1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_param.h" 36 #include "opt_mbuf_stress_test.h" 37 #include "opt_mbuf_profiling.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/limits.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/sysctl.h> 47 #include <sys/domain.h> 48 #include <sys/protosw.h> 49 #include <sys/uio.h> 50 51 int max_linkhdr; 52 int max_protohdr; 53 int max_hdr; 54 int max_datalen; 55 #ifdef MBUF_STRESS_TEST 56 int m_defragpackets; 57 int m_defragbytes; 58 int m_defraguseless; 59 int m_defragfailure; 60 int m_defragrandomfailures; 61 #endif 62 63 /* 64 * sysctl(8) exported objects 65 */ 66 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD, 67 &max_linkhdr, 0, "Size of largest link layer header"); 68 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD, 69 &max_protohdr, 0, "Size of largest protocol layer header"); 70 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD, 71 &max_hdr, 0, "Size of largest link plus protocol header"); 72 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD, 73 &max_datalen, 0, "Minimum space left in mbuf after max_hdr"); 74 #ifdef MBUF_STRESS_TEST 75 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD, 76 &m_defragpackets, 0, ""); 77 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD, 78 &m_defragbytes, 0, ""); 79 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD, 80 &m_defraguseless, 0, ""); 81 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD, 82 &m_defragfailure, 0, ""); 83 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW, 84 &m_defragrandomfailures, 0, ""); 85 #endif 86 87 /* 88 * Ensure the correct size of various mbuf parameters. It could be off due 89 * to compiler-induced padding and alignment artifacts. 90 */ 91 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN); 92 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN); 93 94 /* 95 * mbuf data storage should be 64-bit aligned regardless of architectural 96 * pointer size; check this is the case with and without a packet header. 97 */ 98 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0); 99 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0); 100 101 /* 102 * While the specific values here don't matter too much (i.e., +/- a few 103 * words), we do want to ensure that changes to these values are carefully 104 * reasoned about and properly documented. This is especially the case as 105 * network-protocol and device-driver modules encode these layouts, and must 106 * be recompiled if the structures change. Check these values at compile time 107 * against the ones documented in comments in mbuf.h. 108 * 109 * NB: Possibly they should be documented there via #define's and not just 110 * comments. 111 */ 112 #if defined(__LP64__) 113 CTASSERT(offsetof(struct mbuf, m_dat) == 32); 114 CTASSERT(sizeof(struct pkthdr) == 56); 115 CTASSERT(sizeof(struct m_ext) == 48); 116 #else 117 CTASSERT(offsetof(struct mbuf, m_dat) == 24); 118 CTASSERT(sizeof(struct pkthdr) == 48); 119 CTASSERT(sizeof(struct m_ext) == 28); 120 #endif 121 122 /* 123 * Assert that the queue(3) macros produce code of the same size as an old 124 * plain pointer does. 125 */ 126 #ifdef INVARIANTS 127 static struct mbuf m_assertbuf; 128 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next)); 129 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next)); 130 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt)); 131 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt)); 132 #endif 133 134 /* 135 * m_get2() allocates minimum mbuf that would fit "size" argument. 136 */ 137 struct mbuf * 138 m_get2(int size, int how, short type, int flags) 139 { 140 struct mb_args args; 141 struct mbuf *m, *n; 142 143 args.flags = flags; 144 args.type = type; 145 146 if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0)) 147 return (uma_zalloc_arg(zone_mbuf, &args, how)); 148 if (size <= MCLBYTES) 149 return (uma_zalloc_arg(zone_pack, &args, how)); 150 151 if (size > MJUMPAGESIZE) 152 return (NULL); 153 154 m = uma_zalloc_arg(zone_mbuf, &args, how); 155 if (m == NULL) 156 return (NULL); 157 158 n = uma_zalloc_arg(zone_jumbop, m, how); 159 if (n == NULL) { 160 uma_zfree(zone_mbuf, m); 161 return (NULL); 162 } 163 164 return (m); 165 } 166 167 /* 168 * m_getjcl() returns an mbuf with a cluster of the specified size attached. 169 * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES. 170 */ 171 struct mbuf * 172 m_getjcl(int how, short type, int flags, int size) 173 { 174 struct mb_args args; 175 struct mbuf *m, *n; 176 uma_zone_t zone; 177 178 if (size == MCLBYTES) 179 return m_getcl(how, type, flags); 180 181 args.flags = flags; 182 args.type = type; 183 184 m = uma_zalloc_arg(zone_mbuf, &args, how); 185 if (m == NULL) 186 return (NULL); 187 188 zone = m_getzone(size); 189 n = uma_zalloc_arg(zone, m, how); 190 if (n == NULL) { 191 uma_zfree(zone_mbuf, m); 192 return (NULL); 193 } 194 return (m); 195 } 196 197 /* 198 * Allocate a given length worth of mbufs and/or clusters (whatever fits 199 * best) and return a pointer to the top of the allocated chain. If an 200 * existing mbuf chain is provided, then we will append the new chain 201 * to the existing one but still return the top of the newly allocated 202 * chain. 203 */ 204 struct mbuf * 205 m_getm2(struct mbuf *m, int len, int how, short type, int flags) 206 { 207 struct mbuf *mb, *nm = NULL, *mtail = NULL; 208 209 KASSERT(len >= 0, ("%s: len is < 0", __func__)); 210 211 /* Validate flags. */ 212 flags &= (M_PKTHDR | M_EOR); 213 214 /* Packet header mbuf must be first in chain. */ 215 if ((flags & M_PKTHDR) && m != NULL) 216 flags &= ~M_PKTHDR; 217 218 /* Loop and append maximum sized mbufs to the chain tail. */ 219 while (len > 0) { 220 if (len > MCLBYTES) 221 mb = m_getjcl(how, type, (flags & M_PKTHDR), 222 MJUMPAGESIZE); 223 else if (len >= MINCLSIZE) 224 mb = m_getcl(how, type, (flags & M_PKTHDR)); 225 else if (flags & M_PKTHDR) 226 mb = m_gethdr(how, type); 227 else 228 mb = m_get(how, type); 229 230 /* Fail the whole operation if one mbuf can't be allocated. */ 231 if (mb == NULL) { 232 if (nm != NULL) 233 m_freem(nm); 234 return (NULL); 235 } 236 237 /* Book keeping. */ 238 len -= M_SIZE(mb); 239 if (mtail != NULL) 240 mtail->m_next = mb; 241 else 242 nm = mb; 243 mtail = mb; 244 flags &= ~M_PKTHDR; /* Only valid on the first mbuf. */ 245 } 246 if (flags & M_EOR) 247 mtail->m_flags |= M_EOR; /* Only valid on the last mbuf. */ 248 249 /* If mbuf was supplied, append new chain to the end of it. */ 250 if (m != NULL) { 251 for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next) 252 ; 253 mtail->m_next = nm; 254 mtail->m_flags &= ~M_EOR; 255 } else 256 m = nm; 257 258 return (m); 259 } 260 261 /* 262 * Free an entire chain of mbufs and associated external buffers, if 263 * applicable. 