xref: /freebsd/sys/kern/uipc_mbuf.c (revision 5b20c5e1f8d59f14901f0c0e4b6b577eaa3f9569)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_param.h"
38 #include "opt_mbuf_stress_test.h"
39 #include "opt_mbuf_profiling.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/limits.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/sysctl.h>
49 #include <sys/domain.h>
50 #include <sys/protosw.h>
51 #include <sys/uio.h>
52 #include <sys/vmmeter.h>
53 #include <sys/sdt.h>
54 #include <vm/vm.h>
55 #include <vm/vm_pageout.h>
56 #include <vm/vm_page.h>
57 
58 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__init,
59     "struct mbuf *", "mbufinfo_t *",
60     "uint32_t", "uint32_t",
61     "uint16_t", "uint16_t",
62     "uint32_t", "uint32_t",
63     "uint32_t", "uint32_t");
64 
65 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr,
66     "uint32_t", "uint32_t",
67     "uint16_t", "uint16_t",
68     "struct mbuf *", "mbufinfo_t *");
69 
70 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get,
71     "uint32_t", "uint32_t",
72     "uint16_t", "uint16_t",
73     "struct mbuf *", "mbufinfo_t *");
74 
75 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__getcl,
76     "uint32_t", "uint32_t",
77     "uint16_t", "uint16_t",
78     "uint32_t", "uint32_t",
79     "struct mbuf *", "mbufinfo_t *");
80 
81 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__getjcl,
82     "uint32_t", "uint32_t",
83     "uint16_t", "uint16_t",
84     "uint32_t", "uint32_t",
85     "uint32_t", "uint32_t",
86     "struct mbuf *", "mbufinfo_t *");
87 
88 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__clget,
89     "struct mbuf *", "mbufinfo_t *",
90     "uint32_t", "uint32_t",
91     "uint32_t", "uint32_t");
92 
93 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__cljget,
94     "struct mbuf *", "mbufinfo_t *",
95     "uint32_t", "uint32_t",
96     "uint32_t", "uint32_t",
97     "void*", "void*");
98 
99 SDT_PROBE_DEFINE(sdt, , , m__cljset);
100 
101 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__free,
102         "struct mbuf *", "mbufinfo_t *");
103 
104 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__freem,
105     "struct mbuf *", "mbufinfo_t *");
106 
107 #include <security/mac/mac_framework.h>
108 
109 int	max_linkhdr;
110 int	max_protohdr;
111 int	max_hdr;
112 int	max_datalen;
113 #ifdef MBUF_STRESS_TEST
114 int	m_defragpackets;
115 int	m_defragbytes;
116 int	m_defraguseless;
117 int	m_defragfailure;
118 int	m_defragrandomfailures;
119 #endif
120 
121 /*
122  * sysctl(8) exported objects
123  */
124 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
125 	   &max_linkhdr, 0, "Size of largest link layer header");
126 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
127 	   &max_protohdr, 0, "Size of largest protocol layer header");
128 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
129 	   &max_hdr, 0, "Size of largest link plus protocol header");
130 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
131 	   &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
132 #ifdef MBUF_STRESS_TEST
133 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
134 	   &m_defragpackets, 0, "");
135 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
136 	   &m_defragbytes, 0, "");
137 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
138 	   &m_defraguseless, 0, "");
139 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
140 	   &m_defragfailure, 0, "");
141 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
142 	   &m_defragrandomfailures, 0, "");
143 #endif
144 
145 /*
146  * Ensure the correct size of various mbuf parameters.  It could be off due
147  * to compiler-induced padding and alignment artifacts.
148  */
149 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN);
150 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN);
151 
152 /*
153  * mbuf data storage should be 64-bit aligned regardless of architectural
154  * pointer size; check this is the case with and without a packet header.
155  */
156 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0);
157 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0);
158 
159 /*
160  * While the specific values here don't matter too much (i.e., +/- a few
161  * words), we do want to ensure that changes to these values are carefully
162  * reasoned about and properly documented.  This is especially the case as
163  * network-protocol and device-driver modules encode these layouts, and must
164  * be recompiled if the structures change.  Check these values at compile time
165  * against the ones documented in comments in mbuf.h.
166  *
167  * NB: Possibly they should be documented there via #define's and not just
168  * comments.
169  */
170 #if defined(__LP64__)
171 CTASSERT(offsetof(struct mbuf, m_dat) == 32);
172 CTASSERT(sizeof(struct pkthdr) == 56);
173 CTASSERT(sizeof(struct m_ext) == 160);
174 #else
175 CTASSERT(offsetof(struct mbuf, m_dat) == 24);
176 CTASSERT(sizeof(struct pkthdr) == 48);
177 #if defined(__powerpc__) && defined(BOOKE)
178 /* PowerPC booke has 64-bit physical pointers. */
179 CTASSERT(sizeof(struct m_ext) == 184);
180 #else
181 CTASSERT(sizeof(struct m_ext) == 180);
182 #endif
183 #endif
184 
185 /*
186  * Assert that the queue(3) macros produce code of the same size as an old
187  * plain pointer does.
188  */
189 #ifdef INVARIANTS
190 static struct mbuf __used m_assertbuf;
191 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next));
192 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next));
193 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt));
194 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt));
195 #endif
196 
197 /*
198  * Attach the cluster from *m to *n, set up m_ext in *n
199  * and bump the refcount of the cluster.
200  */
201 void
202 mb_dupcl(struct mbuf *n, struct mbuf *m)
203 {
204 	volatile u_int *refcnt;
205 
206 	KASSERT(m->m_flags & (M_EXT|M_EXTPG),
207 	    ("%s: M_EXT|M_EXTPG not set on %p", __func__, m));
208 	KASSERT(!(n->m_flags & (M_EXT|M_EXTPG)),
209 	    ("%s: M_EXT|M_EXTPG set on %p", __func__, n));
210 
211 	/*
212 	 * Cache access optimization.
213 	 *
214 	 * o Regular M_EXT storage doesn't need full copy of m_ext, since
215 	 *   the holder of the 'ext_count' is responsible to carry the free
216 	 *   routine and its arguments.
217 	 * o M_EXTPG data is split between main part of mbuf and m_ext, the
218 	 *   main part is copied in full, the m_ext part is similar to M_EXT.
219 	 * o EXT_EXTREF, where 'ext_cnt' doesn't point into mbuf at all, is
220 	 *   special - it needs full copy of m_ext into each mbuf, since any
221 	 *   copy could end up as the last to free.
222 	 */
223 	if (m->m_flags & M_EXTPG) {
224 		bcopy(&m->m_epg_startcopy, &n->m_epg_startcopy,
225 		    __rangeof(struct mbuf, m_epg_startcopy, m_epg_endcopy));
226 		bcopy(&m->m_ext, &n->m_ext, m_epg_ext_copylen);
227 	} else if (m->m_ext.ext_type == EXT_EXTREF)
228 		bcopy(&m->m_ext, &n->m_ext, sizeof(struct m_ext));
229 	else
230 		bcopy(&m->m_ext, &n->m_ext, m_ext_copylen);
231 
232 	n->m_flags |= m->m_flags & (M_RDONLY | M_EXT | M_EXTPG);
233 
234 	/* See if this is the mbuf that holds the embedded refcount. */
235 	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
236 		refcnt = n->m_ext.ext_cnt = &m->m_ext.ext_count;
237 		n->m_ext.ext_flags &= ~EXT_FLAG_EMBREF;
238 	} else {
239 		KASSERT(m->m_ext.ext_cnt != NULL,
240 		    ("%s: no refcounting pointer on %p", __func__, m));
241 		refcnt = m->m_ext.ext_cnt;
242 	}
243 
244 	if (*refcnt == 1)
245 		*refcnt += 1;
246 	else
247 		atomic_add_int(refcnt, 1);
248 }
249 
250 void
251 m_demote_pkthdr(struct mbuf *m)
252 {
253 
254 	M_ASSERTPKTHDR(m);
255 
256 	m_tag_delete_chain(m, NULL);
257 	m->m_flags &= ~M_PKTHDR;
258 	bzero(&m->m_pkthdr, sizeof(struct pkthdr));
259 }
260 
261 /*
262  * Clean up mbuf (chain) from any tags and packet headers.
263  * If "all" is set then the first mbuf in the chain will be
264  * cleaned too.
265  */
266 void
267 m_demote(struct mbuf *m0, int all, int flags)
268 {
269 	struct mbuf *m;
270 
271 	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
272 		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p",
273 		    __func__, m, m0));
274 		if (m->m_flags & M_PKTHDR)
275 			m_demote_pkthdr(m);
276 		m->m_flags = m->m_flags & (M_EXT | M_RDONLY | M_NOFREE |
277 		    M_EXTPG | flags);
278 	}
279 }
280 
281 /*
282  * Sanity checks on mbuf (chain) for use in KASSERT() and general
283  * debugging.
284  * Returns 0 or panics when bad and 1 on all tests passed.
285  * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
286  * blow up later.
