xref: /freebsd/sys/kern/uipc_mbuf.c (revision 5f0216bd883edee71bf81051e3c20505e4820903)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_param.h"
36 #include "opt_mbuf_stress_test.h"
37 #include "opt_mbuf_profiling.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/limits.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/sysctl.h>
47 #include <sys/domain.h>
48 #include <sys/protosw.h>
49 #include <sys/uio.h>
50 
51 int	max_linkhdr;
52 int	max_protohdr;
53 int	max_hdr;
54 int	max_datalen;
55 #ifdef MBUF_STRESS_TEST
56 int	m_defragpackets;
57 int	m_defragbytes;
58 int	m_defraguseless;
59 int	m_defragfailure;
60 int	m_defragrandomfailures;
61 #endif
62 
63 /*
64  * sysctl(8) exported objects
65  */
66 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
67 	   &max_linkhdr, 0, "Size of largest link layer header");
68 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
69 	   &max_protohdr, 0, "Size of largest protocol layer header");
70 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
71 	   &max_hdr, 0, "Size of largest link plus protocol header");
72 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
73 	   &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
74 #ifdef MBUF_STRESS_TEST
75 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
76 	   &m_defragpackets, 0, "");
77 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
78 	   &m_defragbytes, 0, "");
79 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
80 	   &m_defraguseless, 0, "");
81 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
82 	   &m_defragfailure, 0, "");
83 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
84 	   &m_defragrandomfailures, 0, "");
85 #endif
86 
87 /*
88  * Ensure the correct size of various mbuf parameters.  It could be off due
89  * to compiler-induced padding and alignment artifacts.
90  */
91 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN);
92 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN);
93 
94 /*
95  * mbuf data storage should be 64-bit aligned regardless of architectural
96  * pointer size; check this is the case with and without a packet header.
97  */
98 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0);
99 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0);
100 
101 /*
102  * While the specific values here don't matter too much (i.e., +/- a few
103  * words), we do want to ensure that changes to these values are carefully
104  * reasoned about and properly documented.  This is especially the case as
105  * network-protocol and device-driver modules encode these layouts, and must
106  * be recompiled if the structures change.  Check these values at compile time
107  * against the ones documented in comments in mbuf.h.
108  *
109  * NB: Possibly they should be documented there via #define's and not just
110  * comments.
111  */
112 #if defined(__LP64__)
113 CTASSERT(offsetof(struct mbuf, m_dat) == 32);
114 CTASSERT(sizeof(struct pkthdr) == 56);
115 CTASSERT(sizeof(struct m_ext) == 48);
116 #else
117 CTASSERT(offsetof(struct mbuf, m_dat) == 24);
118 CTASSERT(sizeof(struct pkthdr) == 48);
119 CTASSERT(sizeof(struct m_ext) == 28);
120 #endif
121 
122 /*
123  * Assert that the queue(3) macros produce code of the same size as an old
124  * plain pointer does.
125  */
126 #ifdef INVARIANTS
127 static struct mbuf m_assertbuf;
128 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next));
129 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next));
130 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt));
131 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt));
132 #endif
133 
134 /*
135  * m_get2() allocates minimum mbuf that would fit "size" argument.
136  */
137 struct mbuf *
138 m_get2(int size, int how, short type, int flags)
139 {
140 	struct mb_args args;
141 	struct mbuf *m, *n;
142 
143 	args.flags = flags;
144 	args.type = type;
145 
146 	if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0))
147 		return (uma_zalloc_arg(zone_mbuf, &args, how));
148 	if (size <= MCLBYTES)
149 		return (uma_zalloc_arg(zone_pack, &args, how));
150 
151 	if (size > MJUMPAGESIZE)
152 		return (NULL);
153 
154 	m = uma_zalloc_arg(zone_mbuf, &args, how);
155 	if (m == NULL)
156 		return (NULL);
157 
158 	n = uma_zalloc_arg(zone_jumbop, m, how);
159 	if (n == NULL) {
160 		uma_zfree(zone_mbuf, m);
161 		return (NULL);
162 	}
163 
164 	return (m);
165 }
166 
167 /*
168  * m_getjcl() returns an mbuf with a cluster of the specified size attached.
169  * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
170  */
171 struct mbuf *
172 m_getjcl(int how, short type, int flags, int size)
173 {
174 	struct mb_args args;
175 	struct mbuf *m, *n;
176 	uma_zone_t zone;
177 
178 	if (size == MCLBYTES)
179 		return m_getcl(how, type, flags);
180 
181 	args.flags = flags;
182 	args.type = type;
183 
184 	m = uma_zalloc_arg(zone_mbuf, &args, how);
185 	if (m == NULL)
186 		return (NULL);
187 
188 	zone = m_getzone(size);
189 	n = uma_zalloc_arg(zone, m, how);
190 	if (n == NULL) {
191 		uma_zfree(zone_mbuf, m);
192 		return (NULL);
193 	}
194 	return (m);
195 }
196 
197 /*
198  * Allocate a given length worth of mbufs and/or clusters (whatever fits
199  * best) and return a pointer to the top of the allocated chain.  If an
200  * existing mbuf chain is provided, then we will append the new chain
201  * to the existing one but still return the top of the newly allocated
202  * chain.
203  */
204 struct mbuf *
205 m_getm2(struct mbuf *m, int len, int how, short type, int flags)
206 {
207 	struct mbuf *mb, *nm = NULL, *mtail = NULL;
208 
209 	KASSERT(len >= 0, ("%s: len is < 0", __func__));
210 
211 	/* Validate flags. */
212 	flags &= (M_PKTHDR | M_EOR);
213 
214 	/* Packet header mbuf must be first in chain. */
215 	if ((flags & M_PKTHDR) && m != NULL)
216 		flags &= ~M_PKTHDR;
217 
218 	/* Loop and append maximum sized mbufs to the chain tail. */
219 	while (len > 0) {
220 		if (len > MCLBYTES)
221 			mb = m_getjcl(how, type, (flags & M_PKTHDR),
222 			    MJUMPAGESIZE);
223 		else if (len >= MINCLSIZE)
224 			mb = m_getcl(how, type, (flags & M_PKTHDR));
225 		else if (flags & M_PKTHDR)
226 			mb = m_gethdr(how, type);
227 		else
228 			mb = m_get(how, type);
229 
230 		/* Fail the whole operation if one mbuf can't be allocated. */
231 		if (mb == NULL) {
232 			if (nm != NULL)
233 				m_freem(nm);
234 			return (NULL);
235 		}
236 
237 		/* Book keeping. */
238 		len -= M_SIZE(mb);
239 		if (mtail != NULL)
240 			mtail->m_next = mb;
241 		else
242 			nm = mb;
243 		mtail = mb;
244 		flags &= ~M_PKTHDR;	/* Only valid on the first mbuf. */
245 	}
246 	if (flags & M_EOR)
247 		mtail->m_flags |= M_EOR;  /* Only valid on the last mbuf. */
248 
249 	/* If mbuf was supplied, append new chain to the end of it. */
250 	if (m != NULL) {
251 		for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
252 			;
253 		mtail->m_next = nm;
254 		mtail->m_flags &= ~M_EOR;
255 	} else
256 		m = nm;
257 
258 	return (m);
259 }
260 
261 /*
262  * Free an entire chain of mbufs and associated external buffers, if
263  * applicable.
264  */
265 void
266 m_freem(struct mbuf *mb)
267 {
268 
269 	while (mb != NULL)
270 		mb = m_free(mb);
271 }
272 
273 /*-
274  * Configure a provided mbuf to refer to the provided external storage
275  * buffer and setup a reference count for said buffer.  If the setting
276  * up of the reference count fails, the M_EXT bit will not be set.  If
277  * successfull, the M_EXT bit is set in the mbuf's flags.
278  *
279  * Arguments:
280  *    mb     The existing mbuf to which to attach the provided buffer.
281  *    buf    The address of the provided external storage buffer.
282  *    size   The size of the provided buffer.
283  *    freef  A pointer to a routine that is responsible for freeing the
284  *           provided external storage buffer.
285  *    args   A pointer to an argument structure (of any type) to be passed
286  *           to the provided freef routine (may be NULL).
287  *    flags  Any other flags to be passed to the provided mbuf.