264 */ 265 void 266 m_freem(struct mbuf *mb) 267 { 268 269 while (mb != NULL) 270 mb = m_free(mb); 271 } 272 273 /*- 274 * Configure a provided mbuf to refer to the provided external storage 275 * buffer and setup a reference count for said buffer. If the setting 276 * up of the reference count fails, the M_EXT bit will not be set. If 277 * successfull, the M_EXT bit is set in the mbuf's flags. 278 * 279 * Arguments: 280 * mb The existing mbuf to which to attach the provided buffer. 281 * buf The address of the provided external storage buffer. 282 * size The size of the provided buffer. 283 * freef A pointer to a routine that is responsible for freeing the 284 * provided external storage buffer. 285 * args A pointer to an argument structure (of any type) to be passed 286 * to the provided freef routine (may be NULL). 287 * flags Any other flags to be passed to the provided mbuf. 288 * type The type that the external storage buffer should be 289 * labeled with. 290 * 291 * Returns: 292 * Nothing. 293 */ 294 int 295 m_extadd(struct mbuf *mb, caddr_t buf, u_int size, 296 void (*freef)(struct mbuf *, void *, void *), void *arg1, void *arg2, 297 int flags, int type, int wait) 298 { 299 KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__)); 300 301 if (type != EXT_EXTREF) 302 mb->m_ext.ext_cnt = uma_zalloc(zone_ext_refcnt, wait); 303 304 if (mb->m_ext.ext_cnt == NULL) 305 return (ENOMEM); 306 307 *(mb->m_ext.ext_cnt) = 1; 308 mb->m_flags |= (M_EXT | flags); 309 mb->m_ext.ext_buf = buf; 310 mb->m_data = mb->m_ext.ext_buf; 311 mb->m_ext.ext_size = size; 312 mb->m_ext.ext_free = freef; 313 mb->m_ext.ext_arg1 = arg1; 314 mb->m_ext.ext_arg2 = arg2; 315 mb->m_ext.ext_type = type; 316 mb->m_ext.ext_flags = 0; 317 318 return (0); 319 } 320 321 /* 322 * Non-directly-exported function to clean up after mbufs with M_EXT 323 * storage attached to them if the reference count hits 1. 324 */ 325 void 326 mb_free_ext(struct mbuf *m) 327 { 328 int freembuf; 329 330 KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m)); 331 332 /* 333 * Check if the header is embedded in the cluster. 334 */ 335 freembuf = (m->m_flags & M_NOFREE) ? 0 : 1; 336 337 switch (m->m_ext.ext_type) { 338 case EXT_SFBUF: 339 sf_ext_free(m->m_ext.ext_arg1, m->m_ext.ext_arg2); 340 break; 341 default: 342 KASSERT(m->m_ext.ext_cnt != NULL, 343 ("%s: no refcounting pointer on %p", __func__, m)); 344 /* 345 * Free attached storage if this mbuf is the only 346 * reference to it. 347 */ 348 if (*(m->m_ext.ext_cnt) != 1) { 349 if (atomic_fetchadd_int(m->m_ext.ext_cnt, -1) != 1) 350 break; 351 } 352 353 switch (m->m_ext.ext_type) { 354 case EXT_PACKET: /* The packet zone is special. */ 355 if (*(m->m_ext.ext_cnt) == 0) 356 *(m->m_ext.ext_cnt) = 1; 357 uma_zfree(zone_pack, m); 358 return; /* Job done. */ 359 case EXT_CLUSTER: 360 uma_zfree(zone_clust, m->m_ext.ext_buf); 361 break; 362 case EXT_JUMBOP: 363 uma_zfree(zone_jumbop, m->m_ext.ext_buf); 364 break; 365 case EXT_JUMBO9: 366 uma_zfree(zone_jumbo9, m->m_ext.ext_buf); 367 break; 368 case EXT_JUMBO16: 369 uma_zfree(zone_jumbo16, m->m_ext.ext_buf); 370 break; 371 case EXT_NET_DRV: 372 case EXT_MOD_TYPE: 373 case EXT_DISPOSABLE: 374 *(m->m_ext.ext_cnt) = 0; 375 uma_zfree(zone_ext_refcnt, __DEVOLATILE(u_int *, 376 m->m_ext.ext_cnt)); 377 /* FALLTHROUGH */ 378 case EXT_EXTREF: 379 KASSERT(m->m_ext.ext_free != NULL, 380 ("%s: ext_free not set", __func__)); 381 (*(m->m_ext.ext_free))(m, m->m_ext.ext_arg1, 382 m->m_ext.ext_arg2); 383 break; 384 default: 385 KASSERT(m->m_ext.ext_type == 0, 386 ("%s: unknown ext_type", __func__)); 387 } 388 } 389 390 if (freembuf) 391 uma_zfree(zone_mbuf, m); 392 } 393 394 /* 395 * Attach the cluster from *m to *n, set up m_ext in *n 396 * and bump the refcount of the cluster. 397 */ 398 static void 399 mb_dupcl(struct mbuf *n, struct mbuf *m) 400 { 401 402 KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m)); 403 KASSERT(!(n->m_flags & M_EXT), ("%s: M_EXT set on %p", __func__, n)); 404 405 switch (m->m_ext.ext_type) { 406 case EXT_SFBUF: 407 sf_ext_ref(m->m_ext.ext_arg1, m->m_ext.ext_arg2); 408 break; 409 default: 410 KASSERT(m->m_ext.ext_cnt != NULL, 411 ("%s: no refcounting pointer on %p", __func__, m)); 412 if (*(m->m_ext.ext_cnt) == 1) 413 *(m->m_ext.ext_cnt) += 1; 414 else 415 atomic_add_int(m->m_ext.ext_cnt, 1); 416 } 417 418 n->m_ext = m->m_ext; 419 n->m_flags |= M_EXT; 420 n->m_flags |= m->m_flags & M_RDONLY; 421 } 422 423 /* 424 * Clean up mbuf (chain) from any tags and packet headers. 425 * If "all" is set then the first mbuf in the chain will be 426 * cleaned too. 427 */ 428 void 429 m_demote(struct mbuf *m0, int all, int flags) 430 { 431 struct mbuf *m; 432 433 for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) { 434 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p", 435 __func__, m, m0)); 436 if (m->m_flags & M_PKTHDR) { 437 m_tag_delete_chain(m, NULL); 438 m->m_flags &= ~M_PKTHDR; 439 bzero(&m->m_pkthdr, sizeof(struct pkthdr)); 440 } 441 m->m_flags = m->m_flags & (M_EXT | M_RDONLY | M_NOFREE | flags); 442 } 443 } 444 445 /* 446 * Sanity checks on mbuf (chain) for use in KASSERT() and general 447 * debugging. 448 * Returns 0 or panics when bad and 1 on all tests passed. 449 * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they 450 * blow up later. 451 */ 452 int 453 m_sanity(struct mbuf *m0, int sanitize) 454 { 455 struct mbuf *m; 456 caddr_t a, b; 457 int pktlen = 0; 458 459 #ifdef INVARIANTS 460 #define M_SANITY_ACTION(s) panic("mbuf %p: " s, m) 461 #else 462 #define M_SANITY_ACTION(s) printf("mbuf %p: " s, m) 463 #endif 464 465 for (m = m0; m != NULL; m = m->m_next) { 466 /* 467 * Basic pointer checks. If any of these fails then some 468 * unrelated kernel memory before or after us is trashed. 469 * No way to recover from that. 470 */ 471 a = M_START(m); 472 b = a + M_SIZE(m); 473 if ((caddr_t)m->m_data < a) 474 M_SANITY_ACTION("m_data outside mbuf data range left"); 475 if ((caddr_t)m->m_data > b) 476 M_SANITY_ACTION("m_data outside mbuf data range right"); 477 if ((caddr_t)m->m_data + m->m_len > b) 478 M_SANITY_ACTION("m_data + m_len exeeds mbuf space"); 479 480 /* m->m_nextpkt may only be set on first mbuf in chain. */ 481 if (m != m0 && m->m_nextpkt != NULL) { 482 if (sanitize) { 483 m_freem(m->m_nextpkt); 484 m->m_nextpkt = (struct mbuf *)0xDEADC0DE; 485 } else 486 M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf"); 487 } 488 489 /* packet length (not mbuf length!) calculation */ 490 if (m0->m_flags & M_PKTHDR) 491 pktlen += m->m_len; 492 493 /* m_tags may only be attached to first mbuf in chain. */ 494 if (m != m0 && m->m_flags & M_PKTHDR && 495 !SLIST_EMPTY(&m->m_pkthdr.tags)) { 496 if (sanitize) { 497 m_tag_delete_chain(m, NULL); 498 /* put in 0xDEADC0DE perhaps? */ 499 } else 500 M_SANITY_ACTION("m_tags on in-chain mbuf"); 501 } 502 503 /* M_PKTHDR may only be set on first mbuf in chain */ 504 if (m != m0 && m->m_flags & M_PKTHDR) { 505 if (sanitize) { 506 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr)); 507 m->m_flags &= ~M_PKTHDR; 508 /* put in 0xDEADCODE and leave hdr flag in */ 509 } else 510 M_SANITY_ACTION("M_PKTHDR on in-chain mbuf"); 511 } 512 } 513 m = m0; 514 if (pktlen && pktlen != m->m_pkthdr.len) { 515 if (sanitize) 516 m->m_pkthdr.len = 0; 517 else 518 M_SANITY_ACTION("m_pkthdr.len != mbuf chain length"); 519 } 520 return 1; 521 522 #undef M_SANITY_ACTION 523 } 524 525 526 /* 527 * "Move" mbuf pkthdr from "from" to "to". 