287  */
288 int
289 m_sanity(struct mbuf *m0, int sanitize)
290 {
291 	struct mbuf *m;
292 	caddr_t a, b;
293 	int pktlen = 0;
294 
295 #ifdef INVARIANTS
296 #define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
297 #else
298 #define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
299 #endif
300 
301 	for (m = m0; m != NULL; m = m->m_next) {
302 		/*
303 		 * Basic pointer checks.  If any of these fails then some
304 		 * unrelated kernel memory before or after us is trashed.
305 		 * No way to recover from that.
306 		 */
307 		a = M_START(m);
308 		b = a + M_SIZE(m);
309 		if ((caddr_t)m->m_data < a)
310 			M_SANITY_ACTION("m_data outside mbuf data range left");
311 		if ((caddr_t)m->m_data > b)
312 			M_SANITY_ACTION("m_data outside mbuf data range right");
313 		if ((caddr_t)m->m_data + m->m_len > b)
314 			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
315 
316 		/* m->m_nextpkt may only be set on first mbuf in chain. */
317 		if (m != m0 && m->m_nextpkt != NULL) {
318 			if (sanitize) {
319 				m_freem(m->m_nextpkt);
320 				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
321 			} else
322 				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
323 		}
324 
325 		/* packet length (not mbuf length!) calculation */
326 		if (m0->m_flags & M_PKTHDR)
327 			pktlen += m->m_len;
328 
329 		/* m_tags may only be attached to first mbuf in chain. */
330 		if (m != m0 && m->m_flags & M_PKTHDR &&
331 		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
332 			if (sanitize) {
333 				m_tag_delete_chain(m, NULL);
334 				/* put in 0xDEADC0DE perhaps? */
335 			} else
336 				M_SANITY_ACTION("m_tags on in-chain mbuf");
337 		}
338 
339 		/* M_PKTHDR may only be set on first mbuf in chain */
340 		if (m != m0 && m->m_flags & M_PKTHDR) {
341 			if (sanitize) {
342 				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
343 				m->m_flags &= ~M_PKTHDR;
344 				/* put in 0xDEADCODE and leave hdr flag in */
345 			} else
346 				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
347 		}
348 	}
349 	m = m0;
350 	if (pktlen && pktlen != m->m_pkthdr.len) {
351 		if (sanitize)
352 			m->m_pkthdr.len = 0;
353 		else
354 			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
355 	}
356 	return 1;
357 
358 #undef	M_SANITY_ACTION
359 }
360 
361 /*
362  * Non-inlined part of m_init().
363  */
364 int
365 m_pkthdr_init(struct mbuf *m, int how)
366 {
367 #ifdef MAC
368 	int error;
369 #endif
370 	m->m_data = m->m_pktdat;
371 	bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
372 #ifdef NUMA
373 	m->m_pkthdr.numa_domain = M_NODOM;
374 #endif
375 #ifdef MAC
376 	/* If the label init fails, fail the alloc */
377 	error = mac_mbuf_init(m, how);
378 	if (error)
379 		return (error);
380 #endif
381 
382 	return (0);
383 }
384 
385 /*
386  * "Move" mbuf pkthdr from "from" to "to".
387  * "from" must have M_PKTHDR set, and "to" must be empty.
388  */
389 void
390 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
391 {
392 
393 #if 0
394 	/* see below for why these are not enabled */
395 	M_ASSERTPKTHDR(to);
396 	/* Note: with MAC, this may not be a good assertion. */
397 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
398 	    ("m_move_pkthdr: to has tags"));
399 #endif
400 #ifdef MAC
401 	/*
402 	 * XXXMAC: It could be this should also occur for non-MAC?
403 	 */
404 	if (to->m_flags & M_PKTHDR)
405 		m_tag_delete_chain(to, NULL);
406 #endif
407 	to->m_flags = (from->m_flags & M_COPYFLAGS) |
408 	    (to->m_flags & (M_EXT | M_EXTPG));
409 	if ((to->m_flags & M_EXT) == 0)
410 		to->m_data = to->m_pktdat;
411 	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
412 	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
413 	from->m_flags &= ~M_PKTHDR;
414 	if (from->m_pkthdr.csum_flags & CSUM_SND_TAG) {
415 		from->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
416 		from->m_pkthdr.snd_tag = NULL;
417 	}
418 }
419 
420 /*
421  * Duplicate "from"'s mbuf pkthdr in "to".
422  * "from" must have M_PKTHDR set, and "to" must be empty.
423  * In particular, this does a deep copy of the packet tags.
424  */
425 int
426 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how)
427 {
428 
429 #if 0
430 	/*
431 	 * The mbuf allocator only initializes the pkthdr
432 	 * when the mbuf is allocated with m_gethdr(). Many users
433 	 * (e.g. m_copy*, m_prepend) use m_get() and then
434 	 * smash the pkthdr as needed causing these
435 	 * assertions to trip.  For now just disable them.
436 	 */
437 	M_ASSERTPKTHDR(to);
438 	/* Note: with MAC, this may not be a good assertion. */
439 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
440 #endif
441 	MBUF_CHECKSLEEP(how);
442 #ifdef MAC
443 	if (to->m_flags & M_PKTHDR)
444 		m_tag_delete_chain(to, NULL);
445 #endif
446 	to->m_flags = (from->m_flags & M_COPYFLAGS) |
447 	    (to->m_flags & (M_EXT | M_EXTPG));
448 	if ((to->m_flags & M_EXT) == 0)
449 		to->m_data = to->m_pktdat;
450 	to->m_pkthdr = from->m_pkthdr;
451 	if (from->m_pkthdr.csum_flags & CSUM_SND_TAG)
452 		m_snd_tag_ref(from->m_pkthdr.snd_tag);
453 	SLIST_INIT(&to->m_pkthdr.tags);
454 	return (m_tag_copy_chain(to, from, how));
455 }
456 
457 /*
458  * Lesser-used path for M_PREPEND:
459  * allocate new mbuf to prepend to chain,
460  * copy junk along.
461  */
462 struct mbuf *
463 m_prepend(struct mbuf *m, int len, int how)
464 {
465 	struct mbuf *mn;
466 
467 	if (m->m_flags & M_PKTHDR)
468 		mn = m_gethdr(how, m->m_type);
469 	else
470 		mn = m_get(how, m->m_type);
471 	if (mn == NULL) {
472 		m_freem(m);
473 		return (NULL);
474 	}
475 	if (m->m_flags & M_PKTHDR)
476 		m_move_pkthdr(mn, m);
477 	mn->m_next = m;
478 	m = mn;
479 	if (len < M_SIZE(m))
480 		M_ALIGN(m, len);
481 	m->m_len = len;
482 	return (m);
483 }
484 
485 /*
486  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
487  * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
488  * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
489  * Note that the copy is read-only, because clusters are not copied,
490  * only their reference counts are incremented.
491  */
492 struct mbuf *
493 m_copym(struct mbuf *m, int off0, int len, int wait)
494 {
495 	struct mbuf *n, **np;
496 	int off = off0;
497 	struct mbuf *top;
498 	int copyhdr = 0;
499 
500 	KASSERT(off >= 0, ("m_copym, negative off %d", off));
501 	KASSERT(len >= 0, ("m_copym, negative len %d", len));
502 	MBUF_CHECKSLEEP(wait);
503 	if (off == 0 && m->m_flags & M_PKTHDR)
504 		copyhdr = 1;
505 	while (off > 0) {
506 		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
507 		if (off < m->m_len)
508 			break;
509 		off -= m->m_len;
510 		m = m->m_next;
511 	}
512 	np = &top;
513 	top = NULL;
514 	while (len > 0) {
515 		if (m == NULL) {
516 			KASSERT(len == M_COPYALL,
517 			    ("m_copym, length > size of mbuf chain"));
518 			break;
519 		}
520 		if (copyhdr)
521 			n = m_gethdr(wait, m->m_type);
522 		else
523 			n = m_get(wait, m->m_type);
524 		*np = n;
525 		if (n == NULL)
526 			goto nospace;
527 		if (copyhdr) {
528 			if (!m_dup_pkthdr(n, m, wait))
529 				goto nospace;
530 			if (len == M_COPYALL)
531 				n->m_pkthdr.len -= off0;
532 			else
533 				n->m_pkthdr.len = len;
534 			copyhdr = 0;
535 		}
536 		n->m_len = min(len, m->m_len - off);
537 		if (m->m_flags & (M_EXT|M_EXTPG)) {
538 			n->m_data = m->m_data + off;
539 			mb_dupcl(n, m);
540 		} else
541 			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
542 			    (u_int)n->m_len);
543 		if (len != M_COPYALL)
544 			len -= n->m_len;
545 		off = 0;
546 		m = m->m_next;
547 		np = &n->m_next;
548 	}
549 
550 	return (top);
551 nospace:
552 	m_freem(top);
553 	return (NULL);
554 }
555 
556 /*
557  * Copy an entire packet, including header (which must be present).
558  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
559  * Note that the copy is read-only, because clusters are not copied,
560  * only their reference counts are incremented.
561  * Preserve alignment of the first mbuf so if the creator has left
562  * some room at the beginning (e.g. for inserting protocol headers)
563  * the copies still have the room available.