288  *    type   The type that the external storage buffer should be
289  *           labeled with.
290  *
291  * Returns:
292  *    Nothing.
293  */
294 int
295 m_extadd(struct mbuf *mb, caddr_t buf, u_int size,
296     void (*freef)(struct mbuf *, void *, void *), void *arg1, void *arg2,
297     int flags, int type, int wait)
298 {
299 	KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
300 
301 	if (type != EXT_EXTREF)
302 		mb->m_ext.ext_cnt = uma_zalloc(zone_ext_refcnt, wait);
303 
304 	if (mb->m_ext.ext_cnt == NULL)
305 		return (ENOMEM);
306 
307 	*(mb->m_ext.ext_cnt) = 1;
308 	mb->m_flags |= (M_EXT | flags);
309 	mb->m_ext.ext_buf = buf;
310 	mb->m_data = mb->m_ext.ext_buf;
311 	mb->m_ext.ext_size = size;
312 	mb->m_ext.ext_free = freef;
313 	mb->m_ext.ext_arg1 = arg1;
314 	mb->m_ext.ext_arg2 = arg2;
315 	mb->m_ext.ext_type = type;
316 	mb->m_ext.ext_flags = 0;
317 
318 	return (0);
319 }
320 
321 /*
322  * Non-directly-exported function to clean up after mbufs with M_EXT
323  * storage attached to them if the reference count hits 1.
324  */
325 void
326 mb_free_ext(struct mbuf *m)
327 {
328 	int freembuf;
329 
330 	KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m));
331 
332 	/*
333 	 * Check if the header is embedded in the cluster.
334 	 */
335 	freembuf = (m->m_flags & M_NOFREE) ? 0 : 1;
336 
337 	switch (m->m_ext.ext_type) {
338 	case EXT_SFBUF:
339 		sf_ext_free(m->m_ext.ext_arg1, m->m_ext.ext_arg2);
340 		break;
341 	default:
342 		KASSERT(m->m_ext.ext_cnt != NULL,
343 		    ("%s: no refcounting pointer on %p", __func__, m));
344 		/*
345 		 * Free attached storage if this mbuf is the only
346 		 * reference to it.
347 		 */
348 		if (*(m->m_ext.ext_cnt) != 1) {
349 			if (atomic_fetchadd_int(m->m_ext.ext_cnt, -1) != 1)
350 				break;
351 		}
352 
353 		switch (m->m_ext.ext_type) {
354 		case EXT_PACKET:	/* The packet zone is special. */
355 			if (*(m->m_ext.ext_cnt) == 0)
356 				*(m->m_ext.ext_cnt) = 1;
357 			uma_zfree(zone_pack, m);
358 			return;		/* Job done. */
359 		case EXT_CLUSTER:
360 			uma_zfree(zone_clust, m->m_ext.ext_buf);
361 			break;
362 		case EXT_JUMBOP:
363 			uma_zfree(zone_jumbop, m->m_ext.ext_buf);
364 			break;
365 		case EXT_JUMBO9:
366 			uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
367 			break;
368 		case EXT_JUMBO16:
369 			uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
370 			break;
371 		case EXT_NET_DRV:
372 		case EXT_MOD_TYPE:
373 		case EXT_DISPOSABLE:
374 			*(m->m_ext.ext_cnt) = 0;
375 			uma_zfree(zone_ext_refcnt, __DEVOLATILE(u_int *,
376 				m->m_ext.ext_cnt));
377 			/* FALLTHROUGH */
378 		case EXT_EXTREF:
379 			KASSERT(m->m_ext.ext_free != NULL,
380 				("%s: ext_free not set", __func__));
381 			(*(m->m_ext.ext_free))(m, m->m_ext.ext_arg1,
382 			    m->m_ext.ext_arg2);
383 			break;
384 		default:
385 			KASSERT(m->m_ext.ext_type == 0,
386 				("%s: unknown ext_type", __func__));
387 		}
388 	}
389 
390 	if (freembuf)
391 		uma_zfree(zone_mbuf, m);
392 }
393 
394 /*
395  * Attach the cluster from *m to *n, set up m_ext in *n
396  * and bump the refcount of the cluster.
397  */
398 static void
399 mb_dupcl(struct mbuf *n, struct mbuf *m)
400 {
401 
402 	KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m));
403 	KASSERT(!(n->m_flags & M_EXT), ("%s: M_EXT set on %p", __func__, n));
404 
405 	switch (m->m_ext.ext_type) {
406 	case EXT_SFBUF:
407 		sf_ext_ref(m->m_ext.ext_arg1, m->m_ext.ext_arg2);
408 		break;
409 	default:
410 		KASSERT(m->m_ext.ext_cnt != NULL,
411 		    ("%s: no refcounting pointer on %p", __func__, m));
412 		if (*(m->m_ext.ext_cnt) == 1)
413 			*(m->m_ext.ext_cnt) += 1;
414 		else
415 			atomic_add_int(m->m_ext.ext_cnt, 1);
416 	}
417 
418 	n->m_ext = m->m_ext;
419 	n->m_flags |= M_EXT;
420 	n->m_flags |= m->m_flags & M_RDONLY;
421 }
422 
423 /*
424  * Clean up mbuf (chain) from any tags and packet headers.
425  * If "all" is set then the first mbuf in the chain will be
426  * cleaned too.
427  */
428 void
429 m_demote(struct mbuf *m0, int all, int flags)
430 {
431 	struct mbuf *m;
432 
433 	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
434 		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p",
435 		    __func__, m, m0));
436 		if (m->m_flags & M_PKTHDR) {
437 			m_tag_delete_chain(m, NULL);
438 			m->m_flags &= ~M_PKTHDR;
439 			bzero(&m->m_pkthdr, sizeof(struct pkthdr));
440 		}
441 		m->m_flags = m->m_flags & (M_EXT | M_RDONLY | M_NOFREE | flags);
442 	}
443 }
444 
445 /*
446  * Sanity checks on mbuf (chain) for use in KASSERT() and general
447  * debugging.
448  * Returns 0 or panics when bad and 1 on all tests passed.
449  * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
450  * blow up later.
451  */
452 int
453 m_sanity(struct mbuf *m0, int sanitize)
454 {
455 	struct mbuf *m;
456 	caddr_t a, b;
457 	int pktlen = 0;
458 
459 #ifdef INVARIANTS
460 #define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
461 #else
462 #define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
463 #endif
464 
465 	for (m = m0; m != NULL; m = m->m_next) {
466 		/*
467 		 * Basic pointer checks.  If any of these fails then some
468 		 * unrelated kernel memory before or after us is trashed.
469 		 * No way to recover from that.
470 		 */
471 		a = M_START(m);
472 		b = a + M_SIZE(m);
473 		if ((caddr_t)m->m_data < a)
474 			M_SANITY_ACTION("m_data outside mbuf data range left");
475 		if ((caddr_t)m->m_data > b)
476 			M_SANITY_ACTION("m_data outside mbuf data range right");
477 		if ((caddr_t)m->m_data + m->m_len > b)
478 			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
479 
480 		/* m->m_nextpkt may only be set on first mbuf in chain. */
481 		if (m != m0 && m->m_nextpkt != NULL) {
482 			if (sanitize) {
483 				m_freem(m->m_nextpkt);
484 				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
485 			} else
486 				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
487 		}
488 
489 		/* packet length (not mbuf length!) calculation */
490 		if (m0->m_flags & M_PKTHDR)
491 			pktlen += m->m_len;
492 
493 		/* m_tags may only be attached to first mbuf in chain. */
494 		if (m != m0 && m->m_flags & M_PKTHDR &&
495 		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
496 			if (sanitize) {
497 				m_tag_delete_chain(m, NULL);
498 				/* put in 0xDEADC0DE perhaps? */
499 			} else
500 				M_SANITY_ACTION("m_tags on in-chain mbuf");
501 		}
502 
503 		/* M_PKTHDR may only be set on first mbuf in chain */
504 		if (m != m0 && m->m_flags & M_PKTHDR) {
505 			if (sanitize) {
506 				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
507 				m->m_flags &= ~M_PKTHDR;
508 				/* put in 0xDEADCODE and leave hdr flag in */
509 			} else
510 				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
511 		}
512 	}
513 	m = m0;
514 	if (pktlen && pktlen != m->m_pkthdr.len) {
515 		if (sanitize)
516 			m->m_pkthdr.len = 0;
517 		else
518 			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
519 	}
520 	return 1;
521 
522 #undef	M_SANITY_ACTION
523 }
524 
525 
526 /*
527  * "Move" mbuf pkthdr from "from" to "to".