528 * "from" must have M_PKTHDR set, and "to" must be empty. 529 */ 530 void 531 m_move_pkthdr(struct mbuf *to, struct mbuf *from) 532 { 533 534 #if 0 535 /* see below for why these are not enabled */ 536 M_ASSERTPKTHDR(to); 537 /* Note: with MAC, this may not be a good assertion. */ 538 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), 539 ("m_move_pkthdr: to has tags")); 540 #endif 541 #ifdef MAC 542 /* 543 * XXXMAC: It could be this should also occur for non-MAC? 544 */ 545 if (to->m_flags & M_PKTHDR) 546 m_tag_delete_chain(to, NULL); 547 #endif 548 to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); 549 if ((to->m_flags & M_EXT) == 0) 550 to->m_data = to->m_pktdat; 551 to->m_pkthdr = from->m_pkthdr; /* especially tags */ 552 SLIST_INIT(&from->m_pkthdr.tags); /* purge tags from src */ 553 from->m_flags &= ~M_PKTHDR; 554 } 555 556 /* 557 * Duplicate "from"'s mbuf pkthdr in "to". 558 * "from" must have M_PKTHDR set, and "to" must be empty. 559 * In particular, this does a deep copy of the packet tags. 560 */ 561 int 562 m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how) 563 { 564 565 #if 0 566 /* 567 * The mbuf allocator only initializes the pkthdr 568 * when the mbuf is allocated with m_gethdr(). Many users 569 * (e.g. m_copy*, m_prepend) use m_get() and then 570 * smash the pkthdr as needed causing these 571 * assertions to trip. For now just disable them. 572 */ 573 M_ASSERTPKTHDR(to); 574 /* Note: with MAC, this may not be a good assertion. */ 575 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags")); 576 #endif 577 MBUF_CHECKSLEEP(how); 578 #ifdef MAC 579 if (to->m_flags & M_PKTHDR) 580 m_tag_delete_chain(to, NULL); 581 #endif 582 to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); 583 if ((to->m_flags & M_EXT) == 0) 584 to->m_data = to->m_pktdat; 585 to->m_pkthdr = from->m_pkthdr; 586 SLIST_INIT(&to->m_pkthdr.tags); 587 return (m_tag_copy_chain(to, from, how)); 588 } 589 590 /* 591 * Lesser-used path for M_PREPEND: 592 * allocate new mbuf to prepend to chain, 593 * copy junk along. 594 */ 595 struct mbuf * 596 m_prepend(struct mbuf *m, int len, int how) 597 { 598 struct mbuf *mn; 599 600 if (m->m_flags & M_PKTHDR) 601 mn = m_gethdr(how, m->m_type); 602 else 603 mn = m_get(how, m->m_type); 604 if (mn == NULL) { 605 m_freem(m); 606 return (NULL); 607 } 608 if (m->m_flags & M_PKTHDR) 609 m_move_pkthdr(mn, m); 610 mn->m_next = m; 611 m = mn; 612 if (len < M_SIZE(m)) 613 M_ALIGN(m, len); 614 m->m_len = len; 615 return (m); 616 } 617 618 /* 619 * Make a copy of an mbuf chain starting "off0" bytes from the beginning, 620 * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf. 621 * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller. 622 * Note that the copy is read-only, because clusters are not copied, 623 * only their reference counts are incremented. 624 */ 625 struct mbuf * 626 m_copym(struct mbuf *m, int off0, int len, int wait) 627 { 628 struct mbuf *n, **np; 629 int off = off0; 630 struct mbuf *top; 631 int copyhdr = 0; 632 633 KASSERT(off >= 0, ("m_copym, negative off %d", off)); 634 KASSERT(len >= 0, ("m_copym, negative len %d", len)); 635 MBUF_CHECKSLEEP(wait); 636 if (off == 0 && m->m_flags & M_PKTHDR) 637 copyhdr = 1; 638 while (off > 0) { 639 KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain")); 640 if (off < m->m_len) 641 break; 642 off -= m->m_len; 643 m = m->m_next; 644 } 645 np = ⊤ 646 top = 0; 647 while (len > 0) { 648 if (m == NULL) { 649 KASSERT(len == M_COPYALL, 650 ("m_copym, length > size of mbuf chain")); 651 break; 652 } 653 if (copyhdr) 654 n = m_gethdr(wait, m->m_type); 655 else 656 n = m_get(wait, m->m_type); 657 *np = n; 658 if (n == NULL) 659 goto nospace; 660 if (copyhdr) { 661 if (!m_dup_pkthdr(n, m, wait)) 662 goto nospace; 663 if (len == M_COPYALL) 664 n->m_pkthdr.len -= off0; 665 else 666 n->m_pkthdr.len = len; 667 copyhdr = 0; 668 } 669 n->m_len = min(len, m->m_len - off); 670 if (m->m_flags & M_EXT) { 671 n->m_data = m->m_data + off; 672 mb_dupcl(n, m); 673 } else 674 bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t), 675 (u_int)n->m_len); 676 if (len != M_COPYALL) 677 len -= n->m_len; 678 off = 0; 679 m = m->m_next; 680 np = &n->m_next; 681 } 682 683 return (top); 684 nospace: 685 m_freem(top); 686 return (NULL); 687 } 688 689 /* 690 * Copy an entire packet, including header (which must be present). 691 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'. 692 * Note that the copy is read-only, because clusters are not copied, 693 * only their reference counts are incremented. 694 * Preserve alignment of the first mbuf so if the creator has left 695 * some room at the beginning (e.g. for inserting protocol headers) 696 * the copies still have the room available. 697 */ 698 struct mbuf * 699 m_copypacket(struct mbuf *m, int how) 700 { 701 struct mbuf *top, *n, *o; 702 703 MBUF_CHECKSLEEP(how); 704 n = m_get(how, m->m_type); 705 top = n; 706 if (n == NULL) 707 goto nospace; 708 709 if (!m_dup_pkthdr(n, m, how)) 710 goto nospace; 711 n->m_len = m->m_len; 712 if (m->m_flags & M_EXT) { 713 n->m_data = m->m_data; 714 mb_dupcl(n, m); 715 } else { 716 n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat ); 717 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 718 } 719 720 m = m->m_next; 721 while (m) { 722 o = m_get(how, m->m_type); 723 if (o == NULL) 724 goto nospace; 725 726 n->m_next = o; 727 n = n->m_next; 728 729 n->m_len = m->m_len; 730 if (m->m_flags & M_EXT) { 731 n->m_data = m->m_data; 732 mb_dupcl(n, m); 733 } else { 734 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 735 } 736 737 m = m->m_next; 738 } 739 return top; 740 nospace: 741 m_freem(top); 742 return (NULL); 743 } 744 745 /* 746 * Copy data from an mbuf chain starting "off" bytes from the beginning, 747 * continuing for "len" bytes, into the indicated buffer. 