);
1016 	}
1017 extpacket:
1018 	if (m->m_flags & M_EXT) {
1019 		n->m_data = m->m_data + len;
1020 		mb_dupcl(n, m);
1021 	} else {
1022 		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1023 	}
1024 	n->m_len = remain;
1025 	m->m_len = len;
1026 	n->m_next = m->m_next;
1027 	m->m_next = NULL;
1028 	return (n);
1029 }
1030 /*
1031  * Routine to copy from device local memory into mbufs.
1032  * Note that `off' argument is offset into first mbuf of target chain from
1033  * which to begin copying the data to.
1034  */
1035 struct mbuf *
1036 m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1037     void (*copy)(char *from, caddr_t to, u_int len))
1038 {
1039 	struct mbuf *m;
1040 	struct mbuf *top = NULL, **mp = &top;
1041 	int len;
1042 
1043 	if (off < 0 || off > MHLEN)
1044 		return (NULL);
1045 
1046 	while (totlen > 0) {
1047 		if (top == NULL) {	/* First one, must be PKTHDR */
1048 			if (totlen + off >= MINCLSIZE) {
1049 				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1050 				len = MCLBYTES;
1051 			} else {
1052 				m = m_gethdr(M_NOWAIT, MT_DATA);
1053 				len = MHLEN;
1054 
1055 				/* Place initial small packet/header at end of mbuf */
1056 				if (m && totlen + off + max_linkhdr <= MHLEN) {
1057 					m->m_data += max_linkhdr;
1058 					len -= max_linkhdr;
1059 				}
1060 			}
1061 			if (m == NULL)
1062 				return NULL;
1063 			m->m_pkthdr.rcvif = ifp;
1064 			m->m_pkthdr.len = totlen;
1065 		} else {
1066 			if (totlen + off >= MINCLSIZE) {
1067 				m = m_getcl(M_NOWAIT, MT_DATA, 0);
1068 				len = MCLBYTES;
1069 			} else {
1070 				m = m_get(M_NOWAIT, MT_DATA);
1071 				len = MLEN;
1072 			}
1073 			if (m == NULL) {
1074 				m_freem(top);
1075 				return NULL;
1076 			}
1077 		}
1078 		if (off) {
1079 			m->m_data += off;
1080 			len -= off;
1081 			off = 0;
1082 		}
1083 		m->m_len = len = min(totlen, len);
1084 		if (copy)
1085 			copy(buf, mtod(m, caddr_t), (u_int)len);
1086 		else
1087 			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1088 		buf += len;
1089 		*mp = m;
1090 		mp = &m->m_next;
1091 		totlen -= len;
1092 	}
1093 	return (top);
1094 }
1095 
1096 /*
1097  * Copy data from a buffer back into the indicated mbuf chain,
1098  * starting "off" bytes from the beginning, extending the mbuf
1099  * chain if necessary.
1100  */
1101 void
1102 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1103 {
1104 	int mlen;
1105 	struct mbuf *m = m0, *n;
1106 	int totlen = 0;
1107 
1108 	if (m0 == NULL)
1109 		return;
1110 	while (off > (mlen = m->m_len)) {
1111 		off -= mlen;
1112 		totlen += mlen;
1113 		if (m->m_next == NULL) {
1114 			n = m_get(M_NOWAIT, m->m_type);
1115 			if (n == NULL)
1116 				goto out;
1117 			bzero(mtod(n, caddr_t), MLEN);
1118 			n->m_len = min(MLEN, len + off);
1119 			m->m_next = n;
1120 		}
1121 		m = m->m_next;
1122 	}
1123 	while (len > 0) {
1124 		if (m->m_next == NULL && (len > m->m_len - off)) {
1125 			m->m_len += min(len - (m->m_len - off),
1126 			    M_TRAILINGSPACE(m));
1127 		}
1128 		mlen = min (m->m_len - off, len);
1129 		bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1130 		cp += mlen;
1131 		len -= mlen;
1132 		mlen += off;
1133 		off = 0;
1134 		totlen += mlen;
1135 		if (len == 0)
1136 			break;
1137 		if (m->m_next == NULL) {
1138 			n = m_get(M_NOWAIT, m->m_type);
1139 			if (n == NULL)
1140 				break;
1141 			n->m_len = min(MLEN, len);
1142 			m->m_next = n;
1143 		}
1144 		m = m->m_next;
1145 	}
1146 out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1147 		m->m_pkthdr.len = totlen;
1148 }
1149 
1150 /*
1151  * Append the specified data to the indicated mbuf chain,
1152  * Extend the mbuf chain if the new data does not fit in
1153  * existing space.
1154  *
1155  * Return 1 if able to complete the job; otherwise 0.