528  * "from" must have M_PKTHDR set, and "to" must be empty.
529  */
530 void
531 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
532 {
533 
534 #if 0
535 	/* see below for why these are not enabled */
536 	M_ASSERTPKTHDR(to);
537 	/* Note: with MAC, this may not be a good assertion. */
538 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
539 	    ("m_move_pkthdr: to has tags"));
540 #endif
541 #ifdef MAC
542 	/*
543 	 * XXXMAC: It could be this should also occur for non-MAC?
544 	 */
545 	if (to->m_flags & M_PKTHDR)
546 		m_tag_delete_chain(to, NULL);
547 #endif
548 	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
549 	if ((to->m_flags & M_EXT) == 0)
550 		to->m_data = to->m_pktdat;
551 	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
552 	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
553 	from->m_flags &= ~M_PKTHDR;
554 }
555 
556 /*
557  * Duplicate "from"'s mbuf pkthdr in "to".
558  * "from" must have M_PKTHDR set, and "to" must be empty.
559  * In particular, this does a deep copy of the packet tags.
560  */
561 int
562 m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how)
563 {
564 
565 #if 0
566 	/*
567 	 * The mbuf allocator only initializes the pkthdr
568 	 * when the mbuf is allocated with m_gethdr(). Many users
569 	 * (e.g. m_copy*, m_prepend) use m_get() and then
570 	 * smash the pkthdr as needed causing these
571 	 * assertions to trip.  For now just disable them.
572 	 */
573 	M_ASSERTPKTHDR(to);
574 	/* Note: with MAC, this may not be a good assertion. */
575 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
576 #endif
577 	MBUF_CHECKSLEEP(how);
578 #ifdef MAC
579 	if (to->m_flags & M_PKTHDR)
580 		m_tag_delete_chain(to, NULL);
581 #endif
582 	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
583 	if ((to->m_flags & M_EXT) == 0)
584 		to->m_data = to->m_pktdat;
585 	to->m_pkthdr = from->m_pkthdr;
586 	SLIST_INIT(&to->m_pkthdr.tags);
587 	return (m_tag_copy_chain(to, from, how));
588 }
589 
590 /*
591  * Lesser-used path for M_PREPEND:
592  * allocate new mbuf to prepend to chain,
593  * copy junk along.
594  */
595 struct mbuf *
596 m_prepend(struct mbuf *m, int len, int how)
597 {
598 	struct mbuf *mn;
599 
600 	if (m->m_flags & M_PKTHDR)
601 		mn = m_gethdr(how, m->m_type);
602 	else
603 		mn = m_get(how, m->m_type);
604 	if (mn == NULL) {
605 		m_freem(m);
606 		return (NULL);
607 	}
608 	if (m->m_flags & M_PKTHDR)
609 		m_move_pkthdr(mn, m);
610 	mn->m_next = m;
611 	m = mn;
612 	if (len < M_SIZE(m))
613 		M_ALIGN(m, len);
614 	m->m_len = len;
615 	return (m);
616 }
617 
618 /*
619  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
620  * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
621  * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
622  * Note that the copy is read-only, because clusters are not copied,
623  * only their reference counts are incremented.
624  */
625 struct mbuf *
626 m_copym(struct mbuf *m, int off0, int len, int wait)
627 {
628 	struct mbuf *n, **np;
629 	int off = off0;
630 	struct mbuf *top;
631 	int copyhdr = 0;
632 
633 	KASSERT(off >= 0, ("m_copym, negative off %d", off));
634 	KASSERT(len >= 0, ("m_copym, negative len %d", len));
635 	MBUF_CHECKSLEEP(wait);
636 	if (off == 0 && m->m_flags & M_PKTHDR)
637 		copyhdr = 1;
638 	while (off > 0) {
639 		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
640 		if (off < m->m_len)
641 			break;
642 		off -= m->m_len;
643 		m = m->m_next;
644 	}
645 	np = &top;
646 	top = 0;
647 	while (len > 0) {
648 		if (m == NULL) {
649 			KASSERT(len == M_COPYALL,
650 			    ("m_copym, length > size of mbuf chain"));
651 			break;
652 		}
653 		if (copyhdr)
654 			n = m_gethdr(wait, m->m_type);
655 		else
656 			n = m_get(wait, m->m_type);
657 		*np = n;
658 		if (n == NULL)
659 			goto nospace;
660 		if (copyhdr) {
661 			if (!m_dup_pkthdr(n, m, wait))
662 				goto nospace;
663 			if (len == M_COPYALL)
664 				n->m_pkthdr.len -= off0;
665 			else
666 				n->m_pkthdr.len = len;
667 			copyhdr = 0;
668 		}
669 		n->m_len = min(len, m->m_len - off);
670 		if (m->m_flags & M_EXT) {
671 			n->m_data = m->m_data + off;
672 			mb_dupcl(n, m);
673 		} else
674 			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
675 			    (u_int)n->m_len);
676 		if (len != M_COPYALL)
677 			len -= n->m_len;
678 		off = 0;
679 		m = m->m_next;
680 		np = &n->m_next;
681 	}
682 
683 	return (top);
684 nospace:
685 	m_freem(top);
686 	return (NULL);
687 }
688 
689 /*
690  * Copy an entire packet, including header (which must be present).
691  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
692  * Note that the copy is read-only, because clusters are not copied,
693  * only their reference counts are incremented.
694  * Preserve alignment of the first mbuf so if the creator has left
695  * some room at the beginning (e.g. for inserting protocol headers)
696  * the copies still have the room available.
697  */
698 struct mbuf *
699 m_copypacket(struct mbuf *m, int how)
700 {
701 	struct mbuf *top, *n, *o;
702 
703 	MBUF_CHECKSLEEP(how);
704 	n = m_get(how, m->m_type);
705 	top = n;
706 	if (n == NULL)
707 		goto nospace;
708 
709 	if (!m_dup_pkthdr(n, m, how))
710 		goto nospace;
711 	n->m_len = m->m_len;
712 	if (m->m_flags & M_EXT) {
713 		n->m_data = m->m_data;
714 		mb_dupcl(n, m);
715 	} else {
716 		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
717 		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
718 	}
719 
720 	m = m->m_next;
721 	while (m) {
722 		o = m_get(how, m->m_type);
723 		if (o == NULL)
724 			goto nospace;
725 
726 		n->m_next = o;
727 		n = n->m_next;
728 
729 		n->m_len = m->m_len;
730 		if (m->m_flags & M_EXT) {
731 			n->m_data = m->m_data;
732 			mb_dupcl(n, m);
733 		} else {
734 			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
735 		}
736 
737 		m = m->m_next;
738 	}
739 	return top;
740 nospace:
741 	m_freem(top);
742 	return (NULL);
743 }
744 
745 /*
746  * Copy data from an mbuf chain starting "off" bytes from the beginning,
747  * continuing for "len" bytes, into the indicated buffer.
748  */
749 void
750 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
751 {
752 	u_int count;
753 
754 	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
755 	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
756 	while (off > 0) {
757 		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
758 		if (off < m->m_len)
759 			break;
760 		off -= m->m_len;
761 		m = m->m_next;
762 	}
763 	while (len > 0) {
764 		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
765 		count = min(m->m_len - off, len);
766 		bcopy(mtod(m, caddr_t) + off, cp, count);
767 		len -= count;
768 		cp += count;
769 		off = 0;
770 		m = m->m_next;
771 	}
772 }
773 
774 /*
775  * Copy a packet header mbuf chain into a completely new chain, including
776  * copying any mbuf clusters.  Use this instead of m_copypacket() when
777  * you need a writable copy of an mbuf chain.