564  */
565 struct mbuf *
566 m_copypacket(struct mbuf *m, int how)
567 {
568 	struct mbuf *top, *n, *o;
569 
570 	MBUF_CHECKSLEEP(how);
571 	n = m_get(how, m->m_type);
572 	top = n;
573 	if (n == NULL)
574 		goto nospace;
575 
576 	if (!m_dup_pkthdr(n, m, how))
577 		goto nospace;
578 	n->m_len = m->m_len;
579 	if (m->m_flags & (M_EXT|M_EXTPG)) {
580 		n->m_data = m->m_data;
581 		mb_dupcl(n, m);
582 	} else {
583 		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
584 		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
585 	}
586 
587 	m = m->m_next;
588 	while (m) {
589 		o = m_get(how, m->m_type);
590 		if (o == NULL)
591 			goto nospace;
592 
593 		n->m_next = o;
594 		n = n->m_next;
595 
596 		n->m_len = m->m_len;
597 		if (m->m_flags & (M_EXT|M_EXTPG)) {
598 			n->m_data = m->m_data;
599 			mb_dupcl(n, m);
600 		} else {
601 			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
602 		}
603 
604 		m = m->m_next;
605 	}
606 	return top;
607 nospace:
608 	m_freem(top);
609 	return (NULL);
610 }
611 
612 static void
613 m_copyfromunmapped(const struct mbuf *m, int off, int len, caddr_t cp)
614 {
615 	struct iovec iov;
616 	struct uio uio;
617 	int error;
618 
619 	KASSERT(off >= 0, ("m_copyfromunmapped: negative off %d", off));
620 	KASSERT(len >= 0, ("m_copyfromunmapped: negative len %d", len));
621 	KASSERT(off < m->m_len,
622 	    ("m_copyfromunmapped: len exceeds mbuf length"));
623 	iov.iov_base = cp;
624 	iov.iov_len = len;
625 	uio.uio_resid = len;
626 	uio.uio_iov = &iov;
627 	uio.uio_segflg = UIO_SYSSPACE;
628 	uio.uio_iovcnt = 1;
629 	uio.uio_offset = 0;
630 	uio.uio_rw = UIO_READ;
631 	error = m_unmappedtouio(m, off, &uio, len);
632 	KASSERT(error == 0, ("m_unmappedtouio failed: off %d, len %d", off,
633 	   len));
634 }
635 
636 /*
637  * Copy data from an mbuf chain starting "off" bytes from the beginning,
638  * continuing for "len" bytes, into the indicated buffer.
639  */
640 void
641 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
642 {
643 	u_int count;
644 
645 	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
646 	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
647 	while (off > 0) {
648 		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
649 		if (off < m->m_len)
650 			break;
651 		off -= m->m_len;
652 		m = m->m_next;
653 	}
654 	while (len > 0) {
655 		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
656 		count = min(m->m_len - off, len);
657 		if ((m->m_flags & M_EXTPG) != 0)
658 			m_copyfromunmapped(m, off, count, cp);
659 		else
660 			bcopy(mtod(m, caddr_t) + off, cp, count);
661 		len -= count;
662 		cp += count;
663 		off = 0;
664 		m = m->m_next;
665 	}
666 }
667 
668 /*
669  * Copy a packet header mbuf chain into a completely new chain, including
670  * copying any mbuf clusters.  Use this instead of m_copypacket() when
671  * you need a writable copy of an mbuf chain.
672  */
673 struct mbuf *
674 m_dup(const struct mbuf *m, int how)
675 {
676 	struct mbuf **p, *top = NULL;
677 	int remain, moff, nsize;
678 
679 	MBUF_CHECKSLEEP(how);
680 	/* Sanity check */
681 	if (m == NULL)
682 		return (NULL);
683 	M_ASSERTPKTHDR(m);
684 
685 	/* While there's more data, get a new mbuf, tack it on, and fill it */
686 	remain = m->m_pkthdr.len;
687 	moff = 0;
688 	p = &top;
689 	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
690 		struct mbuf *n;
691 
692 		/* Get the next new mbuf */
693 		if (remain >= MINCLSIZE) {
694 			n = m_getcl(how, m->m_type, 0);
695 			nsize = MCLBYTES;
696 		} else {
697 			n = m_get(how, m->m_type);
698 			nsize = MLEN;
699 		}
700 		if (n == NULL)
701 			goto nospace;
702 
703 		if (top == NULL) {		/* First one, must be PKTHDR */
704 			if (!m_dup_pkthdr(n, m, how)) {
705 				m_free(n);
706 				goto nospace;
707 			}
708 			if ((n->m_flags & M_EXT) == 0)
709 				nsize = MHLEN;
710 			n->m_flags &= ~M_RDONLY;
711 		}
712 		n->m_len = 0;
713 
714 		/* Link it into the new chain */
715 		*p = n;
716 		p = &n->m_next;
717 
718 		/* Copy data from original mbuf(s) into new mbuf */
719 		while (n->m_len < nsize && m != NULL) {
720 			int chunk = min(nsize - n->m_len, m->m_len - moff);
721 
722 			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
723 			moff += chunk;
724 			n->m_len += chunk;
725 			remain -= chunk;
726 			if (moff == m->m_len) {
727 				m = m->m_next;
728 				moff = 0;
729 			}
730 		}
731 
732 		/* Check correct total mbuf length */
733 		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
734 		    	("%s: bogus m_pkthdr.len", __func__));
735 	}
736 	return (top);
737 
738 nospace:
739 	m_freem(top);
740 	return (NULL);
741 }
742 
743 /*
744  * Concatenate mbuf chain n to m.
745  * Both chains must be of the same type (e.g. MT_DATA).
746  * Any m_pkthdr is not updated.
747  */
748 void
749 m_cat(struct mbuf *m, struct mbuf *n)
750 {
751 	while (m->m_next)
752 		m = m->m_next;
753 	while (n) {
754 		if (!M_WRITABLE(m) ||
755 		    (n->m_flags & M_EXTPG) != 0 ||
756 		    M_TRAILINGSPACE(m) < n->m_len) {
757 			/* just join the two chains */
758 			m->m_next = n;
759 			return;
760 		}
761 		/* splat the data from one into the other */
762 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
763 		    (u_int)n->m_len);
764 		m->m_len += n->m_len;
765 		n = m_free(n);
766 	}
767 }
768 
769 /*
770  * Concatenate two pkthdr mbuf chains.
771  */
772 void
773 m_catpkt(struct mbuf *m, struct mbuf *n)
774 {
775 
776 	M_ASSERTPKTHDR(m);
777 	M_ASSERTPKTHDR(n);
778 
779 	m->m_pkthdr.len += n->m_pkthdr.len;
780 	m_demote(n, 1, 0);
781 
782 	m_cat(m, n);
783 }
784 
785 void
786 m_adj(struct mbuf *mp, int req_len)
787 {
788 	int len = req_len;
789 	struct mbuf *m;
790 	int count;
791 
792 	if ((m = mp) == NULL)
793 		return;
794 	if (len >= 0) {
795 		/*
796 		 * Trim from head.
797 		 */
798 		while (m != NULL && len > 0) {
799 			if (m->m_len <= len) {
800 				len -= m->m_len;
801 				m->m_len = 0;
802 				m = m->m_next;
803 			} else {
804 				m->m_len -= len;
805 				m->m_data += len;
806 				len = 0;
807 			}
808 		}
809 		if (mp->m_flags & M_PKTHDR)
810 			mp->m_pkthdr.len -= (req_len - len);
811 	} else {
812 		/*
813 		 * Trim from tail.  Scan the mbuf chain,
814 		 * calculating its length and finding the last mbuf.
815 		 * If the adjustment only affects this mbuf, then just
816 		 * adjust and return.  Otherwise, rescan and truncate
817 		 * after the remaining size.
818 		 */
819 		len = -len;
820 		count = 0;
821 		for (;;) {
822 			count += m->m_len;
823 			if (m->m_next == (struct mbuf *)0)
824 				break;
825 			m = m->m_next;
826 		}
827 		if (m->m_len >= len) {
828 			m->m_len -= len;
829 			if (mp->m_flags & M_PKTHDR)
830 				mp->m_pkthdr.len -= len;
831 			return;
832 		}
833 		count -= len;
834 		if (count < 0)
835 			count = 0;
836 		/*
837 		 * Correct length for chain is "count".
838 		 * Find the mbuf with last data, adjust its length,
839 		 * and toss data from remaining mbufs on chain.
840 		 */
841 		m = mp;
842 		if (m->m_flags & M_PKTHDR)
843 			m->m_pkthdr.len = count;
844 		for (; m; m = m->m_next) {
845 			if (m->m_len >= count) {
846 				m->m_len = count;
847 				if (m->m_next != NULL) {
848 					m_freem(m->m_next);
849 					m->m_next = NULL;
850 				}
851 				break;
852 			}
853 			count -= m->m_len;
854 		}
855 	}
856 }
857 
858 void
859 m_adj_decap(struct mbuf *mp, int len)
860 {
861 	uint8_t rsstype;
862 
863 	m_adj(mp, len);
864 	if ((mp->m_flags & M_PKTHDR) != 0) {
865 		/*
866 		 * If flowid was calculated by card from the inner
867 		 * headers, move flowid to the decapsulated mbuf
868 		 * chain, otherwise clear.  This depends on the
869 		 * internals of m_adj, which keeps pkthdr as is, in
870 		 * particular not changing rsstype and flowid.