748 */ 749 void 750 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp) 751 { 752 u_int count; 753 754 KASSERT(off >= 0, ("m_copydata, negative off %d", off)); 755 KASSERT(len >= 0, ("m_copydata, negative len %d", len)); 756 while (off > 0) { 757 KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain")); 758 if (off < m->m_len) 759 break; 760 off -= m->m_len; 761 m = m->m_next; 762 } 763 while (len > 0) { 764 KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain")); 765 count = min(m->m_len - off, len); 766 bcopy(mtod(m, caddr_t) + off, cp, count); 767 len -= count; 768 cp += count; 769 off = 0; 770 m = m->m_next; 771 } 772 } 773 774 /* 775 * Copy a packet header mbuf chain into a completely new chain, including 776 * copying any mbuf clusters. Use this instead of m_copypacket() when 777 * you need a writable copy of an mbuf chain. 778 */ 779 struct mbuf * 780 m_dup(struct mbuf *m, int how) 781 { 782 struct mbuf **p, *top = NULL; 783 int remain, moff, nsize; 784 785 MBUF_CHECKSLEEP(how); 786 /* Sanity check */ 787 if (m == NULL) 788 return (NULL); 789 M_ASSERTPKTHDR(m); 790 791 /* While there's more data, get a new mbuf, tack it on, and fill it */ 792 remain = m->m_pkthdr.len; 793 moff = 0; 794 p = ⊤ 795 while (remain > 0 || top == NULL) { /* allow m->m_pkthdr.len == 0 */ 796 struct mbuf *n; 797 798 /* Get the next new mbuf */ 799 if (remain >= MINCLSIZE) { 800 n = m_getcl(how, m->m_type, 0); 801 nsize = MCLBYTES; 802 } else { 803 n = m_get(how, m->m_type); 804 nsize = MLEN; 805 } 806 if (n == NULL) 807 goto nospace; 808 809 if (top == NULL) { /* First one, must be PKTHDR */ 810 if (!m_dup_pkthdr(n, m, how)) { 811 m_free(n); 812 goto nospace; 813 } 814 if ((n->m_flags & M_EXT) == 0) 815 nsize = MHLEN; 816 n->m_flags &= ~M_RDONLY; 817 } 818 n->m_len = 0; 819 820 /* Link it into the new chain */ 821 *p = n; 822 p = &n->m_next; 823 824 /* Copy data from original mbuf(s) into new mbuf */ 825 while (n->m_len < nsize && m != NULL) { 826 int chunk = min(nsize - n->m_len, m->m_len - moff); 827 828 bcopy(m->m_data + moff, n->m_data + n->m_len, chunk); 829 moff += chunk; 830 n->m_len += chunk; 831 remain -= chunk; 832 if (moff == m->m_len) { 833 m = m->m_next; 834 moff = 0; 835 } 836 } 837 838 /* Check correct total mbuf length */ 839 KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL), 840 ("%s: bogus m_pkthdr.len", __func__)); 841 } 842 return (top); 843 844 nospace: 845 m_freem(top); 846 return (NULL); 847 } 848 849 /* 850 * Concatenate mbuf chain n to m. 851 * Both chains must be of the same type (e.g. MT_DATA). 852 * Any m_pkthdr is not updated. 853 */ 854 void 855 m_cat(struct mbuf *m, struct mbuf *n) 856 { 857 while (m->m_next) 858 m = m->m_next; 859 while (n) { 860 if (!M_WRITABLE(m) || 861 M_TRAILINGSPACE(m) < n->m_len) { 862 /* just join the two chains */ 863 m->m_next = n; 864 return; 865 } 866 /* splat the data from one into the other */ 867 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 868 (u_int)n->m_len); 869 m->m_len += n->m_len; 870 n = m_free(n); 871 } 872 } 873 874 /* 875 * Concatenate two pkthdr mbuf chains. 876 */ 877 void 878 m_catpkt(struct mbuf *m, struct mbuf *n) 879 { 880 881 M_ASSERTPKTHDR(m); 882 M_ASSERTPKTHDR(n); 883 884 m->m_pkthdr.len += n->m_pkthdr.len; 885 m_demote(n, 1, 0); 886 887 m_cat(m, n); 888 } 889 890 void 891 m_adj(struct mbuf *mp, int req_len) 892 { 893 int len = req_len; 894 struct mbuf *m; 895 int count; 896 897 if ((m = mp) == NULL) 898 return; 899 if (len >= 0) { 900 /* 901 * Trim from head. 902 */ 903 while (m != NULL && len > 0) { 904 if (m->m_len <= len) { 905 len -= m->m_len; 906 m->m_len = 0; 907 m = m->m_next; 908 } else { 909 m->m_len -= len; 910 m->m_data += len; 911 len = 0; 912 } 913 } 914 if (mp->m_flags & M_PKTHDR) 915 mp->m_pkthdr.len -= (req_len - len); 916 } else { 917 /* 918 * Trim from tail. Scan the mbuf chain, 919 * calculating its length and finding the last mbuf. 920 * If the adjustment only affects this mbuf, then just 921 * adjust and return. Otherwise, rescan and truncate 922 * after the remaining size. 923 */ 924 len = -len; 925 count = 0; 926 for (;;) { 927 count += m->m_len; 928 if (m->m_next == (struct mbuf *)0) 929 break; 930 m = m->m_next; 931 } 932 if (m->m_len >= len) { 933 m->m_len -= len; 934 if (mp->m_flags & M_PKTHDR) 935 mp->m_pkthdr.len -= len; 936 return; 937 } 938 count -= len; 939 if (count < 0) 940 count = 0; 941 /* 942 * Correct length for chain is "count". 943 * Find the mbuf with last data, adjust its length, 944 * and toss data from remaining mbufs on chain. 945 */ 946 m = mp; 947 if (m->m_flags & M_PKTHDR) 948 m->m_pkthdr.len = count; 949 for (; m; m = m->m_next) { 950 if (m->m_len >= count) { 951 m->m_len = count; 952 if (m->m_next != NULL) { 953 m_freem(m->m_next); 954 m->m_next = NULL; 955 } 956 break; 957 } 958 count -= m->m_len; 959 } 960 } 961 } 962 963 /* 964 * Rearange an mbuf chain so that len bytes are contiguous 965 * and in the data area of an mbuf (so that mtod will work 966 * for a structure of size len). Returns the resulting 967 * mbuf chain on success, frees it and returns null on failure. 968 * If there is room, it will add up to max_protohdr-len extra bytes to the 969 * contiguous region in an attempt to avoid being called next time. 970 */ 971 struct mbuf * 972 m_pullup(struct mbuf *n, int len) 973 { 974 struct mbuf *m; 975 int count; 976 int space; 977 978 /* 979 * If first mbuf has no cluster, and has room for len bytes 980 * without shifting current data, pullup into it, 981 * otherwise allocate a new mbuf to prepend to the chain. 982 */ 983 if ((n->m_flags & M_EXT) == 0 && 984 n->m_data + len < &n->m_dat[MLEN] && n->m_next) { 985 if (n->m_len >= len) 986 return (n); 987 m = n; 988 n = n->m_next; 989 len -= m->m_len; 990 } else { 991 if (len > MHLEN) 992 goto bad; 993 m = m_get(M_NOWAIT, n->m_type); 994 if (m == NULL) 995 goto bad; 996 if (n->m_flags & M_PKTHDR) 997 m_move_pkthdr(m, n); 998 } 999 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 1000 do { 1001 count = min(min(max(len, max_protohdr), space), n->m_len); 1002 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 1003 (u_int)count); 1004 len -= count; 1005 m->m_len += count; 1006 n->m_len -= count; 1007 space -= count; 1008 if (n->m_len) 1009 n->m_data += count; 1010 else 1011 n = m_free(n); 1012 } while (len > 0 && n); 1013 if (len > 0) { 1014 (void) m_free(m); 1015 goto bad; 1016 } 1017 m->m_next = n; 1018 return (m); 1019 bad: 1020 m_freem(n); 1021 return (NULL); 1022 } 1023 1024 /* 1025 * Like m_pullup(), except a new mbuf is always allocated, and we allow 1026 * the amount of empty space before the data in the new mbuf to be specified 1027 * (in the event that the caller expects to prepend later). 