778  */
779 struct mbuf *
780 m_dup(struct mbuf *m, int how)
781 {
782 	struct mbuf **p, *top = NULL;
783 	int remain, moff, nsize;
784 
785 	MBUF_CHECKSLEEP(how);
786 	/* Sanity check */
787 	if (m == NULL)
788 		return (NULL);
789 	M_ASSERTPKTHDR(m);
790 
791 	/* While there's more data, get a new mbuf, tack it on, and fill it */
792 	remain = m->m_pkthdr.len;
793 	moff = 0;
794 	p = &top;
795 	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
796 		struct mbuf *n;
797 
798 		/* Get the next new mbuf */
799 		if (remain >= MINCLSIZE) {
800 			n = m_getcl(how, m->m_type, 0);
801 			nsize = MCLBYTES;
802 		} else {
803 			n = m_get(how, m->m_type);
804 			nsize = MLEN;
805 		}
806 		if (n == NULL)
807 			goto nospace;
808 
809 		if (top == NULL) {		/* First one, must be PKTHDR */
810 			if (!m_dup_pkthdr(n, m, how)) {
811 				m_free(n);
812 				goto nospace;
813 			}
814 			if ((n->m_flags & M_EXT) == 0)
815 				nsize = MHLEN;
816 			n->m_flags &= ~M_RDONLY;
817 		}
818 		n->m_len = 0;
819 
820 		/* Link it into the new chain */
821 		*p = n;
822 		p = &n->m_next;
823 
824 		/* Copy data from original mbuf(s) into new mbuf */
825 		while (n->m_len < nsize && m != NULL) {
826 			int chunk = min(nsize - n->m_len, m->m_len - moff);
827 
828 			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
829 			moff += chunk;
830 			n->m_len += chunk;
831 			remain -= chunk;
832 			if (moff == m->m_len) {
833 				m = m->m_next;
834 				moff = 0;
835 			}
836 		}
837 
838 		/* Check correct total mbuf length */
839 		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
840 		    	("%s: bogus m_pkthdr.len", __func__));
841 	}
842 	return (top);
843 
844 nospace:
845 	m_freem(top);
846 	return (NULL);
847 }
848 
849 /*
850  * Concatenate mbuf chain n to m.
851  * Both chains must be of the same type (e.g. MT_DATA).
852  * Any m_pkthdr is not updated.
853  */
854 void
855 m_cat(struct mbuf *m, struct mbuf *n)
856 {
857 	while (m->m_next)
858 		m = m->m_next;
859 	while (n) {
860 		if (!M_WRITABLE(m) ||
861 		    M_TRAILINGSPACE(m) < n->m_len) {
862 			/* just join the two chains */
863 			m->m_next = n;
864 			return;
865 		}
866 		/* splat the data from one into the other */
867 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
868 		    (u_int)n->m_len);
869 		m->m_len += n->m_len;
870 		n = m_free(n);
871 	}
872 }
873 
874 /*
875  * Concatenate two pkthdr mbuf chains.
876  */
877 void
878 m_catpkt(struct mbuf *m, struct mbuf *n)
879 {
880 
881 	M_ASSERTPKTHDR(m);
882 	M_ASSERTPKTHDR(n);
883 
884 	m->m_pkthdr.len += n->m_pkthdr.len;
885 	m_demote(n, 1, 0);
886 
887 	m_cat(m, n);
888 }
889 
890 void
891 m_adj(struct mbuf *mp, int req_len)
892 {
893 	int len = req_len;
894 	struct mbuf *m;
895 	int count;
896 
897 	if ((m = mp) == NULL)
898 		return;
899 	if (len >= 0) {
900 		/*
901 		 * Trim from head.
902 		 */
903 		while (m != NULL && len > 0) {
904 			if (m->m_len <= len) {
905 				len -= m->m_len;
906 				m->m_len = 0;
907 				m = m->m_next;
908 			} else {
909 				m->m_len -= len;
910 				m->m_data += len;
911 				len = 0;
912 			}
913 		}
914 		if (mp->m_flags & M_PKTHDR)
915 			mp->m_pkthdr.len -= (req_len - len);
916 	} else {
917 		/*
918 		 * Trim from tail.  Scan the mbuf chain,
919 		 * calculating its length and finding the last mbuf.
920 		 * If the adjustment only affects this mbuf, then just
921 		 * adjust and return.  Otherwise, rescan and truncate
922 		 * after the remaining size.
923 		 */
924 		len = -len;
925 		count = 0;
926 		for (;;) {
927 			count += m->m_len;
928 			if (m->m_next == (struct mbuf *)0)
929 				break;
930 			m = m->m_next;
931 		}
932 		if (m->m_len >= len) {
933 			m->m_len -= len;
934 			if (mp->m_flags & M_PKTHDR)
935 				mp->m_pkthdr.len -= len;
936 			return;
937 		}
938 		count -= len;
939 		if (count < 0)
940 			count = 0;
941 		/*
942 		 * Correct length for chain is "count".
943 		 * Find the mbuf with last data, adjust its length,
944 		 * and toss data from remaining mbufs on chain.
945 		 */
946 		m = mp;
947 		if (m->m_flags & M_PKTHDR)
948 			m->m_pkthdr.len = count;
949 		for (; m; m = m->m_next) {
950 			if (m->m_len >= count) {
951 				m->m_len = count;
952 				if (m->m_next != NULL) {
953 					m_freem(m->m_next);
954 					m->m_next = NULL;
955 				}
956 				break;
957 			}
958 			count -= m->m_len;
959 		}
960 	}
961 }
962 
963 /*
964  * Rearange an mbuf chain so that len bytes are contiguous
965  * and in the data area of an mbuf (so that mtod will work
966  * for a structure of size len).  Returns the resulting
967  * mbuf chain on success, frees it and returns null on failure.
968  * If there is room, it will add up to max_protohdr-len extra bytes to the
969  * contiguous region in an attempt to avoid being called next time.
970  */
971 struct mbuf *
972 m_pullup(struct mbuf *n, int len)
973 {
974 	struct mbuf *m;
975 	int count;
976 	int space;
977 
978 	/*
979 	 * If first mbuf has no cluster, and has room for len bytes
980 	 * without shifting current data, pullup into it,
981 	 * otherwise allocate a new mbuf to prepend to the chain.
982 	 */
983 	if ((n->m_flags & M_EXT) == 0 &&
984 	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
985 		if (n->m_len >= len)
986 			return (n);
987 		m = n;
988 		n = n->m_next;
989 		len -= m->m_len;
990 	} else {
991 		if (len > MHLEN)
992 			goto bad;
993 		m = m_get(M_NOWAIT, n->m_type);
994 		if (m == NULL)
995 			goto bad;
996 		if (n->m_flags & M_PKTHDR)
997 			m_move_pkthdr(m, n);
998 	}
999 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1000 	do {
1001 		count = min(min(max(len, max_protohdr), space), n->m_len);
1002 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1003 		  (u_int)count);
1004 		len -= count;
1005 		m->m_len += count;
1006 		n->m_len -= count;
1007 		space -= count;
1008 		if (n->m_len)
1009 			n->m_data += count;
1010 		else
1011 			n = m_free(n);
1012 	} while (len > 0 && n);
1013 	if (len > 0) {
1014 		(void) m_free(m);
1015 		goto bad;
1016 	}
1017 	m->m_next = n;
1018 	return (m);
1019 bad:
1020 	m_freem(n);
1021 	return (NULL);
1022 }
1023 
1024 /*
1025  * Like m_pullup(), except a new mbuf is always allocated, and we allow
1026  * the amount of empty space before the data in the new mbuf to be specified
1027  * (in the event that the caller expects to prepend later).
1028  */
1029 int MSFail;
1030 
1031 struct mbuf *
1032 m_copyup(struct mbuf *n, int len, int dstoff)
1033 {
1034 	struct mbuf *m;
1035 	int count, space;
1036 
1037 	if (len > (MHLEN - dstoff))
1038 		goto bad;
1039 	m = m_get(M_NOWAIT, n->m_type);
1040 	if (m == NULL)
1041 		goto bad;
1042 	if (n->m_flags & M_PKTHDR)
1043 		m_move_pkthdr(m, n);
1044 	m->m_data += dstoff;
1045 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1046 	do {
1047 		count = min(min(max(len, max_protohdr), space), n->m_len);
1048 		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
1049 		    (unsigned)count);
1050 		len -= count;
1051 		m->m_len += count;
1052 		n->m_len -= count;
1053 		space -= count;
1054 		if (n->m_len)
1055 			n->m_data += count;
1056 		else
1057 			n = m_free(n);
1058 	} while (len > 0 && n);
1059 	if (len > 0) {
1060 		(void) m_free(m);
1061 		goto bad;
1062 	}
1063 	m->m_next = n;
1064 	return (m);
1065  bad:
1066 	m_freem(n);
1067 	MSFail++;
1068 	return (NULL);
1069 }
1070 
1071 /*
1072  * Partition an mbuf chain in two pieces, returning the tail --
1073  * all but the first len0 bytes.  In case of failure, it returns NULL and
1074  * attempts to restore the chain to its original state.