871 		 */
872 		rsstype = mp->m_pkthdr.rsstype;
873 		if ((rsstype & M_HASHTYPE_INNER) != 0) {
874 			M_HASHTYPE_SET(mp, rsstype & ~M_HASHTYPE_INNER);
875 		} else {
876 			M_HASHTYPE_CLEAR(mp);
877 		}
878 	}
879 }
880 
881 /*
882  * Rearange an mbuf chain so that len bytes are contiguous
883  * and in the data area of an mbuf (so that mtod will work
884  * for a structure of size len).  Returns the resulting
885  * mbuf chain on success, frees it and returns null on failure.
886  * If there is room, it will add up to max_protohdr-len extra bytes to the
887  * contiguous region in an attempt to avoid being called next time.
888  */
889 struct mbuf *
890 m_pullup(struct mbuf *n, int len)
891 {
892 	struct mbuf *m;
893 	int count;
894 	int space;
895 
896 	KASSERT((n->m_flags & M_EXTPG) == 0,
897 	    ("%s: unmapped mbuf %p", __func__, n));
898 
899 	/*
900 	 * If first mbuf has no cluster, and has room for len bytes
901 	 * without shifting current data, pullup into it,
902 	 * otherwise allocate a new mbuf to prepend to the chain.
903 	 */
904 	if ((n->m_flags & M_EXT) == 0 &&
905 	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
906 		if (n->m_len >= len)
907 			return (n);
908 		m = n;
909 		n = n->m_next;
910 		len -= m->m_len;
911 	} else {
912 		if (len > MHLEN)
913 			goto bad;
914 		m = m_get(M_NOWAIT, n->m_type);
915 		if (m == NULL)
916 			goto bad;
917 		if (n->m_flags & M_PKTHDR)
918 			m_move_pkthdr(m, n);
919 	}
920 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
921 	do {
922 		count = min(min(max(len, max_protohdr), space), n->m_len);
923 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
924 		  (u_int)count);
925 		len -= count;
926 		m->m_len += count;
927 		n->m_len -= count;
928 		space -= count;
929 		if (n->m_len)
930 			n->m_data += count;
931 		else
932 			n = m_free(n);
933 	} while (len > 0 && n);
934 	if (len > 0) {
935 		(void) m_free(m);
936 		goto bad;
937 	}
938 	m->m_next = n;
939 	return (m);
940 bad:
941 	m_freem(n);
942 	return (NULL);
943 }
944 
945 /*
946  * Like m_pullup(), except a new mbuf is always allocated, and we allow
947  * the amount of empty space before the data in the new mbuf to be specified
948  * (in the event that the caller expects to prepend later).
949  */
950 struct mbuf *
951 m_copyup(struct mbuf *n, int len, int dstoff)
952 {
953 	struct mbuf *m;
954 	int count, space;
955 
956 	if (len > (MHLEN - dstoff))
957 		goto bad;
958 	m = m_get(M_NOWAIT, n->m_type);
959 	if (m == NULL)
960 		goto bad;
961 	if (n->m_flags & M_PKTHDR)
962 		m_move_pkthdr(m, n);
963 	m->m_data += dstoff;
964 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
965 	do {
966 		count = min(min(max(len, max_protohdr), space), n->m_len);
967 		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
968 		    (unsigned)count);
969 		len -= count;
970 		m->m_len += count;
971 		n->m_len -= count;
972 		space -= count;
973 		if (n->m_len)
974 			n->m_data += count;
975 		else
976 			n = m_free(n);
977 	} while (len > 0 && n);
978 	if (len > 0) {
979 		(void) m_free(m);
980 		goto bad;
981 	}
982 	m->m_next = n;
983 	return (m);
984  bad:
985 	m_freem(n);
986 	return (NULL);
987 }
988 
989 /*
990  * Partition an mbuf chain in two pieces, returning the tail --
991  * all but the first len0 bytes.  In case of failure, it returns NULL and
992  * attempts to restore the chain to its original state.
993  *
994  * Note that the resulting mbufs might be read-only, because the new
995  * mbuf can end up sharing an mbuf cluster with the original mbuf if
996  * the "breaking point" happens to lie within a cluster mbuf. Use the
997  * M_WRITABLE() macro to check for this case.
998  */
999 struct mbuf *
1000 m_split(struct mbuf *m0, int len0, int wait)
1001 {
1002 	struct mbuf *m, *n;
1003 	u_int len = len0, remain;
1004 
1005 	MBUF_CHECKSLEEP(wait);
1006 	for (m = m0; m && len > m->m_len; m = m->m_next)
1007 		len -= m->m_len;
1008 	if (m == NULL)
1009 		return (NULL);
1010 	remain = m->m_len - len;
1011 	if (m0->m_flags & M_PKTHDR && remain == 0) {
1012 		n = m_gethdr(wait, m0->m_type);
1013 		if (n == NULL)
1014 			return (NULL);
1015 		n->m_next = m->m_next;
1016 		m->m_next = NULL;
1017 		if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1018 			n->m_pkthdr.snd_tag =
1019 			    m_snd_tag_ref(m0->m_pkthdr.snd_tag);
1020 			n->m_pkthdr.csum_flags |= CSUM_SND_TAG;
1021 		} else
1022 			n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1023 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1024 		m0->m_pkthdr.len = len0;
1025 		return (n);
1026 	} else if (m0->m_flags & M_PKTHDR) {
1027 		n = m_gethdr(wait, m0->m_type);
1028 		if (n == NULL)
1029 			return (NULL);
1030 		if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1031 			n->m_pkthdr.snd_tag =
1032 			    m_snd_tag_ref(m0->m_pkthdr.snd_tag);
1033 			n->m_pkthdr.csum_flags |= CSUM_SND_TAG;
1034 		} else
1035 			n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1036 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1037 		m0->m_pkthdr.len = len0;
1038 		if (m->m_flags & (M_EXT|M_EXTPG))
1039 			goto extpacket;
1040 		if (remain > MHLEN) {
1041 			/* m can't be the lead packet */
1042 			M_ALIGN(n, 0);
1043 			n->m_next = m_split(m, len, wait);
1044 			if (n->m_next == NULL) {
1045 				(void) m_free(n);
1046 				return (NULL);
1047 			} else {
1048 				n->m_len = 0;
1049 				return (n);
1050 			}
1051 		} else
1052 			M_ALIGN(n, remain);
1053 	} else if (remain == 0) {
1054 		n = m->m_next;
1055 		m->m_next = NULL;
1056 		return (n);
1057 	} else {
1058 		n = m_get(wait, m->m_type);
1059 		if (n == NULL)
1060 			return (NULL);
1061 		M_ALIGN(n, remain);
1062 	}
1063 extpacket:
1064 	if (m->m_flags & (M_EXT|M_EXTPG)) {
1065 		n->m_data = m->m_data + len;
1066 		mb_dupcl(n, m);
1067 	} else {
1068 		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1069 	}
1070 	n->m_len = remain;
1071 	m->m_len = len;
1072 	n->m_next = m->m_next;
1073 	m->m_next = NULL;
1074 	return (n);
1075 }
1076 /*
1077  * Routine to copy from device local memory into mbufs.
1078  * Note that `off' argument is offset into first mbuf of target chain from
1079  * which to begin copying the data to.
1080  */
1081 struct mbuf *
1082 m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1083     void (*copy)(char *from, caddr_t to, u_int len))
1084 {
1085 	struct mbuf *m;
1086 	struct mbuf *top = NULL, **mp = &top;
1087 	int len;
1088 
1089 	if (off < 0 || off > MHLEN)
1090 		return (NULL);
1091 
1092 	while (totlen > 0) {
1093 		if (top == NULL) {	/* First one, must be PKTHDR */
1094 			if (totlen + off >= MINCLSIZE) {
1095 				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1096 				len = MCLBYTES;
1097 			} else {
1098 				m = m_gethdr(M_NOWAIT, MT_DATA);
1099 				len = MHLEN;
1100 
1101 				/* Place initial small packet/header at end of mbuf */
1102 				if (m && totlen + off + max_linkhdr <= MHLEN) {
1103 					m->m_data += max_linkhdr;
1104 					len -= max_linkhdr;
1105 				}
1106 			}
1107 			if (m == NULL)
1108 				return NULL;
1109 			m->m_pkthdr.rcvif = ifp;
1110 			m->m_pkthdr.len = totlen;
1111 		} else {
1112 			if (totlen + off >= MINCLSIZE) {
1113 				m = m_getcl(M_NOWAIT, MT_DATA, 0);
1114 				len = MCLBYTES;
1115 			} else {
1116 				m = m_get(M_NOWAIT, MT_DATA);
1117 				len = MLEN;
1118 			}
1119 			if (m == NULL) {
1120 				m_freem(top);
1121 				return NULL;
1122 			}
1123 		}
1124 		if (off) {
1125 			m->m_data += off;
1126 			len -= off;
1127 			off = 0;
1128 		}
1129 		m->m_len = len = min(totlen, len);
1130 		if (copy)
1131 			copy(buf, mtod(m, caddr_t), (u_int)len);
1132 		else
1133 			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1134 		buf += len;
1135 		*mp = m;
1136 		mp = &m->m_next;
1137 		totlen -= len;
1138 	}
1139 	return (top);
1140 }
1141 
1142 /*
1143  * Copy data from a buffer back into the indicated mbuf chain,
1144  * starting "off" bytes from the beginning, extending the mbuf
1145  * chain if necessary.