1028 */ 1029 int MSFail; 1030 1031 struct mbuf * 1032 m_copyup(struct mbuf *n, int len, int dstoff) 1033 { 1034 struct mbuf *m; 1035 int count, space; 1036 1037 if (len > (MHLEN - dstoff)) 1038 goto bad; 1039 m = m_get(M_NOWAIT, n->m_type); 1040 if (m == NULL) 1041 goto bad; 1042 if (n->m_flags & M_PKTHDR) 1043 m_move_pkthdr(m, n); 1044 m->m_data += dstoff; 1045 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 1046 do { 1047 count = min(min(max(len, max_protohdr), space), n->m_len); 1048 memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t), 1049 (unsigned)count); 1050 len -= count; 1051 m->m_len += count; 1052 n->m_len -= count; 1053 space -= count; 1054 if (n->m_len) 1055 n->m_data += count; 1056 else 1057 n = m_free(n); 1058 } while (len > 0 && n); 1059 if (len > 0) { 1060 (void) m_free(m); 1061 goto bad; 1062 } 1063 m->m_next = n; 1064 return (m); 1065 bad: 1066 m_freem(n); 1067 MSFail++; 1068 return (NULL); 1069 } 1070 1071 /* 1072 * Partition an mbuf chain in two pieces, returning the tail -- 1073 * all but the first len0 bytes. In case of failure, it returns NULL and 1074 * attempts to restore the chain to its original state. 1075 * 1076 * Note that the resulting mbufs might be read-only, because the new 1077 * mbuf can end up sharing an mbuf cluster with the original mbuf if 1078 * the "breaking point" happens to lie within a cluster mbuf. Use the 1079 * M_WRITABLE() macro to check for this case. 1080 */ 1081 struct mbuf * 1082 m_split(struct mbuf *m0, int len0, int wait) 1083 { 1084 struct mbuf *m, *n; 1085 u_int len = len0, remain; 1086 1087 MBUF_CHECKSLEEP(wait); 1088 for (m = m0; m && len > m->m_len; m = m->m_next) 1089 len -= m->m_len; 1090 if (m == NULL) 1091 return (NULL); 1092 remain = m->m_len - len; 1093 if (m0->m_flags & M_PKTHDR && remain == 0) { 1094 n = m_gethdr(wait, m0->m_type); 1095 if (n == NULL) 1096 return (NULL); 1097 n->m_next = m->m_next; 1098 m->m_next = NULL; 1099 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; 1100 n->m_pkthdr.len = m0->m_pkthdr.len - len0; 1101 m0->m_pkthdr.len = len0; 1102 return (n); 1103 } else if (m0->m_flags & M_PKTHDR) { 1104 n = m_gethdr(wait, m0->m_type); 1105 if (n == NULL) 1106 return (NULL); 1107 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; 1108 n->m_pkthdr.len = m0->m_pkthdr.len - len0; 1109 m0->m_pkthdr.len = len0; 1110 if (m->m_flags & M_EXT) 1111 goto extpacket; 1112 if (remain > MHLEN) { 1113 /* m can't be the lead packet */ 1114 M_ALIGN(n, 0); 1115 n->m_next = m_split(m, len, wait); 1116 if (n->m_next == NULL) { 1117 (void) m_free(n); 1118 return (NULL); 1119 } else { 1120 n->m_len = 0; 1121 return (n); 1122 } 1123 } else 1124 M_ALIGN(n, remain); 1125 } else if (remain == 0) { 1126 n = m->m_next; 1127 m->m_next = NULL; 1128 return (n); 1129 } else { 1130 n = m_get(wait, m->m_type); 1131 if (n == NULL) 1132 return (NULL); 1133 M_ALIGN(n, remain); 1134 } 1135 extpacket: 1136 if (m->m_flags & M_EXT) { 1137 n->m_data = m->m_data + len; 1138 mb_dupcl(n, m); 1139 } else { 1140 bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain); 1141 } 1142 n->m_len = remain; 1143 m->m_len = len; 1144 n->m_next = m->m_next; 1145 m->m_next = NULL; 1146 return (n); 1147 } 1148 /* 1149 * Routine to copy from device local memory into mbufs. 1150 * Note that `off' argument is offset into first mbuf of target chain from 1151 * which to begin copying the data to. 1152 */ 1153 struct mbuf * 1154 m_devget(char *buf, int totlen, int off, struct ifnet *ifp, 1155 void (*copy)(char *from, caddr_t to, u_int len)) 1156 { 1157 struct mbuf *m; 1158 struct mbuf *top = NULL, **mp = ⊤ 1159 int len; 1160 1161 if (off < 0 || off > MHLEN) 1162 return (NULL); 1163 1164 while (totlen > 0) { 1165 if (top == NULL) { /* First one, must be PKTHDR */ 1166 if (totlen + off >= MINCLSIZE) { 1167 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1168 len = MCLBYTES; 1169 } else { 1170 m = m_gethdr(M_NOWAIT, MT_DATA); 1171 len = MHLEN; 1172 1173 /* Place initial small packet/header at end of mbuf */ 1174 if (m && totlen + off + max_linkhdr <= MLEN) { 1175 m->m_data += max_linkhdr; 1176 len -= max_linkhdr; 1177 } 1178 } 1179 if (m == NULL) 1180 return NULL; 1181 m->m_pkthdr.rcvif = ifp; 1182 m->m_pkthdr.len = totlen; 1183 } else { 1184 if (totlen + off >= MINCLSIZE) { 1185 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1186 len = MCLBYTES; 1187 } else { 1188 m = m_get(M_NOWAIT, MT_DATA); 1189 len = MLEN; 1190 } 1191 if (m == NULL) { 1192 m_freem(top); 1193 return NULL; 1194 } 1195 } 1196 if (off) { 1197 m->m_data += off; 1198 len -= off; 1199 off = 0; 1200 } 1201 m->m_len = len = min(totlen, len); 1202 if (copy) 1203 copy(buf, mtod(m, caddr_t), (u_int)len); 1204 else 1205 bcopy(buf, mtod(m, caddr_t), (u_int)len); 1206 buf += len; 1207 *mp = m; 1208 mp = &m->m_next; 1209 totlen -= len; 1210 } 1211 return (top); 1212 } 1213 1214 /* 1215 * Copy data from a buffer back into the indicated mbuf chain, 1216 * starting "off" bytes from the beginning, extending the mbuf 1217 * chain if necessary. 1218 */ 1219 void 1220 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp) 1221 { 1222 int mlen; 1223 struct mbuf *m = m0, *n; 1224 int totlen = 0; 1225 1226 if (m0 == NULL) 1227 return; 1228 while (off > (mlen = m->m_len)) { 1229 off -= mlen; 1230 totlen += mlen; 1231 if (m->m_next == NULL) { 1232 n = m_get(M_NOWAIT, m->m_type); 1233 if (n == NULL) 1234 goto out; 1235 bzero(mtod(n, caddr_t), MLEN); 1236 n->m_len = min(MLEN, len + off); 1237 m->m_next = n; 1238 } 1239 m = m->m_next; 1240 } 1241 while (len > 0) { 1242 if (m->m_next == NULL && (len > m->m_len - off)) { 1243 m->m_len += min(len - (m->m_len - off), 1244 M_TRAILINGSPACE(m)); 1245 } 1246 mlen = min (m->m_len - off, len); 1247 bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen); 1248 cp += mlen; 1249 len -= mlen; 1250 mlen += off; 1251 off = 0; 1252 totlen += mlen; 1253 if (len == 0) 1254 break; 1255 if (m->m_next == NULL) { 1256 n = m_get(M_NOWAIT, m->m_type); 1257 if (n == NULL) 1258 break; 1259 n->m_len = min(MLEN, len); 1260 m->m_next = n; 1261 } 1262 m = m->m_next; 1263 } 1264 out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) 1265 m->m_pkthdr.len = totlen; 1266 } 1267 1268 /* 1269 * Append the specified data to the indicated mbuf chain, 1270 * Extend the mbuf chain if the new data does not fit in 1271 * existing space. 1272 * 1273 * Return 1 if able to complete the job; otherwise 0. 1274 */ 1275 int 1276 m_append(struct mbuf *m0, int len, c_caddr_t cp) 1277 { 1278 struct mbuf *m, *n; 1279 int remainder, space; 1280 1281 for (m = m0; m->m_next != NULL; m = m->m_next) 1282 ; 1283 remainder = len; 1284 space = M_TRAILINGSPACE(m); 1285 if (space > 0) { 1286 /* 1287 * Copy into available space. 1288 */ 1289 if (space > remainder) 1290 space = remainder; 1291 bcopy(cp, mtod(m, caddr_t) + m->m_len, space); 1292 m->m_len += space; 1293 cp += space, remainder -= space; 1294 } 1295 while (remainder > 0) { 1296 /* 1297 * Allocate a new mbuf; could check space 1298 * and allocate a cluster instead. 