1075  *
1076  * Note that the resulting mbufs might be read-only, because the new
1077  * mbuf can end up sharing an mbuf cluster with the original mbuf if
1078  * the "breaking point" happens to lie within a cluster mbuf. Use the
1079  * M_WRITABLE() macro to check for this case.
1080  */
1081 struct mbuf *
1082 m_split(struct mbuf *m0, int len0, int wait)
1083 {
1084 	struct mbuf *m, *n;
1085 	u_int len = len0, remain;
1086 
1087 	MBUF_CHECKSLEEP(wait);
1088 	for (m = m0; m && len > m->m_len; m = m->m_next)
1089 		len -= m->m_len;
1090 	if (m == NULL)
1091 		return (NULL);
1092 	remain = m->m_len - len;
1093 	if (m0->m_flags & M_PKTHDR && remain == 0) {
1094 		n = m_gethdr(wait, m0->m_type);
1095 		if (n == NULL)
1096 			return (NULL);
1097 		n->m_next = m->m_next;
1098 		m->m_next = NULL;
1099 		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1100 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1101 		m0->m_pkthdr.len = len0;
1102 		return (n);
1103 	} else if (m0->m_flags & M_PKTHDR) {
1104 		n = m_gethdr(wait, m0->m_type);
1105 		if (n == NULL)
1106 			return (NULL);
1107 		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1108 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1109 		m0->m_pkthdr.len = len0;
1110 		if (m->m_flags & M_EXT)
1111 			goto extpacket;
1112 		if (remain > MHLEN) {
1113 			/* m can't be the lead packet */
1114 			M_ALIGN(n, 0);
1115 			n->m_next = m_split(m, len, wait);
1116 			if (n->m_next == NULL) {
1117 				(void) m_free(n);
1118 				return (NULL);
1119 			} else {
1120 				n->m_len = 0;
1121 				return (n);
1122 			}
1123 		} else
1124 			M_ALIGN(n, remain);
1125 	} else if (remain == 0) {
1126 		n = m->m_next;
1127 		m->m_next = NULL;
1128 		return (n);
1129 	} else {
1130 		n = m_get(wait, m->m_type);
1131 		if (n == NULL)
1132 			return (NULL);
1133 		M_ALIGN(n, remain);
1134 	}
1135 extpacket:
1136 	if (m->m_flags & M_EXT) {
1137 		n->m_data = m->m_data + len;
1138 		mb_dupcl(n, m);
1139 	} else {
1140 		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1141 	}
1142 	n->m_len = remain;
1143 	m->m_len = len;
1144 	n->m_next = m->m_next;
1145 	m->m_next = NULL;
1146 	return (n);
1147 }
1148 /*
1149  * Routine to copy from device local memory into mbufs.
1150  * Note that `off' argument is offset into first mbuf of target chain from
1151  * which to begin copying the data to.
1152  */
1153 struct mbuf *
1154 m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1155     void (*copy)(char *from, caddr_t to, u_int len))
1156 {
1157 	struct mbuf *m;
1158 	struct mbuf *top = NULL, **mp = &top;
1159 	int len;
1160 
1161 	if (off < 0 || off > MHLEN)
1162 		return (NULL);
1163 
1164 	while (totlen > 0) {
1165 		if (top == NULL) {	/* First one, must be PKTHDR */
1166 			if (totlen + off >= MINCLSIZE) {
1167 				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1168 				len = MCLBYTES;
1169 			} else {
1170 				m = m_gethdr(M_NOWAIT, MT_DATA);
1171 				len = MHLEN;
1172 
1173 				/* Place initial small packet/header at end of mbuf */
1174 				if (m && totlen + off + max_linkhdr <= MLEN) {
1175 					m->m_data += max_linkhdr;
1176 					len -= max_linkhdr;
1177 				}
1178 			}
1179 			if (m == NULL)
1180 				return NULL;
1181 			m->m_pkthdr.rcvif = ifp;
1182 			m->m_pkthdr.len = totlen;
1183 		} else {
1184 			if (totlen + off >= MINCLSIZE) {
1185 				m = m_getcl(M_NOWAIT, MT_DATA, 0);
1186 				len = MCLBYTES;
1187 			} else {
1188 				m = m_get(M_NOWAIT, MT_DATA);
1189 				len = MLEN;
1190 			}
1191 			if (m == NULL) {
1192 				m_freem(top);
1193 				return NULL;
1194 			}
1195 		}
1196 		if (off) {
1197 			m->m_data += off;
1198 			len -= off;
1199 			off = 0;
1200 		}
1201 		m->m_len = len = min(totlen, len);
1202 		if (copy)
1203 			copy(buf, mtod(m, caddr_t), (u_int)len);
1204 		else
1205 			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1206 		buf += len;
1207 		*mp = m;
1208 		mp = &m->m_next;
1209 		totlen -= len;
1210 	}
1211 	return (top);
1212 }
1213 
1214 /*
1215  * Copy data from a buffer back into the indicated mbuf chain,
1216  * starting "off" bytes from the beginning, extending the mbuf
1217  * chain if necessary.
1218  */
1219 void
1220 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1221 {
1222 	int mlen;
1223 	struct mbuf *m = m0, *n;
1224 	int totlen = 0;
1225 
1226 	if (m0 == NULL)
1227 		return;
1228 	while (off > (mlen = m->m_len)) {
1229 		off -= mlen;
1230 		totlen += mlen;
1231 		if (m->m_next == NULL) {
1232 			n = m_get(M_NOWAIT, m->m_type);
1233 			if (n == NULL)
1234 				goto out;
1235 			bzero(mtod(n, caddr_t), MLEN);
1236 			n->m_len = min(MLEN, len + off);
1237 			m->m_next = n;
1238 		}
1239 		m = m->m_next;
1240 	}
1241 	while (len > 0) {
1242 		if (m->m_next == NULL && (len > m->m_len - off)) {
1243 			m->m_len += min(len - (m->m_len - off),
1244 			    M_TRAILINGSPACE(m));
1245 		}
1246 		mlen = min (m->m_len - off, len);
1247 		bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1248 		cp += mlen;
1249 		len -= mlen;
1250 		mlen += off;
1251 		off = 0;
1252 		totlen += mlen;
1253 		if (len == 0)
1254 			break;
1255 		if (m->m_next == NULL) {
1256 			n = m_get(M_NOWAIT, m->m_type);
1257 			if (n == NULL)
1258 				break;
1259 			n->m_len = min(MLEN, len);
1260 			m->m_next = n;
1261 		}
1262 		m = m->m_next;
1263 	}
1264 out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1265 		m->m_pkthdr.len = totlen;
1266 }
1267 
1268 /*
1269  * Append the specified data to the indicated mbuf chain,
1270  * Extend the mbuf chain if the new data does not fit in
1271  * existing space.
1272  *
1273  * Return 1 if able to complete the job; otherwise 0.
1274  */
1275 int
1276 m_append(struct mbuf *m0, int len, c_caddr_t cp)
1277 {
1278 	struct mbuf *m, *n;
1279 	int remainder, space;
1280 
1281 	for (m = m0; m->m_next != NULL; m = m->m_next)
1282 		;
1283 	remainder = len;
1284 	space = M_TRAILINGSPACE(m);
1285 	if (space > 0) {
1286 		/*
1287 		 * Copy into available space.
1288 		 */
1289 		if (space > remainder)
1290 			space = remainder;
1291 		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1292 		m->m_len += space;
1293 		cp += space, remainder -= space;
1294 	}
1295 	while (remainder > 0) {
1296 		/*
1297 		 * Allocate a new mbuf; could check space
1298 		 * and allocate a cluster instead.