1156  */
1157 int
1158 m_append(struct mbuf *m0, int len, c_caddr_t cp)
1159 {
1160 	struct mbuf *m, *n;
1161 	int remainder, space;
1162 
1163 	for (m = m0; m->m_next != NULL; m = m->m_next)
1164 		;
1165 	remainder = len;
1166 	space = M_TRAILINGSPACE(m);
1167 	if (space > 0) {
1168 		/*
1169 		 * Copy into available space.
1170 		 */
1171 		if (space > remainder)
1172 			space = remainder;
1173 		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1174 		m->m_len += space;
1175 		cp += space, remainder -= space;
1176 	}
1177 	while (remainder > 0) {
1178 		/*
1179 		 * Allocate a new mbuf; could check space
1180 		 * and allocate a cluster instead.
1181 		 */
1182 		n = m_get(M_NOWAIT, m->m_type);
1183 		if (n == NULL)
1184 			break;
1185 		n->m_len = min(MLEN, remainder);
1186 		bcopy(cp, mtod(n, caddr_t), n->m_len);
1187 		cp += n->m_len, remainder -= n->m_len;
1188 		m->m_next = n;
1189 		m = n;
1190 	}
1191 	if (m0->m_flags & M_PKTHDR)
1192 		m0->m_pkthdr.len += len - remainder;
1193 	return (remainder == 0);
1194 }
1195 
1196 /*
1197  * Apply function f to the data in an mbuf chain starting "off" bytes from
1198  * the beginning, continuing for "len" bytes.
1199  */
1200 int
1201 m_apply(struct mbuf *m, int off, int len,
1202     int (*f)(void *, void *, u_int), void *arg)
1203 {
1204 	u_int count;
1205 	int rval;
1206 
1207 	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1208 	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1209 	while (off > 0) {
1210 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1211 		if (off < m->m_len)
1212 			break;
1213 		off -= m->m_len;
1214 		m = m->m_next;
1215 	}
1216 	while (len > 0) {
1217 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1218 		count = min(m->m_len - off, len);
1219 		rval = (*f)(arg, mtod(m, caddr_t) + off, count);
1220 		if (rval)
1221 			return (rval);
1222 		len -= count;
1223 		off = 0;
1224 		m = m->m_next;
1225 	}
1226 	return (0);
1227 }
1228 
1229 /*
1230  * Return a pointer to mbuf/offset of location in mbuf chain.
1231  */
1232 struct mbuf *
1233 m_getptr(struct mbuf *m, int loc, int *off)
1234 {
1235 
1236 	while (loc >= 0) {
1237 		/* Normal end of search. */
1238 		if (m->m_len > loc) {
1239 			*off = loc;
1240 			return (m);
1241 		} else {
1242 			loc -= m->m_len;
1243 			if (m->m_next == NULL) {
1244 				if (loc == 0) {
1245 					/* Point at the end of valid data. */
1246 					*off = m->m_len;
1247 					return (m);
1248 				}
1249 				return (NULL);
1250 			}
1251 			m = m->m_next;
1252 		}
1253 	}
1254 	return (NULL);
1255 }
1256 
1257 void
1258 m_print(const struct mbuf *m, int maxlen)
1259 {
1260 	int len;
1261 	int pdata;
1262 	const struct mbuf *m2;
1263 
1264 	if (m == NULL) {
1265 		printf("mbuf: %p\n", m);
1266 		return;
1267 	}
1268 
1269 	if (m->m_flags & M_PKTHDR)
1270 		len = m->m_pkthdr.len;
1271 	else
1272 		len = -1;
1273 	m2 = m;
1274 	while (m2 != NULL && (len == -1 || len)) {
1275 		pdata = m2->m_len;
1276 		if (maxlen != -1 && pdata > maxlen)
1277 			pdata = maxlen;
1278 		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1279 		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1280 		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1281 		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1282 		if (pdata)
1283 			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1284 		if (len != -1)
1285 			len -= m2->m_len;
1286 		m2 = m2->m_next;
1287 	}
1288 	if (len > 0)
1289 		printf("%d bytes unaccounted for.\n", len);
1290 	return;
1291 }
1292 
1293 u_int
1294 m_fixhdr(struct mbuf *m0)
1295 {
1296 	u_int len;
1297 
1298 	len = m_length(m0, NULL);
1299 	m0->m_pkthdr.len = len;
1300 	return (len);
1301 }
1302 
1303 u_int
1304 m_length(struct mbuf *m0, struct mbuf **last)
1305 {
1306 	struct mbuf *m;
1307 	u_int len;
1308 
1309 	len = 0;
1310 	for (m = m0; m != NULL; m = m->m_next) {
1311 		len += m->m_len;
1312 		if (m->m_next == NULL)
1313 			break;
1314 	}
1315 	if (last != NULL)
1316 		*last = m;
1317 	return (len);
1318 }
1319 
1320 /*
1321  * Defragment a mbuf chain, returning the shortest possible
1322  * chain of mbufs and clusters.  If allocation fails and
1323  * this cannot be completed, NULL will be returned, but
1324  * the passed in chain will be unchanged.  Upon success,
1325  * the original chain will be freed, and the new chain
1326  * will be returned.