1146  */
1147 void
1148 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1149 {
1150 	int mlen;
1151 	struct mbuf *m = m0, *n;
1152 	int totlen = 0;
1153 
1154 	if (m0 == NULL)
1155 		return;
1156 	while (off > (mlen = m->m_len)) {
1157 		off -= mlen;
1158 		totlen += mlen;
1159 		if (m->m_next == NULL) {
1160 			n = m_get(M_NOWAIT, m->m_type);
1161 			if (n == NULL)
1162 				goto out;
1163 			bzero(mtod(n, caddr_t), MLEN);
1164 			n->m_len = min(MLEN, len + off);
1165 			m->m_next = n;
1166 		}
1167 		m = m->m_next;
1168 	}
1169 	while (len > 0) {
1170 		if (m->m_next == NULL && (len > m->m_len - off)) {
1171 			m->m_len += min(len - (m->m_len - off),
1172 			    M_TRAILINGSPACE(m));
1173 		}
1174 		mlen = min (m->m_len - off, len);
1175 		bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1176 		cp += mlen;
1177 		len -= mlen;
1178 		mlen += off;
1179 		off = 0;
1180 		totlen += mlen;
1181 		if (len == 0)
1182 			break;
1183 		if (m->m_next == NULL) {
1184 			n = m_get(M_NOWAIT, m->m_type);
1185 			if (n == NULL)
1186 				break;
1187 			n->m_len = min(MLEN, len);
1188 			m->m_next = n;
1189 		}
1190 		m = m->m_next;
1191 	}
1192 out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1193 		m->m_pkthdr.len = totlen;
1194 }
1195 
1196 /*
1197  * Append the specified data to the indicated mbuf chain,
1198  * Extend the mbuf chain if the new data does not fit in
1199  * existing space.
1200  *
1201  * Return 1 if able to complete the job; otherwise 0.
1202  */
1203 int
1204 m_append(struct mbuf *m0, int len, c_caddr_t cp)
1205 {
1206 	struct mbuf *m, *n;
1207 	int remainder, space;
1208 
1209 	for (m = m0; m->m_next != NULL; m = m->m_next)
1210 		;
1211 	remainder = len;
1212 	space = M_TRAILINGSPACE(m);
1213 	if (space > 0) {
1214 		/*
1215 		 * Copy into available space.
1216 		 */
1217 		if (space > remainder)
1218 			space = remainder;
1219 		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1220 		m->m_len += space;
1221 		cp += space, remainder -= space;
1222 	}
1223 	while (remainder > 0) {
1224 		/*
1225 		 * Allocate a new mbuf; could check space
1226 		 * and allocate a cluster instead.
1227 		 */
1228 		n = m_get(M_NOWAIT, m->m_type);
1229 		if (n == NULL)
1230 			break;
1231 		n->m_len = min(MLEN, remainder);
1232 		bcopy(cp, mtod(n, caddr_t), n->m_len);
1233 		cp += n->m_len, remainder -= n->m_len;
1234 		m->m_next = n;
1235 		m = n;
1236 	}
1237 	if (m0->m_flags & M_PKTHDR)
1238 		m0->m_pkthdr.len += len - remainder;
1239 	return (remainder == 0);
1240 }
1241 
1242 /*
1243  * Apply function f to the data in an mbuf chain starting "off" bytes from
1244  * the beginning, continuing for "len" bytes.
1245  */
1246 int
1247 m_apply(struct mbuf *m, int off, int len,
1248     int (*f)(void *, void *, u_int), void *arg)
1249 {
1250 	u_int count;
1251 	int rval;
1252 
1253 	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1254 	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1255 	while (off > 0) {
1256 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1257 		if (off < m->m_len)
1258 			break;
1259 		off -= m->m_len;
1260 		m = m->m_next;
1261 	}
1262 	while (len > 0) {
1263 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1264 		count = min(m->m_len - off, len);
1265 		rval = (*f)(arg, mtod(m, caddr_t) + off, count);
1266 		if (rval)
1267 			return (rval);
1268 		len -= count;
1269 		off = 0;
1270 		m = m->m_next;
1271 	}
1272 	return (0);
1273 }
1274 
1275 /*
1276  * Return a pointer to mbuf/offset of location in mbuf chain.
1277  */
1278 struct mbuf *
1279 m_getptr(struct mbuf *m, int loc, int *off)
1280 {
1281 
1282 	while (loc >= 0) {
1283 		/* Normal end of search. */
1284 		if (m->m_len > loc) {
1285 			*off = loc;
1286 			return (m);
1287 		} else {
1288 			loc -= m->m_len;
1289 			if (m->m_next == NULL) {
1290 				if (loc == 0) {
1291 					/* Point at the end of valid data. */
1292 					*off = m->m_len;
1293 					return (m);
1294 				}
1295 				return (NULL);
1296 			}
1297 			m = m->m_next;
1298 		}
1299 	}
1300 	return (NULL);
1301 }
1302 
1303 void
1304 m_print(const struct mbuf *m, int maxlen)
1305 {
1306 	int len;
1307 	int pdata;
1308 	const struct mbuf *m2;
1309 
1310 	if (m == NULL) {
1311 		printf("mbuf: %p\n", m);
1312 		return;
1313 	}
1314 
1315 	if (m->m_flags & M_PKTHDR)
1316 		len = m->m_pkthdr.len;
1317 	else
1318 		len = -1;
1319 	m2 = m;
1320 	while (m2 != NULL && (len == -1 || len)) {
1321 		pdata = m2->m_len;
1322 		if (maxlen != -1 && pdata > maxlen)
1323 			pdata = maxlen;
1324 		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1325 		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1326 		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1327 		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1328 		if (pdata)
1329 			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1330 		if (len != -1)
1331 			len -= m2->m_len;
1332 		m2 = m2->m_next;
1333 	}
1334 	if (len > 0)
1335 		printf("%d bytes unaccounted for.\n", len);
1336 	return;
1337 }
1338 
1339 u_int
1340 m_fixhdr(struct mbuf *m0)
1341 {
1342 	u_int len;
1343 
1344 	len = m_length(m0, NULL);
1345 	m0->m_pkthdr.len = len;
1346 	return (len);
1347 }
1348 
1349 u_int
1350 m_length(struct mbuf *m0, struct mbuf **last)
1351 {
1352 	struct mbuf *m;
1353 	u_int len;
1354 
1355 	len = 0;
1356 	for (m = m0; m != NULL; m = m->m_next) {
1357 		len += m->m_len;
1358 		if (m->m_next == NULL)
1359 			break;
1360 	}
1361 	if (last != NULL)
1362 		*last = m;
1363 	return (len);
1364 }
1365 
1366 /*
1367  * Defragment a mbuf chain, returning the shortest possible
1368  * chain of mbufs and clusters.  If allocation fails and
1369  * this cannot be completed, NULL will be returned, but
1370  * the passed in chain will be unchanged.  Upon success,
1371  * the original chain will be freed, and the new chain
1372  * will be returned.
1373  *
1374  * If a non-packet header is passed in, the original
1375  * mbuf (chain?) will be returned unharmed.