1299 		 */
1300 		n = m_get(M_NOWAIT, m->m_type);
1301 		if (n == NULL)
1302 			break;
1303 		n->m_len = min(MLEN, remainder);
1304 		bcopy(cp, mtod(n, caddr_t), n->m_len);
1305 		cp += n->m_len, remainder -= n->m_len;
1306 		m->m_next = n;
1307 		m = n;
1308 	}
1309 	if (m0->m_flags & M_PKTHDR)
1310 		m0->m_pkthdr.len += len - remainder;
1311 	return (remainder == 0);
1312 }
1313 
1314 /*
1315  * Apply function f to the data in an mbuf chain starting "off" bytes from
1316  * the beginning, continuing for "len" bytes.
1317  */
1318 int
1319 m_apply(struct mbuf *m, int off, int len,
1320     int (*f)(void *, void *, u_int), void *arg)
1321 {
1322 	u_int count;
1323 	int rval;
1324 
1325 	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1326 	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1327 	while (off > 0) {
1328 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1329 		if (off < m->m_len)
1330 			break;
1331 		off -= m->m_len;
1332 		m = m->m_next;
1333 	}
1334 	while (len > 0) {
1335 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1336 		count = min(m->m_len - off, len);
1337 		rval = (*f)(arg, mtod(m, caddr_t) + off, count);
1338 		if (rval)
1339 			return (rval);
1340 		len -= count;
1341 		off = 0;
1342 		m = m->m_next;
1343 	}
1344 	return (0);
1345 }
1346 
1347 /*
1348  * Return a pointer to mbuf/offset of location in mbuf chain.
1349  */
1350 struct mbuf *
1351 m_getptr(struct mbuf *m, int loc, int *off)
1352 {
1353 
1354 	while (loc >= 0) {
1355 		/* Normal end of search. */
1356 		if (m->m_len > loc) {
1357 			*off = loc;
1358 			return (m);
1359 		} else {
1360 			loc -= m->m_len;
1361 			if (m->m_next == NULL) {
1362 				if (loc == 0) {
1363 					/* Point at the end of valid data. */
1364 					*off = m->m_len;
1365 					return (m);
1366 				}
1367 				return (NULL);
1368 			}
1369 			m = m->m_next;
1370 		}
1371 	}
1372 	return (NULL);
1373 }
1374 
1375 void
1376 m_print(const struct mbuf *m, int maxlen)
1377 {
1378 	int len;
1379 	int pdata;
1380 	const struct mbuf *m2;
1381 
1382 	if (m == NULL) {
1383 		printf("mbuf: %p\n", m);
1384 		return;
1385 	}
1386 
1387 	if (m->m_flags & M_PKTHDR)
1388 		len = m->m_pkthdr.len;
1389 	else
1390 		len = -1;
1391 	m2 = m;
1392 	while (m2 != NULL && (len == -1 || len)) {
1393 		pdata = m2->m_len;
1394 		if (maxlen != -1 && pdata > maxlen)
1395 			pdata = maxlen;
1396 		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1397 		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1398 		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1399 		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1400 		if (pdata)
1401 			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1402 		if (len != -1)
1403 			len -= m2->m_len;
1404 		m2 = m2->m_next;
1405 	}
1406 	if (len > 0)
1407 		printf("%d bytes unaccounted for.\n", len);
1408 	return;
1409 }
1410 
1411 u_int
1412 m_fixhdr(struct mbuf *m0)
1413 {
1414 	u_int len;
1415 
1416 	len = m_length(m0, NULL);
1417 	m0->m_pkthdr.len = len;
1418 	return (len);
1419 }
1420 
1421 u_int
1422 m_length(struct mbuf *m0, struct mbuf **last)
1423 {
1424 	struct mbuf *m;
1425 	u_int len;
1426 
1427 	len = 0;
1428 	for (m = m0; m != NULL; m = m->m_next) {
1429 		len += m->m_len;
1430 		if (m->m_next == NULL)
1431 			break;
1432 	}
1433 	if (last != NULL)
1434 		*last = m;
1435 	return (len);
1436 }
1437 
1438 /*
1439  * Defragment a mbuf chain, returning the shortest possible
1440  * chain of mbufs and clusters.  If allocation fails and
1441  * this cannot be completed, NULL will be returned, but
1442  * the passed in chain will be unchanged.  Upon success,
1443  * the original chain will be freed, and the new chain
1444  * will be returned.
1445  *
1446  * If a non-packet header is passed in, the original
1447  * mbuf (chain?) will be returned unharmed.
1448  */
1449 struct mbuf *
1450 m_defrag(struct mbuf *m0, int how)
1451 {
1452 	struct mbuf *m_new = NULL, *m_final = NULL;
1453 	int progress = 0, length;
1454 
1455 	MBUF_CHECKSLEEP(how);
1456 	if (!(m0->m_flags & M_PKTHDR))
1457 		return (m0);
1458 
1459 	m_fixhdr(m0); /* Needed sanity check */
1460 
1461 #ifdef MBUF_STRESS_TEST
1462 	if (m_defragrandomfailures) {
1463 		int temp = arc4random() & 0xff;
1464 		if (temp == 0xba)
1465 			goto nospace;
1466 	}
1467 #endif
1468 
1469 	if (m0->m_pkthdr.len > MHLEN)
1470 		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1471 	else
1472 		m_final = m_gethdr(how, MT_DATA);
1473 
1474 	if (m_final == NULL)
1475 		goto nospace;
1476 
1477 	if (m_dup_pkthdr(m_final, m0, how) == 0)
1478 		goto nospace;
1479 
1480 	m_new = m_final;
1481 
1482 	while (progress < m0->m_pkthdr.len) {
1483 		length = m0->m_pkthdr.len - progress;
1484 		if (length > MCLBYTES)
1485 			length = MCLBYTES;
1486 
1487 		if (m_new == NULL) {
1488 			if (length > MLEN)
1489 				m_new = m_getcl(how, MT_DATA, 0);
1490 			else
1491 				m_new = m_get(how, MT_DATA);
1492 			if (m_new == NULL)
1493 				goto nospace;
1494 		}
1495 
1496 		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1497 		progress += length;
1498 		m_new->m_len = length;
1499 		if (m_new != m_final)
1500 			m_cat(m_final, m_new);
1501 		m_new = NULL;
1502 	}
1503 #ifdef MBUF_STRESS_TEST
1504 	if (m0->m_next == NULL)
1505 		m_defraguseless++;
1506 #endif
1507 	m_freem(m0);
1508 	m0 = m_final;
1509 #ifdef MBUF_STRESS_TEST
1510 	m_defragpackets++;
1511 	m_defragbytes += m0->m_pkthdr.len;
1512 #endif
1513 	return (m0);
1514 nospace:
1515 #ifdef MBUF_STRESS_TEST
1516 	m_defragfailure++;
1517 #endif
1518 	if (m_final)
1519 		m_freem(m_final);
1520 	return (NULL);
1521 }
1522 
1523 /*
1524  * Defragment an mbuf chain, returning at most maxfrags separate
1525  * mbufs+clusters.  If this is not possible NULL is returned and
1526  * the original mbuf chain is left in it's present (potentially
1527  * modified) state.  We use two techniques: collapsing consecutive
1528  * mbufs and replacing consecutive mbufs by a cluster.
1529  *
1530  * NB: this should really be named m_defrag but that name is taken
1531  */
1532 struct mbuf *
1533 m_collapse(struct mbuf *m0, int how, int maxfrags)
1534 {
1535 	struct mbuf *m, *n, *n2, **prev;
1536 	u_int curfrags;
1537 
1538 	/*
1539 	 * Calculate the current number of frags.
1540 	 */
1541 	curfrags = 0;
1542 	for (m = m0; m != NULL; m = m->m_next)
1543 		curfrags++;
1544 	/*
1545 	 * First, try to collapse mbufs.  Note that we always collapse
1546 	 * towards the front so we don't need to deal with moving the
1547 	 * pkthdr.  This may be suboptimal if the first mbuf has much
1548 	 * less data than the following.