1299 */ 1300 n = m_get(M_NOWAIT, m->m_type); 1301 if (n == NULL) 1302 break; 1303 n->m_len = min(MLEN, remainder); 1304 bcopy(cp, mtod(n, caddr_t), n->m_len); 1305 cp += n->m_len, remainder -= n->m_len; 1306 m->m_next = n; 1307 m = n; 1308 } 1309 if (m0->m_flags & M_PKTHDR) 1310 m0->m_pkthdr.len += len - remainder; 1311 return (remainder == 0); 1312 } 1313 1314 /* 1315 * Apply function f to the data in an mbuf chain starting "off" bytes from 1316 * the beginning, continuing for "len" bytes. 1317 */ 1318 int 1319 m_apply(struct mbuf *m, int off, int len, 1320 int (*f)(void *, void *, u_int), void *arg) 1321 { 1322 u_int count; 1323 int rval; 1324 1325 KASSERT(off >= 0, ("m_apply, negative off %d", off)); 1326 KASSERT(len >= 0, ("m_apply, negative len %d", len)); 1327 while (off > 0) { 1328 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1329 if (off < m->m_len) 1330 break; 1331 off -= m->m_len; 1332 m = m->m_next; 1333 } 1334 while (len > 0) { 1335 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1336 count = min(m->m_len - off, len); 1337 rval = (*f)(arg, mtod(m, caddr_t) + off, count); 1338 if (rval) 1339 return (rval); 1340 len -= count; 1341 off = 0; 1342 m = m->m_next; 1343 } 1344 return (0); 1345 } 1346 1347 /* 1348 * Return a pointer to mbuf/offset of location in mbuf chain. 1349 */ 1350 struct mbuf * 1351 m_getptr(struct mbuf *m, int loc, int *off) 1352 { 1353 1354 while (loc >= 0) { 1355 /* Normal end of search. */ 1356 if (m->m_len > loc) { 1357 *off = loc; 1358 return (m); 1359 } else { 1360 loc -= m->m_len; 1361 if (m->m_next == NULL) { 1362 if (loc == 0) { 1363 /* Point at the end of valid data. */ 1364 *off = m->m_len; 1365 return (m); 1366 } 1367 return (NULL); 1368 } 1369 m = m->m_next; 1370 } 1371 } 1372 return (NULL); 1373 } 1374 1375 void 1376 m_print(const struct mbuf *m, int maxlen) 1377 { 1378 int len; 1379 int pdata; 1380 const struct mbuf *m2; 1381 1382 if (m == NULL) { 1383 printf("mbuf: %p\n", m); 1384 return; 1385 } 1386 1387 if (m->m_flags & M_PKTHDR) 1388 len = m->m_pkthdr.len; 1389 else 1390 len = -1; 1391 m2 = m; 1392 while (m2 != NULL && (len == -1 || len)) { 1393 pdata = m2->m_len; 1394 if (maxlen != -1 && pdata > maxlen) 1395 pdata = maxlen; 1396 printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len, 1397 m2->m_next, m2->m_flags, "\20\20freelist\17skipfw" 1398 "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly" 1399 "\3eor\2pkthdr\1ext", pdata ? "" : "\n"); 1400 if (pdata) 1401 printf(", %*D\n", pdata, (u_char *)m2->m_data, "-"); 1402 if (len != -1) 1403 len -= m2->m_len; 1404 m2 = m2->m_next; 1405 } 1406 if (len > 0) 1407 printf("%d bytes unaccounted for.\n", len); 1408 return; 1409 } 1410 1411 u_int 1412 m_fixhdr(struct mbuf *m0) 1413 { 1414 u_int len; 1415 1416 len = m_length(m0, NULL); 1417 m0->m_pkthdr.len = len; 1418 return (len); 1419 } 1420 1421 u_int 1422 m_length(struct mbuf *m0, struct mbuf **last) 1423 { 1424 struct mbuf *m; 1425 u_int len; 1426 1427 len = 0; 1428 for (m = m0; m != NULL; m = m->m_next) { 1429 len += m->m_len; 1430 if (m->m_next == NULL) 1431 break; 1432 } 1433 if (last != NULL) 1434 *last = m; 1435 return (len); 1436 } 1437 1438 /* 1439 * Defragment a mbuf chain, returning the shortest possible 1440 * chain of mbufs and clusters. If allocation fails and 1441 * this cannot be completed, NULL will be returned, but 1442 * the passed in chain will be unchanged. Upon success, 1443 * the original chain will be freed, and the new chain 1444 * will be returned. 1445 * 1446 * If a non-packet header is passed in, the original 1447 * mbuf (chain?) will be returned unharmed. 1448 */ 1449 struct mbuf * 1450 m_defrag(struct mbuf *m0, int how) 1451 { 1452 struct mbuf *m_new = NULL, *m_final = NULL; 1453 int progress = 0, length; 1454 1455 MBUF_CHECKSLEEP(how); 1456 if (!(m0->m_flags & M_PKTHDR)) 1457 return (m0); 1458 1459 m_fixhdr(m0); /* Needed sanity check */ 1460 1461 #ifdef MBUF_STRESS_TEST 1462 if (m_defragrandomfailures) { 1463 int temp = arc4random() & 0xff; 1464 if (temp == 0xba) 1465 goto nospace; 1466 } 1467 #endif 1468 1469 if (m0->m_pkthdr.len > MHLEN) 1470 m_final = m_getcl(how, MT_DATA, M_PKTHDR); 1471 else 1472 m_final = m_gethdr(how, MT_DATA); 1473 1474 if (m_final == NULL) 1475 goto nospace; 1476 1477 if (m_dup_pkthdr(m_final, m0, how) == 0) 1478 goto nospace; 1479 1480 m_new = m_final; 1481 1482 while (progress < m0->m_pkthdr.len) { 1483 length = m0->m_pkthdr.len - progress; 1484 if (length > MCLBYTES) 1485 length = MCLBYTES; 1486 1487 if (m_new == NULL) { 1488 if (length > MLEN) 1489 m_new = m_getcl(how, MT_DATA, 0); 1490 else 1491 m_new = m_get(how, MT_DATA); 1492 if (m_new == NULL) 1493 goto nospace; 1494 } 1495 1496 m_copydata(m0, progress, length, mtod(m_new, caddr_t)); 1497 progress += length; 1498 m_new->m_len = length; 1499 if (m_new != m_final) 1500 m_cat(m_final, m_new); 1501 m_new = NULL; 1502 } 1503 #ifdef MBUF_STRESS_TEST 1504 if (m0->m_next == NULL) 1505 m_defraguseless++; 1506 #endif 1507 m_freem(m0); 1508 m0 = m_final; 1509 #ifdef MBUF_STRESS_TEST 1510 m_defragpackets++; 1511 m_defragbytes += m0->m_pkthdr.len; 1512 #endif 1513 return (m0); 1514 nospace: 1515 #ifdef MBUF_STRESS_TEST 1516 m_defragfailure++; 1517 #endif 1518 if (m_final) 1519 m_freem(m_final); 1520 return (NULL); 1521 } 1522 1523 /* 1524 * Defragment an mbuf chain, returning at most maxfrags separate 1525 * mbufs+clusters. If this is not possible NULL is returned and 1526 * the original mbuf chain is left in it's present (potentially 1527 * modified) state. We use two techniques: collapsing consecutive 1528 * mbufs and replacing consecutive mbufs by a cluster. 1529 * 1530 * NB: this should really be named m_defrag but that name is taken 1531 */ 1532 struct mbuf * 1533 m_collapse(struct mbuf *m0, int how, int maxfrags) 1534 { 1535 struct mbuf *m, *n, *n2, **prev; 1536 u_int curfrags; 1537 1538 /* 1539 * Calculate the current number of frags. 1540 */ 1541 curfrags = 0; 1542 for (m = m0; m != NULL; m = m->m_next) 1543 curfrags++; 1544 /* 1545 * First, try to collapse mbufs. Note that we always collapse 1546 * towards the front so we don't need to deal with moving the 1547 * pkthdr. This may be suboptimal if the first mbuf has much 1548 * less data than the following. 1549 */ 1550 m = m0; 1551 again: 1552 for (;;) { 1553 n = m->m_next; 1554 if (n == NULL) 1555 break; 1556 if (M_WRITABLE(m) && 1557 n->m_len < M_TRAILINGSPACE(m)) { 1558 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len, 1559 n->m_len); 1560 m->m_len += n->m_len; 1561 m->m_next = n->m_next; 1562 m_free(n); 1563 if (--curfrags <= maxfrags) 1564 return m0; 1565 } else 1566 m = n; 1567 } 1568 KASSERT(maxfrags > 1, 1569 ("maxfrags %u, but normal collapse failed", maxfrags)); 1570 /* 1571 * Collapse consecutive mbufs to a cluster. 