1327  *
1328  * If a non-packet header is passed in, the original
1329  * mbuf (chain?) will be returned unharmed.
1330  */
1331 struct mbuf *
1332 m_defrag(struct mbuf *m0, int how)
1333 {
1334 	struct mbuf *m_new = NULL, *m_final = NULL;
1335 	int progress = 0, length;
1336 
1337 	MBUF_CHECKSLEEP(how);
1338 	if (!(m0->m_flags & M_PKTHDR))
1339 		return (m0);
1340 
1341 	m_fixhdr(m0); /* Needed sanity check */
1342 
1343 #ifdef MBUF_STRESS_TEST
1344 	if (m_defragrandomfailures) {
1345 		int temp = arc4random() & 0xff;
1346 		if (temp == 0xba)
1347 			goto nospace;
1348 	}
1349 #endif
1350 
1351 	if (m0->m_pkthdr.len > MHLEN)
1352 		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1353 	else
1354 		m_final = m_gethdr(how, MT_DATA);
1355 
1356 	if (m_final == NULL)
1357 		goto nospace;
1358 
1359 	if (m_dup_pkthdr(m_final, m0, how) == 0)
1360 		goto nospace;
1361 
1362 	m_new = m_final;
1363 
1364 	while (progress < m0->m_pkthdr.len) {
1365 		length = m0->m_pkthdr.len - progress;
1366 		if (length > MCLBYTES)
1367 			length = MCLBYTES;
1368 
1369 		if (m_new == NULL) {
1370 			if (length > MLEN)
1371 				m_new = m_getcl(how, MT_DATA, 0);
1372 			else
1373 				m_new = m_get(how, MT_DATA);
1374 			if (m_new == NULL)
1375 				goto nospace;
1376 		}
1377 
1378 		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1379 		progress += length;
1380 		m_new->m_len = length;
1381 		if (m_new != m_final)
1382 			m_cat(m_final, m_new);
1383 		m_new = NULL;
1384 	}
1385 #ifdef MBUF_STRESS_TEST
1386 	if (m0->m_next == NULL)
1387 		m_defraguseless++;
1388 #endif
1389 	m_freem(m0);
1390 	m0 = m_final;
1391 #ifdef MBUF_STRESS_TEST
1392 	m_defragpackets++;
1393 	m_defragbytes += m0->m_pkthdr.len;
1394 #endif
1395 	return (m0);
1396 nospace:
1397 #ifdef MBUF_STRESS_TEST
1398 	m_defragfailure++;
1399 #endif
1400 	if (m_final)
1401 		m_freem(m_final);
1402 	return (NULL);
1403 }
1404 
1405 /*
1406  * Return the number of fragments an mbuf will use.  This is usually
1407  * used as a proxy for the number of scatter/gather elements needed by
1408  * a DMA engine to access an mbuf.  In general mapped mbufs are
1409  * assumed to be backed by physically contiguous buffers that only
1410  * need a single fragment.  Unmapped mbufs, on the other hand, can
1411  * span disjoint physical pages.
1412  */
1413 static int
1414 frags_per_mbuf(struct mbuf *m)
1415 {
1416 	struct mbuf_ext_pgs *ext_pgs;
1417 	int frags;
1418 
1419 	if ((m->m_flags & M_NOMAP) == 0)
1420 		return (1);
1421 
1422 	/*
1423 	 * The header and trailer are counted as a single fragment
1424 	 * each when present.
1425 	 *
1426 	 * XXX: This overestimates the number of fragments by assuming
1427 	 * all the backing physical pages are disjoint.
1428 	 */
1429 	ext_pgs = m->m_ext.ext_pgs;
1430 	frags = 0;
1431 	if (ext_pgs->hdr_len != 0)
1432 		frags++;
1433 	frags += ext_pgs->npgs;
1434 	if (ext_pgs->trail_len != 0)
1435 		frags++;
1436 
1437 	return (frags);
1438 }
1439 
1440 /*
1441  * Defragment an mbuf chain, returning at most maxfrags separate
1442  * mbufs+clusters.  If this is not possible NULL is returned and
1443  * the original mbuf chain is left in its present (potentially
1444  * modified) state.  We use two techniques: collapsing consecutive
1445  * mbufs and replacing consecutive mbufs by a cluster.
1446  *
1447  * NB: this should really be named m_defrag but that name is taken
1448  */
1449 struct mbuf *
1450 m_collapse(struct mbuf *m0, int how, int maxfrags)
1451 {
1452 	struct mbuf *m, *n, *n2, **prev;
1453 	u_int curfrags;
1454 
1455 	/*
1456 	 * Calculate the current number of frags.