1549 	 */
1550 	m = m0;
1551 again:
1552 	for (;;) {
1553 		n = m->m_next;
1554 		if (n == NULL)
1555 			break;
1556 		if (M_WRITABLE(m) &&
1557 		    n->m_len < M_TRAILINGSPACE(m)) {
1558 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
1559 				n->m_len);
1560 			m->m_len += n->m_len;
1561 			m->m_next = n->m_next;
1562 			m_free(n);
1563 			if (--curfrags <= maxfrags)
1564 				return m0;
1565 		} else
1566 			m = n;
1567 	}
1568 	KASSERT(maxfrags > 1,
1569 		("maxfrags %u, but normal collapse failed", maxfrags));
1570 	/*
1571 	 * Collapse consecutive mbufs to a cluster.
1572 	 */
1573 	prev = &m0->m_next;		/* NB: not the first mbuf */
1574 	while ((n = *prev) != NULL) {
1575 		if ((n2 = n->m_next) != NULL &&
1576 		    n->m_len + n2->m_len < MCLBYTES) {
1577 			m = m_getcl(how, MT_DATA, 0);
1578 			if (m == NULL)
1579 				goto bad;
1580 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
1581 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
1582 				n2->m_len);
1583 			m->m_len = n->m_len + n2->m_len;
1584 			m->m_next = n2->m_next;
1585 			*prev = m;
1586 			m_free(n);
1587 			m_free(n2);
1588 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
1589 				return m0;
1590 			/*
1591 			 * Still not there, try the normal collapse
1592 			 * again before we allocate another cluster.
1593 			 */
1594 			goto again;
1595 		}
1596 		prev = &n->m_next;
1597 	}
1598 	/*
1599 	 * No place where we can collapse to a cluster; punt.
1600 	 * This can occur if, for example, you request 2 frags
1601 	 * but the packet requires that both be clusters (we
1602 	 * never reallocate the first mbuf to avoid moving the
1603 	 * packet header).
1604 	 */
1605 bad:
1606 	return NULL;
1607 }
1608 
1609 #ifdef MBUF_STRESS_TEST
1610 
1611 /*
1612  * Fragment an mbuf chain.  There's no reason you'd ever want to do
1613  * this in normal usage, but it's great for stress testing various
1614  * mbuf consumers.
1615  *
1616  * If fragmentation is not possible, the original chain will be
1617  * returned.
1618  *
1619  * Possible length values:
1620  * 0	 no fragmentation will occur
1621  * > 0	each fragment will be of the specified length
1622  * -1	each fragment will be the same random value in length
1623  * -2	each fragment's length will be entirely random
1624  * (Random values range from 1 to 256)
1625  */
1626 struct mbuf *
1627 m_fragment(struct mbuf *m0, int how, int length)
1628 {
1629 	struct mbuf *m_new = NULL, *m_final = NULL;
1630 	int progress = 0;
1631 
1632 	if (!(m0->m_flags & M_PKTHDR))
1633 		return (m0);
1634 
1635 	if ((length == 0) || (length < -2))
1636 		return (m0);
1637 
1638 	m_fixhdr(m0); /* Needed sanity check */
1639 
1640 	m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1641 
1642 	if (m_final == NULL)
1643 		goto nospace;
1644 
1645 	if (m_dup_pkthdr(m_final, m0, how) == 0)
1646 		goto nospace;
1647 
1648 	m_new = m_final;
1649 
1650 	if (length == -1)
1651 		length = 1 + (arc4random() & 255);
1652 
1653 	while (progress < m0->m_pkthdr.len) {
1654 		int fraglen;
1655 
1656 		if (length > 0)
1657 			fraglen = length;
1658 		else
1659 			fraglen = 1 + (arc4random() & 255);
1660 		if (fraglen > m0->m_pkthdr.len - progress)
1661 			fraglen = m0->m_pkthdr.len - progress;
1662 
1663 		if (fraglen > MCLBYTES)
1664 			fraglen = MCLBYTES;
1665 
1666 		if (m_new == NULL) {
1667 			m_new = m_getcl(how, MT_DATA, 0);
1668 			if (m_new == NULL)
1669 				goto nospace;
1670 		}
1671 
1672 		m_copydata(m0, progress, fraglen, mtod(m_new, caddr_t));
1673 		progress += fraglen;
1674 		m_new->m_len = fraglen;
1675 		if (m_new != m_final)
1676 			m_cat(m_final, m_new);
1677 		m_new = NULL;
1678 	}
1679 	m_freem(m0);
1680 	m0 = m_final;
1681 	return (m0);
1682 nospace:
1683 	if (m_final)
1684 		m_freem(m_final);
1685 	/* Return the original chain on failure */
1686 	return (m0);
1687 }
1688 
1689 #endif
1690 
1691 /*
1692  * Copy the contents of uio into a properly sized mbuf chain.
1693  */
1694 struct mbuf *
1695 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1696 {
1697 	struct mbuf *m, *mb;
1698 	int error, length;
1699 	ssize_t total;
1700 	int progress = 0;
1701 
1702 	/*
1703 	 * len can be zero or an arbitrary large value bound by
1704 	 * the total data supplied by the uio.
1705 	 */
1706 	if (len > 0)
1707 		total = min(uio->uio_resid, len);
1708 	else
1709 		total = uio->uio_resid;
1710 
1711 	/*
1712 	 * The smallest unit returned by m_getm2() is a single mbuf
1713 	 * with pkthdr.  We can't align past it.
1714 	 */
1715 	if (align >= MHLEN)
1716 		return (NULL);
1717 
1718 	/*
1719 	 * Give us the full allocation or nothing.
1720 	 * If len is zero return the smallest empty mbuf.
1721 	 */
1722 	m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1723 	if (m == NULL)
1724 		return (NULL);
1725 	m->m_data += align;
1726 
1727 	/* Fill all mbufs with uio data and update header information. */
1728 	for (mb = m; mb != NULL; mb = mb->m_next) {
1729 		length = min(M_TRAILINGSPACE(mb), total - progress);
1730 
1731 		error = uiomove(mtod(mb, void *), length, uio);
1732 		if (error) {
1733 			m_freem(m);
1734 			return (NULL);
1735 		}
1736 
1737 		mb->m_len = length;
1738 		progress += length;
1739 		if (flags & M_PKTHDR)
1740 			m->m_pkthdr.len += length;
1741 	}
1742 	KASSERT(progress == total, ("%s: progress != total", __func__));
1743 
1744 	return (m);
1745 }
1746 
1747 /*
1748  * Copy an mbuf chain into a uio limited by len if set.
1749  */
1750 int
1751 m_mbuftouio(struct uio *uio, struct mbuf *m, int len)
1752 {
1753 	int error, length, total;
1754 	int progress = 0;
1755 
1756 	if (len > 0)
1757 		total = min(uio->uio_resid, len);
1758 	else
1759 		total = uio->uio_resid;
1760 
1761 	/* Fill the uio with data from the mbufs. */
1762 	for (; m != NULL; m = m->m_next) {
1763 		length = min(m->m_len, total - progress);
1764 
1765 		error = uiomove(mtod(m, void *), length, uio);
1766 		if (error)
1767 			return (error);
1768 
1769 		progress += length;
1770 	}
1771 
1772 	return (0);
1773 }
1774 
1775 /*
1776  * Create a writable copy of the mbuf chain.  While doing this
1777  * we compact the chain with a goal of producing a chain with
1778  * at most two mbufs.  The second mbuf in this chain is likely
1779  * to be a cluster.  The primary purpose of this work is to create
1780  * a writable packet for encryption, compression, etc.  The
1781  * secondary goal is to linearize the data so the data can be
1782  * passed to crypto hardware in the most efficient manner possible.
1783  */
1784 struct mbuf *
1785 m_unshare(struct mbuf *m0, int how)
1786 {
1787 	struct mbuf *m, *mprev;
1788 	struct mbuf *n, *mfirst, *mlast;
1789 	int len, off;
1790 
1791 	mprev = NULL;
1792 	for (m = m0; m != NULL; m = mprev->m_next) {
1793 		/*
1794 		 * Regular mbufs are ignored unless there's a cluster
1795 		 * in front of it that we can use to coalesce.  We do
1796 		 * the latter mainly so later clusters can be coalesced
1797 		 * also w/o having to handle them specially (i.e. convert
1798 		 * mbuf+cluster -> cluster).  This optimization is heavily
1799 		 * influenced by the assumption that we're running over
1800 		 * Ethernet where MCLBYTES is large enough that the max
1801 		 * packet size will permit lots of coalescing into a
1802 		 * single cluster.  This in turn permits efficient
1803 		 * crypto operations, especially when using hardware.