1376  */
1377 struct mbuf *
1378 m_defrag(struct mbuf *m0, int how)
1379 {
1380 	struct mbuf *m_new = NULL, *m_final = NULL;
1381 	int progress = 0, length;
1382 
1383 	MBUF_CHECKSLEEP(how);
1384 	if (!(m0->m_flags & M_PKTHDR))
1385 		return (m0);
1386 
1387 	m_fixhdr(m0); /* Needed sanity check */
1388 
1389 #ifdef MBUF_STRESS_TEST
1390 	if (m_defragrandomfailures) {
1391 		int temp = arc4random() & 0xff;
1392 		if (temp == 0xba)
1393 			goto nospace;
1394 	}
1395 #endif
1396 
1397 	if (m0->m_pkthdr.len > MHLEN)
1398 		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1399 	else
1400 		m_final = m_gethdr(how, MT_DATA);
1401 
1402 	if (m_final == NULL)
1403 		goto nospace;
1404 
1405 	if (m_dup_pkthdr(m_final, m0, how) == 0)
1406 		goto nospace;
1407 
1408 	m_new = m_final;
1409 
1410 	while (progress < m0->m_pkthdr.len) {
1411 		length = m0->m_pkthdr.len - progress;
1412 		if (length > MCLBYTES)
1413 			length = MCLBYTES;
1414 
1415 		if (m_new == NULL) {
1416 			if (length > MLEN)
1417 				m_new = m_getcl(how, MT_DATA, 0);
1418 			else
1419 				m_new = m_get(how, MT_DATA);
1420 			if (m_new == NULL)
1421 				goto nospace;
1422 		}
1423 
1424 		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1425 		progress += length;
1426 		m_new->m_len = length;
1427 		if (m_new != m_final)
1428 			m_cat(m_final, m_new);
1429 		m_new = NULL;
1430 	}
1431 #ifdef MBUF_STRESS_TEST
1432 	if (m0->m_next == NULL)
1433 		m_defraguseless++;
1434 #endif
1435 	m_freem(m0);
1436 	m0 = m_final;
1437 #ifdef MBUF_STRESS_TEST
1438 	m_defragpackets++;
1439 	m_defragbytes += m0->m_pkthdr.len;
1440 #endif
1441 	return (m0);
1442 nospace:
1443 #ifdef MBUF_STRESS_TEST
1444 	m_defragfailure++;
1445 #endif
1446 	if (m_final)
1447 		m_freem(m_final);
1448 	return (NULL);
1449 }
1450 
1451 /*
1452  * Return the number of fragments an mbuf will use.  This is usually
1453  * used as a proxy for the number of scatter/gather elements needed by
1454  * a DMA engine to access an mbuf.  In general mapped mbufs are
1455  * assumed to be backed by physically contiguous buffers that only
1456  * need a single fragment.  Unmapped mbufs, on the other hand, can
1457  * span disjoint physical pages.
1458  */
1459 static int
1460 frags_per_mbuf(struct mbuf *m)
1461 {
1462 	int frags;
1463 
1464 	if ((m->m_flags & M_EXTPG) == 0)
1465 		return (1);
1466 
1467 	/*
1468 	 * The header and trailer are counted as a single fragment
1469 	 * each when present.
1470 	 *
1471 	 * XXX: This overestimates the number of fragments by assuming
1472 	 * all the backing physical pages are disjoint.
1473 	 */
1474 	frags = 0;
1475 	if (m->m_epg_hdrlen != 0)
1476 		frags++;
1477 	frags += m->m_epg_npgs;
1478 	if (m->m_epg_trllen != 0)
1479 		frags++;
1480 
1481 	return (frags);
1482 }
1483 
1484 /*
1485  * Defragment an mbuf chain, returning at most maxfrags separate
1486  * mbufs+clusters.  If this is not possible NULL is returned and
1487  * the original mbuf chain is left in its present (potentially
1488  * modified) state.  We use two techniques: collapsing consecutive
1489  * mbufs and replacing consecutive mbufs by a cluster.
1490  *
1491  * NB: this should really be named m_defrag but that name is taken
1492  */
1493 struct mbuf *
1494 m_collapse(struct mbuf *m0, int how, int maxfrags)
1495 {
1496 	struct mbuf *m, *n, *n2, **prev;
1497 	u_int curfrags;
1498 
1499 	/*
1500 	 * Calculate the current number of frags.
1501 	 */
1502 	curfrags = 0;
1503 	for (m = m0; m != NULL; m = m->m_next)
1504 		curfrags += frags_per_mbuf(m);
1505 	/*
1506 	 * First, try to collapse mbufs.  Note that we always collapse
1507 	 * towards the front so we don't need to deal with moving the
1508 	 * pkthdr.  This may be suboptimal if the first mbuf has much
1509 	 * less data than the following.
1510 	 */
1511 	m = m0;
1512 again:
1513 	for (;;) {
1514 		n = m->m_next;
1515 		if (n == NULL)
1516 			break;
1517 		if (M_WRITABLE(m) &&
1518 		    n->m_len < M_TRAILINGSPACE(m)) {
1519 			m_copydata(n, 0, n->m_len,
1520 			    mtod(m, char *) + m->m_len);
1521 			m->m_len += n->m_len;
1522 			m->m_next = n->m_next;
1523 			curfrags -= frags_per_mbuf(n);
1524 			m_free(n);
1525 			if (curfrags <= maxfrags)
1526 				return m0;
1527 		} else
1528 			m = n;
1529 	}
1530 	KASSERT(maxfrags > 1,
1531 		("maxfrags %u, but normal collapse failed", maxfrags));
1532 	/*
1533 	 * Collapse consecutive mbufs to a cluster.
1534 	 */
1535 	prev = &m0->m_next;		/* NB: not the first mbuf */
1536 	while ((n = *prev) != NULL) {
1537 		if ((n2 = n->m_next) != NULL &&
1538 		    n->m_len + n2->m_len < MCLBYTES) {
1539 			m = m_getcl(how, MT_DATA, 0);
1540 			if (m == NULL)
1541 				goto bad;
1542 			m_copydata(n, 0,  n->m_len, mtod(m, char *));
1543 			m_copydata(n2, 0,  n2->m_len,
1544 			    mtod(m, char *) + n->m_len);
1545 			m->m_len = n->m_len + n2->m_len;
1546 			m->m_next = n2->m_next;
1547 			*prev = m;
1548 			curfrags += 1;  /* For the new cluster */
1549 			curfrags -= frags_per_mbuf(n);
1550 			curfrags -= frags_per_mbuf(n2);
1551 			m_free(n);
1552 			m_free(n2);
1553 			if (curfrags <= maxfrags)
1554 				return m0;
1555 			/*
1556 			 * Still not there, try the normal collapse
1557 			 * again before we allocate another cluster.
1558 			 */
1559 			goto again;
1560 		}
1561 		prev = &n->m_next;
1562 	}
1563 	/*
1564 	 * No place where we can collapse to a cluster; punt.
1565 	 * This can occur if, for example, you request 2 frags
1566 	 * but the packet requires that both be clusters (we
1567 	 * never reallocate the first mbuf to avoid moving the
1568 	 * packet header).
1569 	 */
1570 bad:
1571 	return NULL;
1572 }
1573 
1574 #ifdef MBUF_STRESS_TEST
1575 
1576 /*
1577  * Fragment an mbuf chain.  There's no reason you'd ever want to do
1578  * this in normal usage, but it's great for stress testing various
1579  * mbuf consumers.
1580  *
1581  * If fragmentation is not possible, the original chain will be
1582  * returned.
1583  *
1584  * Possible length values:
1585  * 0	 no fragmentation will occur
1586  * > 0	each fragment will be of the specified length
1587  * -1	each fragment will be the same random value in length
1588  * -2	each fragment's length will be entirely random
1589  * (Random values range from 1 to 256)
1590  */
1591 struct mbuf *
1592 m_fragment(struct mbuf *m0, int how, int length)
1593 {
1594 	struct mbuf *m_first, *m_last;
1595 	int divisor = 255, progress = 0, fraglen;
1596 
1597 	if (!(m0->m_flags & M_PKTHDR))
1598 		return (m0);
1599 
1600 	if (length == 0 || length < -2)
1601 		return (m0);
1602 	if (length > MCLBYTES)
1603 		length = MCLBYTES;
1604 	if (length < 0 && divisor > MCLBYTES)
1605 		divisor = MCLBYTES;
1606 	if (length == -1)
1607 		length = 1 + (arc4random() % divisor);
1608 	if (length > 0)
1609 		fraglen = length;
1610 
1611 	m_fixhdr(m0); /* Needed sanity check */
1612 
1613 	m_first = m_getcl(how, MT_DATA, M_PKTHDR);
1614 	if (m_first == NULL)
1615 		goto nospace;
1616 
1617 	if (m_dup_pkthdr(m_first, m0, how) == 0)
1618 		goto nospace;
1619 
1620 	m_last = m_first;
1621 
1622 	while (progress < m0->m_pkthdr.len) {
1623 		if (length == -2)
1624 			fraglen = 1 + (arc4random() % divisor);
1625 		if (fraglen > m0->m_pkthdr.len - progress)
1626 			fraglen = m0->m_pkthdr.len - progress;
1627 
1628 		if (progress != 0) {
1629 			struct mbuf *m_new = m_getcl(how, MT_DATA, 0);
1630 			if (m_new == NULL)
1631 				goto nospace;
1632 
1633 			m_last->m_next = m_new;
1634 			m_last = m_new;
1635 		}
1636 
1637 		m_copydata(m0, progress, fraglen, mtod(m_last, caddr_t));
1638 		progress += fraglen;
1639 		m_last->m_len = fraglen;
1640 	}
1641 	m_freem(m0);
1642 	m0 = m_first;
1643 	return (m0);
1644 nospace:
1645 	if (m_first)
1646 		m_freem(m_first);
1647 	/* Return the original chain on failure */
1648 	return (m0);
1649 }
1650 
1651 #endif
1652 
1653 /*
1654  * Free pages from mbuf_ext_pgs, assuming they were allocated via
1655  * vm_page_alloc() and aren't associated with any object.  Complement
1656  * to allocator from m_uiotombuf_nomap().