1457 	 */
1458 	curfrags = 0;
1459 	for (m = m0; m != NULL; m = m->m_next)
1460 		curfrags += frags_per_mbuf(m);
1461 	/*
1462 	 * First, try to collapse mbufs.  Note that we always collapse
1463 	 * towards the front so we don't need to deal with moving the
1464 	 * pkthdr.  This may be suboptimal if the first mbuf has much
1465 	 * less data than the following.
1466 	 */
1467 	m = m0;
1468 again:
1469 	for (;;) {
1470 		n = m->m_next;
1471 		if (n == NULL)
1472 			break;
1473 		if (M_WRITABLE(m) &&
1474 		    n->m_len < M_TRAILINGSPACE(m)) {
1475 			m_copydata(n, 0, n->m_len,
1476 			    mtod(m, char *) + m->m_len);
1477 			m->m_len += n->m_len;
1478 			m->m_next = n->m_next;
1479 			curfrags -= frags_per_mbuf(n);
1480 			m_free(n);
1481 			if (curfrags <= maxfrags)
1482 				return m0;
1483 		} else
1484 			m = n;
1485 	}
1486 	KASSERT(maxfrags > 1,
1487 		("maxfrags %u, but normal collapse failed", maxfrags));
1488 	/*
1489 	 * Collapse consecutive mbufs to a cluster.
1490 	 */
1491 	prev = &m0->m_next;		/* NB: not the first mbuf */
1492 	while ((n = *prev) != NULL) {
1493 		if ((n2 = n->m_next) != NULL &&
1494 		    n->m_len + n2->m_len < MCLBYTES) {
1495 			m = m_getcl(how, MT_DATA, 0);
1496 			if (m == NULL)
1497 				goto bad;
1498 			m_copydata(n, 0,  n->m_len, mtod(m, char *));
1499 			m_copydata(n2, 0,  n2->m_len,
1500 			    mtod(m, char *) + n->m_len);
1501 			m->m_len = n->m_len + n2->m_len;
1502 			m->m_next = n2->m_next;
1503 			*prev = m;
1504 			curfrags += 1;  /* For the new cluster */
1505 			curfrags -= frags_per_mbuf(n);
1506 			curfrags -= frags_per_mbuf(n2);
1507 			m_free(n);
1508 			m_free(n2);
1509 			if (curfrags <= maxfrags)
1510 				return m0;
1511 			/*
1512 			 * Still not there, try the normal collapse
1513 			 * again before we allocate another cluster.
1514 			 */
1515 			goto again;
1516 		}
1517 		prev = &n->m_next;
1518 	}
1519 	/*
1520 	 * No place where we can collapse to a cluster; punt.
1521 	 * This can occur if, for example, you request 2 frags
1522 	 * but the packet requires that both be clusters (we
1523 	 * never reallocate the first mbuf to avoid moving the
1524 	 * packet header).
1525 	 */
1526 bad:
1527 	return NULL;
1528 }
1529 
1530 #ifdef MBUF_STRESS_TEST
1531 
1532 /*
1533  * Fragment an mbuf chain.  There's no reason you'd ever want to do
1534  * this in normal usage, but it's great for stress testing various
1535  * mbuf consumers.
1536  *
1537  * If fragmentation is not possible, the original chain will be
1538  * returned.
1539  *
1540  * Possible length values:
1541  * 0	 no fragmentation will occur
1542  * > 0	each fragment will be of the specified length
1543  * -1	each fragment will be the same random value in length
1544  * -2	each fragment's length will be entirely random
1545  * (Random values range from 1 to 256)
1546  */
1547 struct mbuf *
1548 m_fragment(struct mbuf *m0, int how, int length)
1549 {
1550 	struct mbuf *m_first, *m_last;
1551 	int divisor = 255, progress = 0, fraglen;
1552 
1553 	if (!(m0->m_flags & M_PKTHDR))
1554 		return (m0);
1555 
1556 	if (length == 0 || length < -2)
1557 		return (m0);
1558 	if (length > MCLBYTES)
1559 		length = MCLBYTES;
1560 	if (length < 0 && divisor > MCLBYTES)
1561 		divisor = MCLBYTES;
1562 	if (length == -1)
1563 		length = 1 + (arc4random() % divisor);
1564 	if (length > 0)
1565 		fraglen = length;
1566 
1567 	m_fixhdr(m0); /* Needed sanity check */
1568 
1569 	m_first = m_getcl(how, MT_DATA, M_PKTHDR);
1570 	if (m_first == NULL)
1571 		goto nospace;
1572 
1573 	if (m_dup_pkthdr(m_first, m0, how) == 0)
1574 		goto nospace;
1575 
1576 	m_last = m_first;
1577 
1578 	while (progress < m0->m_pkthdr.len) {
1579 		if (length == -2)
1580 			fraglen = 1 + (arc4random() % divisor);
1581 		if (fraglen > m0->m_pkthdr.len - progress)
1582 			fraglen = m0->m_pkthdr.len - progress;
1583 
1584 		if (progress != 0) {
1585 			struct mbuf *m_new = m_getcl(how, MT_DATA, 0);
1586 			if (m_new == NULL)
1587 				goto nospace;
1588 
1589 			m_last->m_next = m_new;
1590 			m_last = m_new;
1591 		}
1592 
1593 		m_copydata(m0, progress, fraglen, mtod(m_last, caddr_t));
1594 		progress += fraglen;
1595 		m_last->m_len = fraglen;
1596 	}
1597 	m_freem(m0);
1598 	m0 = m_first;
1599 	return (m0);
1600 nospace:
1601 	if (m_first)
1602 		m_freem(m_first);
1603 	/* Return the original chain on failure */
1604 	return (m0);
1605 }
1606 
1607 #endif
1608 
1609 /*
1610  * Free pages from mbuf_ext_pgs, assuming they were allocated via
1611  * vm_page_alloc() and aren't associated with any object.  Complement
1612  * to allocator from m_uiotombuf_nomap().