1804 		 */
1805 		if ((m->m_flags & M_EXT) == 0) {
1806 			if (mprev && (mprev->m_flags & M_EXT) &&
1807 			    m->m_len <= M_TRAILINGSPACE(mprev)) {
1808 				/* XXX: this ignores mbuf types */
1809 				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1810 				    mtod(m, caddr_t), m->m_len);
1811 				mprev->m_len += m->m_len;
1812 				mprev->m_next = m->m_next;	/* unlink from chain */
1813 				m_free(m);			/* reclaim mbuf */
1814 #if 0
1815 				newipsecstat.ips_mbcoalesced++;
1816 #endif
1817 			} else {
1818 				mprev = m;
1819 			}
1820 			continue;
1821 		}
1822 		/*
1823 		 * Writable mbufs are left alone (for now).
1824 		 */
1825 		if (M_WRITABLE(m)) {
1826 			mprev = m;
1827 			continue;
1828 		}
1829 
1830 		/*
1831 		 * Not writable, replace with a copy or coalesce with
1832 		 * the previous mbuf if possible (since we have to copy
1833 		 * it anyway, we try to reduce the number of mbufs and
1834 		 * clusters so that future work is easier).
1835 		 */
1836 		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
1837 		/* NB: we only coalesce into a cluster or larger */
1838 		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
1839 		    m->m_len <= M_TRAILINGSPACE(mprev)) {
1840 			/* XXX: this ignores mbuf types */
1841 			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1842 			    mtod(m, caddr_t), m->m_len);
1843 			mprev->m_len += m->m_len;
1844 			mprev->m_next = m->m_next;	/* unlink from chain */
1845 			m_free(m);			/* reclaim mbuf */
1846 #if 0
1847 			newipsecstat.ips_clcoalesced++;
1848 #endif
1849 			continue;
1850 		}
1851 
1852 		/*
1853 		 * Allocate new space to hold the copy and copy the data.
1854 		 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
1855 		 * splitting them into clusters.  We could just malloc a
1856 		 * buffer and make it external but too many device drivers
1857 		 * don't know how to break up the non-contiguous memory when
1858 		 * doing DMA.
1859 		 */
1860 		n = m_getcl(how, m->m_type, m->m_flags);
1861 		if (n == NULL) {
1862 			m_freem(m0);
1863 			return (NULL);
1864 		}
1865 		len = m->m_len;
1866 		off = 0;
1867 		mfirst = n;
1868 		mlast = NULL;
1869 		for (;;) {
1870 			int cc = min(len, MCLBYTES);
1871 			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
1872 			n->m_len = cc;
1873 			if (mlast != NULL)
1874 				mlast->m_next = n;
1875 			mlast = n;
1876 #if 0
1877 			newipsecstat.ips_clcopied++;
1878 #endif
1879 
1880 			len -= cc;
1881 			if (len <= 0)
1882 				break;
1883 			off += cc;
1884 
1885 			n = m_getcl(how, m->m_type, m->m_flags);
1886 			if (n == NULL) {
1887 				m_freem(mfirst);
1888 				m_freem(m0);
1889 				return (NULL);
1890 			}
1891 		}
1892 		n->m_next = m->m_next;
1893 		if (mprev == NULL)
1894 			m0 = mfirst;		/* new head of chain */
1895 		else
1896 			mprev->m_next = mfirst;	/* replace old mbuf */
1897 		m_free(m);			/* release old mbuf */
1898 		mprev = mfirst;
1899 	}
1900 	return (m0);
1901 }
1902 
1903 #ifdef MBUF_PROFILING
1904 
1905 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
1906 struct mbufprofile {
1907 	uintmax_t wasted[MP_BUCKETS];
1908 	uintmax_t used[MP_BUCKETS];
1909 	uintmax_t segments[MP_BUCKETS];
1910 } mbprof;
1911 
1912 #define MP_MAXDIGITS 21	/* strlen("16,000,000,000,000,000,000") == 21 */
1913 #define MP_NUMLINES 6
1914 #define MP_NUMSPERLINE 16
1915 #define MP_EXTRABYTES 64	/* > strlen("used:\nwasted:\nsegments:\n") */
1916 /* work out max space needed and add a bit of spare space too */
1917 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
1918 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
1919 
1920 char mbprofbuf[MP_BUFSIZE];
1921 
1922 void
1923 m_profile(struct mbuf *m)
1924 {
1925 	int segments = 0;
1926 	int used = 0;
1927 	int wasted = 0;
1928 
1929 	while (m) {
1930 		segments++;
1931 		used += m->m_len;
1932 		if (m->m_flags & M_EXT) {
1933 			wasted += MHLEN - sizeof(m->m_ext) +
1934 			    m->m_ext.ext_size - m->m_len;
1935 		} else {
1936 			if (m->m_flags & M_PKTHDR)
1937 				wasted += MHLEN - m->m_len;
1938 			else
1939 				wasted += MLEN - m->m_len;
1940 		}
1941 		m = m->m_next;
1942 	}
1943 	/* be paranoid.. it helps */
1944 	if (segments > MP_BUCKETS - 1)
1945 		segments = MP_BUCKETS - 1;
1946 	if (used > 100000)
1947 		used = 100000;
1948 	if (wasted > 100000)
1949 		wasted = 100000;
1950 	/* store in the appropriate bucket */
1951 	/* don't bother locking. if it's slightly off, so what? */
1952 	mbprof.segments[segments]++;
1953 	mbprof.used[fls(used)]++;
1954 	mbprof.wasted[fls(wasted)]++;
1955 }
1956 
1957 static void
1958 mbprof_textify(void)
1959 {
1960 	int offset;
1961 	char *c;
1962 	uint64_t *p;
1963 
1964 	p = &mbprof.wasted[0];
1965 	c = mbprofbuf;
1966 	offset = snprintf(c, MP_MAXLINE + 10,
1967 	    "wasted:\n"
1968 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
1969 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
1970 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
1971 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
1972 #ifdef BIG_ARRAY
1973 	p = &mbprof.wasted[16];
1974 	c += offset;
1975 	offset = snprintf(c, MP_MAXLINE,
1976 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
1977 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
1978 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
1979 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
1980 #endif
1981 	p = &mbprof.used[0];
1982 	c += offset;
1983 	offset = snprintf(c, MP_MAXLINE + 10,
1984 	    "used:\n"
1985 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
1986 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
1987 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
1988 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
1989 #ifdef BIG_ARRAY
1990 	p = &mbprof.used[16];
1991 	c += offset;
1992 	offset = snprintf(c, MP_MAXLINE,
1993 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
1994 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
1995 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
1996 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
1997 #endif
1998 	p = &mbprof.segments[0];
1999 	c += offset;
2000 	offset = snprintf(c, MP_MAXLINE + 10,
2001 	    "segments:\n"
2002 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2003 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2004 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2005 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2006 #ifdef BIG_ARRAY
2007 	p = &mbprof.segments[16];
2008 	c += offset;
2009 	offset = snprintf(c, MP_MAXLINE,
2010 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2011 	    "%ju %ju %ju %ju %ju %ju %ju %jju",
2012 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2013 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2014 #endif
2015 }
2016 
2017 static int
2018 mbprof_handler(SYSCTL_HANDLER_ARGS)
2019 {
2020 	int error;
2021 
2022 	mbprof_textify();
2023 	error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
2024 	return (error);
2025 }
2026 
2027 static int
2028 mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
2029 {
2030 	int clear, error;
2031 
2032 	clear = 0;
2033 	error = sysctl_handle_int(oidp, &clear, 0, req);
2034 	if (error || !req->newptr)
2035 		return (error);
2036 
2037 	if (clear) {
2038 		bzero(&mbprof, sizeof(mbprof));
2039 	}
2040 
2041 	return (error);
2042 }
2043 
2044 
2045 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD,
2046 	    NULL, 0, mbprof_handler, "A", "mbuf profiling statistics");
2047 
2048 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW,
2049 	    NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics");
2050 #endif
2051 
2052