1657  */
1658 void
1659 mb_free_mext_pgs(struct mbuf *m)
1660 {
1661 	vm_page_t pg;
1662 
1663 	M_ASSERTEXTPG(m);
1664 	for (int i = 0; i < m->m_epg_npgs; i++) {
1665 		pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
1666 		vm_page_unwire_noq(pg);
1667 		vm_page_free(pg);
1668 	}
1669 }
1670 
1671 static struct mbuf *
1672 m_uiotombuf_nomap(struct uio *uio, int how, int len, int maxseg, int flags)
1673 {
1674 	struct mbuf *m, *mb, *prev;
1675 	vm_page_t pg_array[MBUF_PEXT_MAX_PGS];
1676 	int error, length, i, needed;
1677 	ssize_t total;
1678 	int pflags = malloc2vm_flags(how) | VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP |
1679 	    VM_ALLOC_WIRED;
1680 
1681 	MPASS((flags & M_PKTHDR) == 0);
1682 	MPASS((how & M_ZERO) == 0);
1683 
1684 	/*
1685 	 * len can be zero or an arbitrary large value bound by
1686 	 * the total data supplied by the uio.
1687 	 */
1688 	if (len > 0)
1689 		total = MIN(uio->uio_resid, len);
1690 	else
1691 		total = uio->uio_resid;
1692 
1693 	if (maxseg == 0)
1694 		maxseg = MBUF_PEXT_MAX_PGS * PAGE_SIZE;
1695 
1696 	/*
1697 	 * If total is zero, return an empty mbuf.  This can occur
1698 	 * for TLS 1.0 connections which send empty fragments as
1699 	 * a countermeasure against the known-IV weakness in CBC
1700 	 * ciphersuites.
1701 	 */
1702 	if (__predict_false(total == 0)) {
1703 		mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs);
1704 		if (mb == NULL)
1705 			return (NULL);
1706 		mb->m_epg_flags = EPG_FLAG_ANON;
1707 		return (mb);
1708 	}
1709 
1710 	/*
1711 	 * Allocate the pages
1712 	 */
1713 	m = NULL;
1714 	while (total > 0) {
1715 		mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs);
1716 		if (mb == NULL)
1717 			goto failed;
1718 		if (m == NULL)
1719 			m = mb;
1720 		else
1721 			prev->m_next = mb;
1722 		prev = mb;
1723 		mb->m_epg_flags = EPG_FLAG_ANON;
1724 		needed = length = MIN(maxseg, total);
1725 		for (i = 0; needed > 0; i++, needed -= PAGE_SIZE) {
1726 retry_page:
1727 			pg_array[i] = vm_page_alloc(NULL, 0, pflags);
1728 			if (pg_array[i] == NULL) {
1729 				if (how & M_NOWAIT) {
1730 					goto failed;
1731 				} else {
1732 					vm_wait(NULL);
1733 					goto retry_page;
1734 				}
1735 			}
1736 			mb->m_epg_pa[i] = VM_PAGE_TO_PHYS(pg_array[i]);
1737 			mb->m_epg_npgs++;
1738 		}
1739 		mb->m_epg_last_len = length - PAGE_SIZE * (mb->m_epg_npgs - 1);
1740 		MBUF_EXT_PGS_ASSERT_SANITY(mb);
1741 		total -= length;
1742 		error = uiomove_fromphys(pg_array, 0, length, uio);
1743 		if (error != 0)
1744 			goto failed;
1745 		mb->m_len = length;
1746 		mb->m_ext.ext_size += PAGE_SIZE * mb->m_epg_npgs;
1747 		if (flags & M_PKTHDR)
1748 			m->m_pkthdr.len += length;
1749 	}
1750 	return (m);
1751 
1752 failed:
1753 	m_freem(m);
1754 	return (NULL);
1755 }
1756 
1757 /*
1758  * Copy the contents of uio into a properly sized mbuf chain.
1759  */
1760 struct mbuf *
1761 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1762 {
1763 	struct mbuf *m, *mb;
1764 	int error, length;
1765 	ssize_t total;
1766 	int progress = 0;
1767 
1768 	if (flags & M_EXTPG)
1769 		return (m_uiotombuf_nomap(uio, how, len, align, flags));
1770 
1771 	/*
1772 	 * len can be zero or an arbitrary large value bound by
1773 	 * the total data supplied by the uio.
1774 	 */
1775 	if (len > 0)
1776 		total = (uio->uio_resid < len) ? uio->uio_resid : len;
1777 	else
1778 		total = uio->uio_resid;
1779 
1780 	/*
1781 	 * The smallest unit returned by m_getm2() is a single mbuf
1782 	 * with pkthdr.  We can't align past it.
1783 	 */
1784 	if (align >= MHLEN)
1785 		return (NULL);
1786 
1787 	/*
1788 	 * Give us the full allocation or nothing.
1789 	 * If len is zero return the smallest empty mbuf.
1790 	 */
1791 	m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1792 	if (m == NULL)
1793 		return (NULL);
1794 	m->m_data += align;
1795 
1796 	/* Fill all mbufs with uio data and update header information. */
1797 	for (mb = m; mb != NULL; mb = mb->m_next) {
1798 		length = min(M_TRAILINGSPACE(mb), total - progress);
1799 
1800 		error = uiomove(mtod(mb, void *), length, uio);
1801 		if (error) {
1802 			m_freem(m);
1803 			return (NULL);
1804 		}
1805 
1806 		mb->m_len = length;
1807 		progress += length;
1808 		if (flags & M_PKTHDR)
1809 			m->m_pkthdr.len += length;
1810 	}
1811 	KASSERT(progress == total, ("%s: progress != total", __func__));
1812 
1813 	return (m);
1814 }
1815 
1816 /*
1817  * Copy data from an unmapped mbuf into a uio limited by len if set.
1818  */
1819 int
1820 m_unmappedtouio(const struct mbuf *m, int m_off, struct uio *uio, int len)
1821 {
1822 	vm_page_t pg;
1823 	int error, i, off, pglen, pgoff, seglen, segoff;
1824 
1825 	M_ASSERTEXTPG(m);
1826 	error = 0;
1827 
1828 	/* Skip over any data removed from the front. */
1829 	off = mtod(m, vm_offset_t);
1830 
1831 	off += m_off;
1832 	if (m->m_epg_hdrlen != 0) {
1833 		if (off >= m->m_epg_hdrlen) {
1834 			off -= m->m_epg_hdrlen;
1835 		} else {
1836 			seglen = m->m_epg_hdrlen - off;
1837 			segoff = off;
1838 			seglen = min(seglen, len);
1839 			off = 0;
1840 			len -= seglen;
1841 			error = uiomove(__DECONST(void *,
1842 			    &m->m_epg_hdr[segoff]), seglen, uio);
1843 		}
1844 	}
1845 	pgoff = m->m_epg_1st_off;
1846 	for (i = 0; i < m->m_epg_npgs && error == 0 && len > 0; i++) {
1847 		pglen = m_epg_pagelen(m, i, pgoff);
1848 		if (off >= pglen) {
1849 			off -= pglen;
1850 			pgoff = 0;
1851 			continue;
1852 		}
1853 		seglen = pglen - off;
1854 		segoff = pgoff + off;
1855 		off = 0;
1856 		seglen = min(seglen, len);
1857 		len -= seglen;
1858 		pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
1859 		error = uiomove_fromphys(&pg, segoff, seglen, uio);
1860 		pgoff = 0;
1861 	};
1862 	if (len != 0 && error == 0) {
1863 		KASSERT((off + len) <= m->m_epg_trllen,
1864 		    ("off + len > trail (%d + %d > %d, m_off = %d)", off, len,
1865 		    m->m_epg_trllen, m_off));
1866 		error = uiomove(__DECONST(void *, &m->m_epg_trail[off]),
1867 		    len, uio);
1868 	}
1869 	return (error);
1870 }
1871 
1872 /*
1873  * Copy an mbuf chain into a uio limited by len if set.
1874  */
1875 int
1876 m_mbuftouio(struct uio *uio, const struct mbuf *m, int len)
1877 {
1878 	int error, length, total;
1879 	int progress = 0;
1880 
1881 	if (len > 0)
1882 		total = min(uio->uio_resid, len);
1883 	else
1884 		total = uio->uio_resid;
1885 
1886 	/* Fill the uio with data from the mbufs. */
1887 	for (; m != NULL; m = m->m_next) {
1888 		length = min(m->m_len, total - progress);
1889 
1890 		if ((m->m_flags & M_EXTPG) != 0)
1891 			error = m_unmappedtouio(m, 0, uio, length);
1892 		else
1893 			error = uiomove(mtod(m, void *), length, uio);
1894 		if (error)
1895 			return (error);
1896 
1897 		progress += length;
1898 	}
1899 
1900 	return (0);
1901 }
1902 
1903 /*
1904  * Create a writable copy of the mbuf chain.  While doing this
1905  * we compact the chain with a goal of producing a chain with
1906  * at most two mbufs.  The second mbuf in this chain is likely
1907  * to be a cluster.  The primary purpose of this work is to create
1908  * a writable packet for encryption, compression, etc.  The
1909  * secondary goal is to linearize the data so the data can be
1910  * passed to crypto hardware in the most efficient manner possible.