1613  */
1614 void
1615 mb_free_mext_pgs(struct mbuf *m)
1616 {
1617 	struct mbuf_ext_pgs *ext_pgs;
1618 	vm_page_t pg;
1619 	int wire_adj;
1620 
1621 	MBUF_EXT_PGS_ASSERT(m);
1622 	ext_pgs = m->m_ext.ext_pgs;
1623 	wire_adj = 0;
1624 	for (int i = 0; i < ext_pgs->npgs; i++) {
1625 		pg = PHYS_TO_VM_PAGE(ext_pgs->pa[i]);
1626 		/*
1627 		 * Note: page is not locked, as it has no
1628 		 * object and is not on any queues.
1629 		 */
1630 		vm_page_free_toq(pg);
1631 		wire_adj++;
1632 	}
1633 	if (wire_adj)
1634 		vm_wire_sub(wire_adj);
1635 }
1636 
1637 static struct mbuf *
1638 m_uiotombuf_nomap(struct uio *uio, int how, int len, int maxseg, int flags)
1639 {
1640 	struct mbuf *m, *mb, *prev;
1641 	struct mbuf_ext_pgs *pgs;
1642 	vm_page_t pg_array[MBUF_PEXT_MAX_PGS];
1643 	int error, length, i, needed, wire_adj = 0;
1644 	ssize_t total;
1645 	int pflags = malloc2vm_flags(how) | VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP;
1646 
1647 	/*
1648 	 * len can be zero or an arbitrary large value bound by
1649 	 * the total data supplied by the uio.
1650 	 */
1651 	if (len > 0)
1652 		total = MIN(uio->uio_resid, len);
1653 	else
1654 		total = uio->uio_resid;
1655 
1656 	if (maxseg == 0)
1657 		maxseg = MBUF_PEXT_MAX_PGS * PAGE_SIZE;
1658 
1659 	/*
1660 	 * Allocate the pages
1661 	 */
1662 	m = NULL;
1663 	while (total > 0) {
1664 		mb = mb_alloc_ext_pgs(how, (flags & M_PKTHDR),
1665 		    mb_free_mext_pgs);
1666 		if (mb == NULL)
1667 			goto failed;
1668 		if (m == NULL)
1669 			m = mb;
1670 		else
1671 			prev->m_next = mb;
1672 		prev = mb;
1673 		pgs = mb->m_ext.ext_pgs;
1674 		needed = length = MIN(maxseg, total);
1675 		for (i = 0; needed > 0; i++, needed -= PAGE_SIZE) {
1676 retry_page:
1677 			pg_array[i] = vm_page_alloc(NULL, 0, pflags);
1678 			if (pg_array[i] == NULL) {
1679 				if (wire_adj)
1680 					vm_wire_add(wire_adj);
1681 				wire_adj = 0;
1682 				if (how & M_NOWAIT) {
1683 					goto failed;
1684 				} else {
1685 					vm_wait(NULL);
1686 					goto retry_page;
1687 				}
1688 			}
1689 			wire_adj++;
1690 			pg_array[i]->flags &= ~PG_ZERO;
1691 			pgs->pa[i] = VM_PAGE_TO_PHYS(pg_array[i]);
1692 			pgs->npgs++;
1693 		}
1694 		pgs->last_pg_len = length - PAGE_SIZE * (pgs->npgs - 1);
1695 		MBUF_EXT_PGS_ASSERT_SANITY(pgs);
1696 		vm_wire_add(wire_adj);
1697 		wire_adj = 0;
1698 		total -= length;
1699 		error = uiomove_fromphys(pg_array, 0, length, uio);
1700 		if (error != 0)
1701 			goto failed;
1702 		mb->m_len = length;
1703 		mb->m_ext.ext_size += PAGE_SIZE * pgs->npgs;
1704 		if (flags & M_PKTHDR)
1705 			m->m_pkthdr.len += length;
1706 	}
1707 	return (m);
1708 
1709 failed:
1710 	m_freem(m);
1711 	return (NULL);
1712 }
1713 
1714 /*
1715  * Copy the contents of uio into a properly sized mbuf chain.