1572 */ 1573 prev = &m0->m_next; /* NB: not the first mbuf */ 1574 while ((n = *prev) != NULL) { 1575 if ((n2 = n->m_next) != NULL && 1576 n->m_len + n2->m_len < MCLBYTES) { 1577 m = m_getcl(how, MT_DATA, 0); 1578 if (m == NULL) 1579 goto bad; 1580 bcopy(mtod(n, void *), mtod(m, void *), n->m_len); 1581 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len, 1582 n2->m_len); 1583 m->m_len = n->m_len + n2->m_len; 1584 m->m_next = n2->m_next; 1585 *prev = m; 1586 m_free(n); 1587 m_free(n2); 1588 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */ 1589 return m0; 1590 /* 1591 * Still not there, try the normal collapse 1592 * again before we allocate another cluster. 1593 */ 1594 goto again; 1595 } 1596 prev = &n->m_next; 1597 } 1598 /* 1599 * No place where we can collapse to a cluster; punt. 1600 * This can occur if, for example, you request 2 frags 1601 * but the packet requires that both be clusters (we 1602 * never reallocate the first mbuf to avoid moving the 1603 * packet header). 1604 */ 1605 bad: 1606 return NULL; 1607 } 1608 1609 #ifdef MBUF_STRESS_TEST 1610 1611 /* 1612 * Fragment an mbuf chain. There's no reason you'd ever want to do 1613 * this in normal usage, but it's great for stress testing various 1614 * mbuf consumers. 1615 * 1616 * If fragmentation is not possible, the original chain will be 1617 * returned. 1618 * 1619 * Possible length values: 1620 * 0 no fragmentation will occur 1621 * > 0 each fragment will be of the specified length 1622 * -1 each fragment will be the same random value in length 1623 * -2 each fragment's length will be entirely random 1624 * (Random values range from 1 to 256) 1625 */ 1626 struct mbuf * 1627 m_fragment(struct mbuf *m0, int how, int length) 1628 { 1629 struct mbuf *m_new = NULL, *m_final = NULL; 1630 int progress = 0; 1631 1632 if (!(m0->m_flags & M_PKTHDR)) 1633 return (m0); 1634 1635 if ((length == 0) || (length < -2)) 1636 return (m0); 1637 1638 m_fixhdr(m0); /* Needed sanity check */ 1639 1640 m_final = m_getcl(how, MT_DATA, M_PKTHDR); 1641 1642 if (m_final == NULL) 1643 goto nospace; 1644 1645 if (m_dup_pkthdr(m_final, m0, how) == 0) 1646 goto nospace; 1647 1648 m_new = m_final; 1649 1650 if (length == -1) 1651 length = 1 + (arc4random() & 255); 1652 1653 while (progress < m0->m_pkthdr.len) { 1654 int fraglen; 1655 1656 if (length > 0) 1657 fraglen = length; 1658 else 1659 fraglen = 1 + (arc4random() & 255); 1660 if (fraglen > m0->m_pkthdr.len - progress) 1661 fraglen = m0->m_pkthdr.len - progress; 1662 1663 if (fraglen > MCLBYTES) 1664 fraglen = MCLBYTES; 1665 1666 if (m_new == NULL) { 1667 m_new = m_getcl(how, MT_DATA, 0); 1668 if (m_new == NULL) 1669 goto nospace; 1670 } 1671 1672 m_copydata(m0, progress, fraglen, mtod(m_new, caddr_t)); 1673 progress += fraglen; 1674 m_new->m_len = fraglen; 1675 if (m_new != m_final) 1676 m_cat(m_final, m_new); 1677 m_new = NULL; 1678 } 1679 m_freem(m0); 1680 m0 = m_final; 1681 return (m0); 1682 nospace: 1683 if (m_final) 1684 m_freem(m_final); 1685 /* Return the original chain on failure */ 1686 return (m0); 1687 } 1688 1689 #endif 1690 1691 /* 1692 * Copy the contents of uio into a properly sized mbuf chain. 1693 */ 1694 struct mbuf * 1695 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags) 1696 { 1697 struct mbuf *m, *mb; 1698 int error, length; 1699 ssize_t total; 1700 int progress = 0; 1701 1702 /* 1703 * len can be zero or an arbitrary large value bound by 1704 * the total data supplied by the uio. 1705 */ 1706 if (len > 0) 1707 total = min(uio->uio_resid, len); 1708 else 1709 total = uio->uio_resid; 1710 1711 /* 1712 * The smallest unit returned by m_getm2() is a single mbuf 1713 * with pkthdr. We can't align past it. 1714 */ 1715 if (align >= MHLEN) 1716 return (NULL); 1717 1718 /* 1719 * Give us the full allocation or nothing. 1720 * If len is zero return the smallest empty mbuf. 1721 */ 1722 m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags); 1723 if (m == NULL) 1724 return (NULL); 1725 m->m_data += align; 1726 1727 /* Fill all mbufs with uio data and update header information. */ 1728 for (mb = m; mb != NULL; mb = mb->m_next) { 1729 length = min(M_TRAILINGSPACE(mb), total - progress); 1730 1731 error = uiomove(mtod(mb, void *), length, uio); 1732 if (error) { 1733 m_freem(m); 1734 return (NULL); 1735 } 1736 1737 mb->m_len = length; 1738 progress += length; 1739 if (flags & M_PKTHDR) 1740 m->m_pkthdr.len += length; 1741 } 1742 KASSERT(progress == total, ("%s: progress != total", __func__)); 1743 1744 return (m); 1745 } 1746 1747 /* 1748 * Copy an mbuf chain into a uio limited by len if set. 1749 */ 1750 int 1751 m_mbuftouio(struct uio *uio, struct mbuf *m, int len) 1752 { 1753 int error, length, total; 1754 int progress = 0; 1755 1756 if (len > 0) 1757 total = min(uio->uio_resid, len); 1758 else 1759 total = uio->uio_resid; 1760 1761 /* Fill the uio with data from the mbufs. */ 1762 for (; m != NULL; m = m->m_next) { 1763 length = min(m->m_len, total - progress); 1764 1765 error = uiomove(mtod(m, void *), length, uio); 1766 if (error) 1767 return (error); 1768 1769 progress += length; 1770 } 1771 1772 return (0); 1773 } 1774 1775 /* 1776 * Create a writable copy of the mbuf chain. While doing this 1777 * we compact the chain with a goal of producing a chain with 1778 * at most two mbufs. The second mbuf in this chain is likely 1779 * to be a cluster. The primary purpose of this work is to create 1780 * a writable packet for encryption, compression, etc. The 1781 * secondary goal is to linearize the data so the data can be 1782 * passed to crypto hardware in the most efficient manner possible. 1783 */ 1784 struct mbuf * 1785 m_unshare(struct mbuf *m0, int how) 1786 { 1787 struct mbuf *m, *mprev; 1788 struct mbuf *n, *mfirst, *mlast; 1789 int len, off; 1790 1791 mprev = NULL; 1792 for (m = m0; m != NULL; m = mprev->m_next) { 1793 /* 1794 * Regular mbufs are ignored unless there's a cluster 1795 * in front of it that we can use to coalesce. We do 1796 * the latter mainly so later clusters can be coalesced 1797 * also w/o having to handle them specially (i.e. convert 1798 * mbuf+cluster -> cluster). This optimization is heavily 1799 * influenced by the assumption that we're running over 1800 * Ethernet where MCLBYTES is large enough that the max 1801 * packet size will permit lots of coalescing into a 1802 * single cluster. This in turn permits efficient 1803 * crypto operations, especially when using hardware. 1804 */ 1805 if ((m->m_flags & M_EXT) == 0) { 1806 if (mprev && (mprev->m_flags & M_EXT) && 1807 m->m_len <= M_TRAILINGSPACE(mprev)) { 1808 /* XXX: this ignores mbuf types */ 1809 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 1810 mtod(m, caddr_t), m->m_len); 1811 mprev->m_len += m->m_len; 1812 mprev->m_next = m->m_next; /* unlink from chain */ 1813 m_free(m); /* reclaim mbuf */ 1814 #if 0 1815 newipsecstat.ips_mbcoalesced++; 1816 #endif 1817 } else { 1818 mprev = m; 1819 } 1820 continue; 1821 } 1822 /* 1823 * Writable mbufs are left alone (for now). 