1911  */
1912 struct mbuf *
1913 m_unshare(struct mbuf *m0, int how)
1914 {
1915 	struct mbuf *m, *mprev;
1916 	struct mbuf *n, *mfirst, *mlast;
1917 	int len, off;
1918 
1919 	mprev = NULL;
1920 	for (m = m0; m != NULL; m = mprev->m_next) {
1921 		/*
1922 		 * Regular mbufs are ignored unless there's a cluster
1923 		 * in front of it that we can use to coalesce.  We do
1924 		 * the latter mainly so later clusters can be coalesced
1925 		 * also w/o having to handle them specially (i.e. convert
1926 		 * mbuf+cluster -> cluster).  This optimization is heavily
1927 		 * influenced by the assumption that we're running over
1928 		 * Ethernet where MCLBYTES is large enough that the max
1929 		 * packet size will permit lots of coalescing into a
1930 		 * single cluster.  This in turn permits efficient
1931 		 * crypto operations, especially when using hardware.
1932 		 */
1933 		if ((m->m_flags & M_EXT) == 0) {
1934 			if (mprev && (mprev->m_flags & M_EXT) &&
1935 			    m->m_len <= M_TRAILINGSPACE(mprev)) {
1936 				/* XXX: this ignores mbuf types */
1937 				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1938 				    mtod(m, caddr_t), m->m_len);
1939 				mprev->m_len += m->m_len;
1940 				mprev->m_next = m->m_next;	/* unlink from chain */
1941 				m_free(m);			/* reclaim mbuf */
1942 			} else {
1943 				mprev = m;
1944 			}
1945 			continue;
1946 		}
1947 		/*
1948 		 * Writable mbufs are left alone (for now).
1949 		 */
1950 		if (M_WRITABLE(m)) {
1951 			mprev = m;
1952 			continue;
1953 		}
1954 
1955 		/*
1956 		 * Not writable, replace with a copy or coalesce with
1957 		 * the previous mbuf if possible (since we have to copy
1958 		 * it anyway, we try to reduce the number of mbufs and
1959 		 * clusters so that future work is easier).
1960 		 */
1961 		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
1962 		/* NB: we only coalesce into a cluster or larger */
1963 		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
1964 		    m->m_len <= M_TRAILINGSPACE(mprev)) {
1965 			/* XXX: this ignores mbuf types */
1966 			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1967 			    mtod(m, caddr_t), m->m_len);
1968 			mprev->m_len += m->m_len;
1969 			mprev->m_next = m->m_next;	/* unlink from chain */
1970 			m_free(m);			/* reclaim mbuf */
1971 			continue;
1972 		}
1973 
1974 		/*
1975 		 * Allocate new space to hold the copy and copy the data.
1976 		 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
1977 		 * splitting them into clusters.  We could just malloc a
1978 		 * buffer and make it external but too many device drivers
1979 		 * don't know how to break up the non-contiguous memory when
1980 		 * doing DMA.
1981 		 */
1982 		n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
1983 		if (n == NULL) {
1984 			m_freem(m0);
1985 			return (NULL);
1986 		}
1987 		if (m->m_flags & M_PKTHDR) {
1988 			KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR",
1989 			    __func__, m0, m));
1990 			m_move_pkthdr(n, m);
1991 		}
1992 		len = m->m_len;
1993 		off = 0;
1994 		mfirst = n;
1995 		mlast = NULL;
1996 		for (;;) {
1997 			int cc = min(len, MCLBYTES);
1998 			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
1999 			n->m_len = cc;
2000 			if (mlast != NULL)
2001 				mlast->m_next = n;
2002 			mlast = n;
2003 #if 0
2004 			newipsecstat.ips_clcopied++;
2005 #endif
2006 
2007 			len -= cc;
2008 			if (len <= 0)
2009 				break;
2010 			off += cc;
2011 
2012 			n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
2013 			if (n == NULL) {
2014 				m_freem(mfirst);
2015 				m_freem(m0);
2016 				return (NULL);
2017 			}
2018 		}
2019 		n->m_next = m->m_next;
2020 		if (mprev == NULL)
2021 			m0 = mfirst;		/* new head of chain */
2022 		else
2023 			mprev->m_next = mfirst;	/* replace old mbuf */
2024 		m_free(m);			/* release old mbuf */
2025 		mprev = mfirst;
2026 	}
2027 	return (m0);
2028 }
2029 
2030 #ifdef MBUF_PROFILING
2031 
2032 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
2033 struct mbufprofile {
2034 	uintmax_t wasted[MP_BUCKETS];
2035 	uintmax_t used[MP_BUCKETS];
2036 	uintmax_t segments[MP_BUCKETS];
2037 } mbprof;
2038 
2039 #define MP_MAXDIGITS 21	/* strlen("16,000,000,000,000,000,000") == 21 */
2040 #define MP_NUMLINES 6
2041 #define MP_NUMSPERLINE 16
2042 #define MP_EXTRABYTES 64	/* > strlen("used:\nwasted:\nsegments:\n") */
2043 /* work out max space needed and add a bit of spare space too */
2044 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
2045 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
2046 
2047 char mbprofbuf[MP_BUFSIZE];
2048 
2049 void
2050 m_profile(struct mbuf *m)
2051 {
2052 	int segments = 0;
2053 	int used = 0;
2054 	int wasted = 0;
2055 
2056 	while (m) {
2057 		segments++;
2058 		used += m->m_len;
2059 		if (m->m_flags & M_EXT) {
2060 			wasted += MHLEN - sizeof(m->m_ext) +
2061 			    m->m_ext.ext_size - m->m_len;
2062 		} else {
2063 			if (m->m_flags & M_PKTHDR)
2064 				wasted += MHLEN - m->m_len;
2065 			else
2066 				wasted += MLEN - m->m_len;
2067 		}
2068 		m = m->m_next;
2069 	}
2070 	/* be paranoid.. it helps */
2071 	if (segments > MP_BUCKETS - 1)
2072 		segments = MP_BUCKETS - 1;
2073 	if (used > 100000)
2074 		used = 100000;
2075 	if (wasted > 100000)
2076 		wasted = 100000;
2077 	/* store in the appropriate bucket */
2078 	/* don't bother locking. if it's slightly off, so what? */
2079 	mbprof.segments[segments]++;
2080 	mbprof.used[fls(used)]++;
2081 	mbprof.wasted[fls(wasted)]++;
2082 }
2083 
2084 static void
2085 mbprof_textify(void)
2086 {
2087 	int offset;
2088 	char *c;
2089 	uint64_t *p;
2090 
2091 	p = &mbprof.wasted[0];
2092 	c = mbprofbuf;
2093 	offset = snprintf(c, MP_MAXLINE + 10,
2094 	    "wasted:\n"
2095 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2096 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2097 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2098 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2099 #ifdef BIG_ARRAY
2100 	p = &mbprof.wasted[16];
2101 	c += offset;
2102 	offset = snprintf(c, MP_MAXLINE,
2103 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2104 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2105 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2106 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2107 #endif
2108 	p = &mbprof.used[0];
2109 	c += offset;
2110 	offset = snprintf(c, MP_MAXLINE + 10,
2111 	    "used:\n"
2112 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2113 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2114 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2115 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2116 #ifdef BIG_ARRAY
2117 	p = &mbprof.used[16];
2118 	c += offset;
2119 	offset = snprintf(c, MP_MAXLINE,
2120 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2121 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2122 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2123 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2124 #endif
2125 	p = &mbprof.segments[0];
2126 	c += offset;
2127 	offset = snprintf(c, MP_MAXLINE + 10,
2128 	    "segments:\n"
2129 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2130 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2131 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2132 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2133 #ifdef BIG_ARRAY
2134 	p = &mbprof.segments[16];
2135 	c += offset;
2136 	offset = snprintf(c, MP_MAXLINE,
2137 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2138 	    "%ju %ju %ju %ju %ju %ju %ju %jju",
2139 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2140 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2141 #endif
2142 }
2143 
2144 static int
2145 mbprof_handler(SYSCTL_HANDLER_ARGS)
2146 {
2147 	int error;
2148 
2149 	mbprof_textify();
2150 	error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
2151 	return (error);
2152 }
2153 
2154 static int
2155 mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
2156 {
2157 	int clear, error;
2158 
2159 	clear = 0;
2160 	error = sysctl_handle_int(oidp, &clear, 0, req);
2161 	if (error || !req->newptr)
2162 		return (error);
2163 
2164 	if (clear) {
2165 		bzero(&mbprof, sizeof(mbprof));
2166 	}
2167 
2168 	return (error);
2169 }
2170 
2171 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile,
2172     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, NULL, 0,
2173     mbprof_handler, "A",
2174     "mbuf profiling statistics");
2175 
2176 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr,
2177     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
2178     mbprof_clr_handler, "I",
2179     "clear mbuf profiling statistics");
2180 #endif
2181