1716  */
1717 struct mbuf *
1718 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1719 {
1720 	struct mbuf *m, *mb;
1721 	int error, length;
1722 	ssize_t total;
1723 	int progress = 0;
1724 
1725 	if (flags & M_NOMAP)
1726 		return (m_uiotombuf_nomap(uio, how, len, align, flags));
1727 
1728 	/*
1729 	 * len can be zero or an arbitrary large value bound by
1730 	 * the total data supplied by the uio.
1731 	 */
1732 	if (len > 0)
1733 		total = (uio->uio_resid < len) ? uio->uio_resid : len;
1734 	else
1735 		total = uio->uio_resid;
1736 
1737 	/*
1738 	 * The smallest unit returned by m_getm2() is a single mbuf
1739 	 * with pkthdr.  We can't align past it.
1740 	 */
1741 	if (align >= MHLEN)
1742 		return (NULL);
1743 
1744 	/*
1745 	 * Give us the full allocation or nothing.
1746 	 * If len is zero return the smallest empty mbuf.
1747 	 */
1748 	m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1749 	if (m == NULL)
1750 		return (NULL);
1751 	m->m_data += align;
1752 
1753 	/* Fill all mbufs with uio data and update header information. */
1754 	for (mb = m; mb != NULL; mb = mb->m_next) {
1755 		length = min(M_TRAILINGSPACE(mb), total - progress);
1756 
1757 		error = uiomove(mtod(mb, void *), length, uio);
1758 		if (error) {
1759 			m_freem(m);
1760 			return (NULL);
1761 		}
1762 
1763 		mb->m_len = length;
1764 		progress += length;
1765 		if (flags & M_PKTHDR)
1766 			m->m_pkthdr.len += length;
1767 	}
1768 	KASSERT(progress == total, ("%s: progress != total", __func__));
1769 
1770 	return (m);
1771 }
1772 
1773 /*
1774  * Copy data from an unmapped mbuf into a uio limited by len if set.
1775  */
1776 int
1777 m_unmappedtouio(const struct mbuf *m, int m_off, struct uio *uio, int len)
1778 {
1779 	struct mbuf_ext_pgs *ext_pgs;
1780 	vm_page_t pg;
1781 	int error, i, off, pglen, pgoff, seglen, segoff;
1782 
1783 	MBUF_EXT_PGS_ASSERT(m);
1784 	ext_pgs = m->m_ext.ext_pgs;
1785 	error = 0;
1786 
1787 	/* Skip over any data removed from the front. */
1788 	off = mtod(m, vm_offset_t);
1789 
1790 	off += m_off;
1791 	if (ext_pgs->hdr_len != 0) {
1792 		if (off >= ext_pgs->hdr_len) {
1793 			off -= ext_pgs->hdr_len;
1794 		} else {
1795 			seglen = ext_pgs->hdr_len - off;
1796 			segoff = off;
1797 			seglen = min(seglen, len);
1798 			off = 0;
1799 			len -= seglen;
1800 			error = uiomove(&ext_pgs->hdr[segoff], seglen, uio);
1801 		}
1802 	}
1803 	pgoff = ext_pgs->first_pg_off;
1804 	for (i = 0; i < ext_pgs->npgs && error == 0 && len > 0; i++) {
1805 		pglen = mbuf_ext_pg_len(ext_pgs, i, pgoff);
1806 		if (off >= pglen) {
1807 			off -= pglen;
1808 			pgoff = 0;
1809 			continue;
1810 		}
1811 		seglen = pglen - off;
1812 		segoff = pgoff + off;
1813 		off = 0;
1814 		seglen = min(seglen, len);
1815 		len -= seglen;
1816 		pg = PHYS_TO_VM_PAGE(ext_pgs->pa[i]);
1817 		error = uiomove_fromphys(&pg, segoff, seglen, uio);
1818 		pgoff = 0;
1819 	};
1820 	if (len != 0 && error == 0) {
1821 		KASSERT((off + len) <= ext_pgs->trail_len,
1822 		    ("off + len > trail (%d + %d > %d, m_off = %d)", off, len,
1823 		    ext_pgs->trail_len, m_off));
1824 		error = uiomove(&ext_pgs->trail[off], len, uio);
1825 	}
1826 	return (error);
1827 }
1828 
1829 /*
1830  * Copy an mbuf chain into a uio limited by len if set.