1824 */ 1825 if (M_WRITABLE(m)) { 1826 mprev = m; 1827 continue; 1828 } 1829 1830 /* 1831 * Not writable, replace with a copy or coalesce with 1832 * the previous mbuf if possible (since we have to copy 1833 * it anyway, we try to reduce the number of mbufs and 1834 * clusters so that future work is easier). 1835 */ 1836 KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags)); 1837 /* NB: we only coalesce into a cluster or larger */ 1838 if (mprev != NULL && (mprev->m_flags & M_EXT) && 1839 m->m_len <= M_TRAILINGSPACE(mprev)) { 1840 /* XXX: this ignores mbuf types */ 1841 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 1842 mtod(m, caddr_t), m->m_len); 1843 mprev->m_len += m->m_len; 1844 mprev->m_next = m->m_next; /* unlink from chain */ 1845 m_free(m); /* reclaim mbuf */ 1846 #if 0 1847 newipsecstat.ips_clcoalesced++; 1848 #endif 1849 continue; 1850 } 1851 1852 /* 1853 * Allocate new space to hold the copy and copy the data. 1854 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by 1855 * splitting them into clusters. We could just malloc a 1856 * buffer and make it external but too many device drivers 1857 * don't know how to break up the non-contiguous memory when 1858 * doing DMA. 1859 */ 1860 n = m_getcl(how, m->m_type, m->m_flags); 1861 if (n == NULL) { 1862 m_freem(m0); 1863 return (NULL); 1864 } 1865 len = m->m_len; 1866 off = 0; 1867 mfirst = n; 1868 mlast = NULL; 1869 for (;;) { 1870 int cc = min(len, MCLBYTES); 1871 memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc); 1872 n->m_len = cc; 1873 if (mlast != NULL) 1874 mlast->m_next = n; 1875 mlast = n; 1876 #if 0 1877 newipsecstat.ips_clcopied++; 1878 #endif 1879 1880 len -= cc; 1881 if (len <= 0) 1882 break; 1883 off += cc; 1884 1885 n = m_getcl(how, m->m_type, m->m_flags); 1886 if (n == NULL) { 1887 m_freem(mfirst); 1888 m_freem(m0); 1889 return (NULL); 1890 } 1891 } 1892 n->m_next = m->m_next; 1893 if (mprev == NULL) 1894 m0 = mfirst; /* new head of chain */ 1895 else 1896 mprev->m_next = mfirst; /* replace old mbuf */ 1897 m_free(m); /* release old mbuf */ 1898 mprev = mfirst; 1899 } 1900 return (m0); 1901 } 1902 1903 #ifdef MBUF_PROFILING 1904 1905 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/ 1906 struct mbufprofile { 1907 uintmax_t wasted[MP_BUCKETS]; 1908 uintmax_t used[MP_BUCKETS]; 1909 uintmax_t segments[MP_BUCKETS]; 1910 } mbprof; 1911 1912 #define MP_MAXDIGITS 21 /* strlen("16,000,000,000,000,000,000") == 21 */ 1913 #define MP_NUMLINES 6 1914 #define MP_NUMSPERLINE 16 1915 #define MP_EXTRABYTES 64 /* > strlen("used:\nwasted:\nsegments:\n") */ 1916 /* work out max space needed and add a bit of spare space too */ 1917 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE) 1918 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES) 1919 1920 char mbprofbuf[MP_BUFSIZE]; 1921 1922 void 1923 m_profile(struct mbuf *m) 1924 { 1925 int segments = 0; 1926 int used = 0; 1927 int wasted = 0; 1928 1929 while (m) { 1930 segments++; 1931 used += m->m_len; 1932 if (m->m_flags & M_EXT) { 1933 wasted += MHLEN - sizeof(m->m_ext) + 1934 m->m_ext.ext_size - m->m_len; 1935 } else { 1936 if (m->m_flags & M_PKTHDR) 1937 wasted += MHLEN - m->m_len; 1938 else 1939 wasted += MLEN - m->m_len; 1940 } 1941 m = m->m_next; 1942 } 1943 /* be paranoid.. it helps */ 1944 if (segments > MP_BUCKETS - 1) 1945 segments = MP_BUCKETS - 1; 1946 if (used > 100000) 1947 used = 100000; 1948 if (wasted > 100000) 1949 wasted = 100000; 1950 /* store in the appropriate bucket */ 1951 /* don't bother locking. if it's slightly off, so what? */ 1952 mbprof.segments[segments]++; 1953 mbprof.used[fls(used)]++; 1954 mbprof.wasted[fls(wasted)]++; 1955 } 1956 1957 static void 1958 mbprof_textify(void) 1959 { 1960 int offset; 1961 char *c; 1962 uint64_t *p; 1963 1964 p = &mbprof.wasted[0]; 1965 c = mbprofbuf; 1966 offset = snprintf(c, MP_MAXLINE + 10, 1967 "wasted:\n" 1968 "%ju %ju %ju %ju %ju %ju %ju %ju " 1969 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 1970 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 1971 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 1972 #ifdef BIG_ARRAY 1973 p = &mbprof.wasted[16]; 1974 c += offset; 1975 offset = snprintf(c, MP_MAXLINE, 1976 "%ju %ju %ju %ju %ju %ju %ju %ju " 1977 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 1978 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 1979 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 1980 #endif 1981 p = &mbprof.used[0]; 1982 c += offset; 1983 offset = snprintf(c, MP_MAXLINE + 10, 1984 "used:\n" 1985 "%ju %ju %ju %ju %ju %ju %ju %ju " 1986 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 1987 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 1988 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 1989 #ifdef BIG_ARRAY 1990 p = &mbprof.used[16]; 1991 c += offset; 1992 offset = snprintf(c, MP_MAXLINE, 1993 "%ju %ju %ju %ju %ju %ju %ju %ju " 1994 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 1995 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 1996 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 1997 #endif 1998 p = &mbprof.segments[0]; 1999 c += offset; 2000 offset = snprintf(c, MP_MAXLINE + 10, 2001 "segments:\n" 2002 "%ju %ju %ju %ju %ju %ju %ju %ju " 2003 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2004 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2005 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2006 #ifdef BIG_ARRAY 2007 p = &mbprof.segments[16]; 2008 c += offset; 2009 offset = snprintf(c, MP_MAXLINE, 2010 "%ju %ju %ju %ju %ju %ju %ju %ju " 2011 "%ju %ju %ju %ju %ju %ju %ju %jju", 2012 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2013 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2014 #endif 2015 } 2016 2017 static int 2018 mbprof_handler(SYSCTL_HANDLER_ARGS) 2019 { 2020 int error; 2021 2022 mbprof_textify(); 2023 error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1); 2024 return (error); 2025 } 2026 2027 static int 2028 mbprof_clr_handler(SYSCTL_HANDLER_ARGS) 2029 { 2030 int clear, error; 2031 2032 clear = 0; 2033 error = sysctl_handle_int(oidp, &clear, 0, req); 2034 if (error || !req->newptr) 2035 return (error); 2036 2037 if (clear) { 2038 bzero(&mbprof, sizeof(mbprof)); 2039 } 2040 2041 return (error); 2042 } 2043 2044 2045 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD, 2046 NULL, 0, mbprof_handler, "A", "mbuf profiling statistics"); 2047 2048 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW, 2049 NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics"); 2050 #endif 2051 2052