1831  */
1832 int
1833 m_mbuftouio(struct uio *uio, const struct mbuf *m, int len)
1834 {
1835 	int error, length, total;
1836 	int progress = 0;
1837 
1838 	if (len > 0)
1839 		total = min(uio->uio_resid, len);
1840 	else
1841 		total = uio->uio_resid;
1842 
1843 	/* Fill the uio with data from the mbufs. */
1844 	for (; m != NULL; m = m->m_next) {
1845 		length = min(m->m_len, total - progress);
1846 
1847 		if ((m->m_flags & M_NOMAP) != 0)
1848 			error = m_unmappedtouio(m, 0, uio, length);
1849 		else
1850 			error = uiomove(mtod(m, void *), length, uio);
1851 		if (error)
1852 			return (error);
1853 
1854 		progress += length;
1855 	}
1856 
1857 	return (0);
1858 }
1859 
1860 /*
1861  * Create a writable copy of the mbuf chain.  While doing this
1862  * we compact the chain with a goal of producing a chain with
1863  * at most two mbufs.  The second mbuf in this chain is likely
1864  * to be a cluster.  The primary purpose of this work is to create
1865  * a writable packet for encryption, compression, etc.  The
1866  * secondary goal is to linearize the data so the data can be
1867  * passed to crypto hardware in the most efficient manner possible.
1868  */
1869 struct mbuf *
1870 m_unshare(struct mbuf *m0, int how)
1871 {
1872 	struct mbuf *m, *mprev;
1873 	struct mbuf *n, *mfirst, *mlast;
1874 	int len, off;
1875 
1876 	mprev = NULL;
1877 	for (m = m0; m != NULL; m = mprev->m_next) {
1878 		/*
1879 		 * Regular mbufs are ignored unless there's a cluster
1880 		 * in front of it that we can use to coalesce.  We do
1881 		 * the latter mainly so later clusters can be coalesced
1882 		 * also w/o having to handle them specially (i.e. convert
1883 		 * mbuf+cluster -> cluster).  This optimization is heavily
1884 		 * influenced by the assumption that we're running over
1885 		 * Ethernet where MCLBYTES is large enough that the max
1886 		 * packet size will permit lots of coalescing into a
1887 		 * single cluster.  This in turn permits efficient
1888 		 * crypto operations, especially when using hardware.
1889 		 */
1890 		if ((m->m_flags & M_EXT) == 0) {
1891 			if (mprev && (mprev->m_flags & M_EXT) &&
1892 			    m->m_len <= M_TRAILINGSPACE(mprev)) {
1893 				/* XXX: this ignores mbuf types */
1894 				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1895 				    mtod(m, caddr_t), m->m_len);
1896 				mprev->m_len += m->m_len;
1897 				mprev->m_next = m->m_next;	/* unlink from chain */
1898 				m_free(m);			/* reclaim mbuf */
1899 			} else {
1900 				mprev = m;
1901 			}
1902 			continue;
1903 		}
1904 		/*
1905 		 * Writable mbufs are left alone (for now).
1906 		 */
1907 		if (M_WRITABLE(m)) {
1908 			mprev = m;
1909 			continue;
1910 		}
1911 
1912 		/*
1913 		 * Not writable, replace with a copy or coalesce with
1914 		 * the previous mbuf if possible (since we have to copy
1915 		 * it anyway, we try to reduce the number of mbufs and
1916 		 * clusters so that future work is easier).
1917 		 */
1918 		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
1919 		/* NB: we only coalesce into a cluster or larger */
1920 		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
1921 		    m->m_len <= M_TRAILINGSPACE(mprev)) {
1922 			/* XXX: this ignores mbuf types */
1923 			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1924 			    mtod(m, caddr_t), m->m_len);
1925 			mprev->m_len += m->m_len;
1926 			mprev->m_next = m->m_next;	/* unlink from chain */
1927 			m_free(m);			/* reclaim mbuf */
1928 			continue;
1929 		}
1930 
1931 		/*
1932 		 * Allocate new space to hold the copy and copy the data.
1933 		 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
1934 		 * splitting them into clusters.  We could just malloc a
1935 		 * buffer and make it external but too many device drivers
1936 		 * don't know how to break up the non-contiguous memory when
1937 		 * doing DMA.
1938 		 */
1939 		n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
1940 		if (n == NULL) {
1941 			m_freem(m0);
1942 			return (NULL);
1943 		}
1944 		if (m->m_flags & M_PKTHDR) {
1945 			KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR",
1946 			    __func__, m0, m));
1947 			m_move_pkthdr(n, m);
1948 		}
1949 		len = m->m_len;
1950 		off = 0;
1951 		mfirst = n;
1952 		mlast = NULL;
1953 		for (;;) {
1954 			int cc = min(len, MCLBYTES);
1955 			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
1956 			n->m_len = cc;
1957 			if (mlast != NULL)
1958 				mlast->m_next = n;
1959 			mlast = n;
1960 #if 0
1961 			newipsecstat.ips_clcopied++;
1962 #endif
1963 
1964 			len -= cc;
1965 			if (len <= 0)
1966 				break;
1967 			off += cc;
1968 
1969 			n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
1970 			if (n == NULL) {
1971 				m_freem(mfirst);
1972 				m_freem(m0);
1973 				return (NULL);
1974 			}
1975 		}
1976 		n->m_next = m->m_next;
1977 		if (mprev == NULL)
1978 			m0 = mfirst;		/* new head of chain */
1979 		else
1980 			mprev->m_next = mfirst;	/* replace old mbuf */
1981 		m_free(m);			/* release old mbuf */
1982 		mprev = mfirst;
1983 	}
1984 	return (m0);
1985 }
1986 
1987 #ifdef MBUF_PROFILING
1988 
1989 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
1990 struct mbufprofile {
1991 	uintmax_t wasted[MP_BUCKETS];
1992 	uintmax_t used[MP_BUCKETS];
1993 	uintmax_t segments[MP_BUCKETS];
1994 } mbprof;
1995 
1996 #define MP_MAXDIGITS 21	/* strlen("16,000,000,000,000,000,000") == 21 */
1997 #define MP_NUMLINES 6
1998 #define MP_NUMSPERLINE 16
1999 #define MP_EXTRABYTES 64	/* > strlen("used:\nwasted:\nsegments:\n") */
2000 /* work out max space needed and add a bit of spare space too */
2001 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
2002 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
2003 
2004 char mbprofbuf[MP_BUFSIZE];
2005 
2006 void
2007 m_profile(struct mbuf *m)
2008 {
2009 	int segments = 0;
2010 	int used = 0;
2011 	int wasted = 0;
2012 
2013 	while (m) {
2014 		segments++;
2015 		used += m->m_len;
2016 		if (m->m_flags & M_EXT) {
2017 			wasted += MHLEN - sizeof(m->m_ext) +
2018 			    m->m_ext.ext_size - m->m_len;
2019 		} else {
2020 			if (m->m_flags & M_PKTHDR)
2021 				wasted += MHLEN - m->m_len;
2022 			else
2023 				wasted += MLEN - m->m_len;
2024 		}
2025 		m = m->m_next;
2026 	}
2027 	/* be paranoid.. it helps */
2028 	if (segments > MP_BUCKETS - 1)
2029 		segments = MP_BUCKETS - 1;
2030 	if (used > 100000)
2031 		used = 100000;
2032 	if (wasted > 100000)
2033 		wasted = 100000;
2034 	/* store in the appropriate bucket */
2035 	/* don't bother locking. if it's slightly off, so what? */
2036 	mbprof.segments[segments]++;
2037 	mbprof.used[fls(used)]++;
2038 	mbprof.wasted[fls(wasted)]++;
2039 }
2040 
2041 static void
2042 mbprof_textify(void)
2043 {
2044 	int offset;
2045 	char *c;
2046 	uint64_t *p;
2047 
2048 	p = &mbprof.wasted[0];
2049 	c = mbprofbuf;
2050 	offset = snprintf(c, MP_MAXLINE + 10,
2051 	    "wasted:\n"
2052 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2053 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2054 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2055 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2056 #ifdef BIG_ARRAY
2057 	p = &mbprof.wasted[16];
2058 	c += offset;
2059 	offset = snprintf(c, MP_MAXLINE,
2060 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2061 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2062 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2063 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2064 #endif
2065 	p = &mbprof.used[0];
2066 	c += offset;
2067 	offset = snprintf(c, MP_MAXLINE + 10,
2068 	    "used:\n"
2069 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2070 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2071 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2072 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2073 #ifdef BIG_ARRAY
2074 	p = &mbprof.used[16];
2075 	c += offset;
2076 	offset = snprintf(c, MP_MAXLINE,
2077 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2078 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2079 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2080 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2081 #endif
2082 	p = &mbprof.segments[0];
2083 	c += offset;
2084 	offset = snprintf(c, MP_MAXLINE + 10,
2085 	    "segments:\n"
2086 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2087 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2088 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2089 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2090 #ifdef BIG_ARRAY
2091 	p = &mbprof.segments[16];
2092 	c += offset;
2093 	offset = snprintf(c, MP_MAXLINE,
2094 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2095 	    "%ju %ju %ju %ju %ju %ju %ju %jju",
2096 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2097 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2098 #endif
2099 }
2100 
2101 static int
2102 mbprof_handler(SYSCTL_HANDLER_ARGS)
2103 {
2104 	int error;
2105 
2106 	mbprof_textify();
2107 	error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
2108 	return (error);
2109 }
2110 
2111 static int
2112 mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
2113 {
2114 	int clear, error;
2115 
2116 	clear = 0;
2117 	error = sysctl_handle_int(oidp, &clear, 0, req);
2118 	if (error || !req->newptr)
2119 		return (error);
2120 
2121 	if (clear) {
2122 		bzero(&mbprof, sizeof(mbprof));
2123 	}
2124 
2125 	return (error);
2126 }
2127 
2128 
2129 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD,
2130 	    NULL, 0, mbprof_handler, "A", "mbuf profiling statistics");
2131 
2132 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW,
2133 	    NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics");
2134 #endif
2135 
2136