1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_param.h" 38 #include "opt_mbuf_stress_test.h" 39 #include "opt_mbuf_profiling.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/kernel.h> 44 #include <sys/limits.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/sysctl.h> 49 #include <sys/domain.h> 50 #include <sys/protosw.h> 51 #include <sys/uio.h> 52 #include <sys/vmmeter.h> 53 #include <sys/sdt.h> 54 #include <vm/vm.h> 55 #include <vm/vm_pageout.h> 56 #include <vm/vm_page.h> 57 58 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__init, 59 "struct mbuf *", "mbufinfo_t *", 60 "uint32_t", "uint32_t", 61 "uint16_t", "uint16_t", 62 "uint32_t", "uint32_t", 63 "uint32_t", "uint32_t"); 64 65 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr, 66 "uint32_t", "uint32_t", 67 "uint16_t", "uint16_t", 68 "struct mbuf *", "mbufinfo_t *"); 69 70 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get, 71 "uint32_t", "uint32_t", 72 "uint16_t", "uint16_t", 73 "struct mbuf *", "mbufinfo_t *"); 74 75 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__getcl, 76 "uint32_t", "uint32_t", 77 "uint16_t", "uint16_t", 78 "uint32_t", "uint32_t", 79 "struct mbuf *", "mbufinfo_t *"); 80 81 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__getjcl, 82 "uint32_t", "uint32_t", 83 "uint16_t", "uint16_t", 84 "uint32_t", "uint32_t", 85 "uint32_t", "uint32_t", 86 "struct mbuf *", "mbufinfo_t *"); 87 88 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__clget, 89 "struct mbuf *", "mbufinfo_t *", 90 "uint32_t", "uint32_t", 91 "uint32_t", "uint32_t"); 92 93 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__cljget, 94 "struct mbuf *", "mbufinfo_t *", 95 "uint32_t", "uint32_t", 96 "uint32_t", "uint32_t", 97 "void*", "void*"); 98 99 SDT_PROBE_DEFINE(sdt, , , m__cljset); 100 101 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__free, 102 "struct mbuf *", "mbufinfo_t *"); 103 104 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__freem, 105 "struct mbuf *", "mbufinfo_t *"); 106 107 #include <security/mac/mac_framework.h> 108 109 int max_linkhdr; 110 int max_protohdr; 111 int max_hdr; 112 int max_datalen; 113 #ifdef MBUF_STRESS_TEST 114 int m_defragpackets; 115 int m_defragbytes; 116 int m_defraguseless; 117 int m_defragfailure; 118 int m_defragrandomfailures; 119 #endif 120 121 /* 122 * sysctl(8) exported objects 123 */ 124 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD, 125 &max_linkhdr, 0, "Size of largest link layer header"); 126 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD, 127 &max_protohdr, 0, "Size of largest protocol layer header"); 128 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD, 129 &max_hdr, 0, "Size of largest link plus protocol header"); 130 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD, 131 &max_datalen, 0, "Minimum space left in mbuf after max_hdr"); 132 #ifdef MBUF_STRESS_TEST 133 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD, 134 &m_defragpackets, 0, ""); 135 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD, 136 &m_defragbytes, 0, ""); 137 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD, 138 &m_defraguseless, 0, ""); 139 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD, 140 &m_defragfailure, 0, ""); 141 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW, 142 &m_defragrandomfailures, 0, ""); 143 #endif 144 145 /* 146 * Ensure the correct size of various mbuf parameters. It could be off due 147 * to compiler-induced padding and alignment artifacts. 148 */ 149 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN); 150 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN); 151 152 /* 153 * mbuf data storage should be 64-bit aligned regardless of architectural 154 * pointer size; check this is the case with and without a packet header. 155 */ 156 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0); 157 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0); 158 159 /* 160 * While the specific values here don't matter too much (i.e., +/- a few 161 * words), we do want to ensure that changes to these values are carefully 162 * reasoned about and properly documented. This is especially the case as 163 * network-protocol and device-driver modules encode these layouts, and must 164 * be recompiled if the structures change. Check these values at compile time 165 * against the ones documented in comments in mbuf.h. 166 * 167 * NB: Possibly they should be documented there via #define's and not just 168 * comments. 169 */ 170 #if defined(__LP64__) 171 CTASSERT(offsetof(struct mbuf, m_dat) == 32); 172 CTASSERT(sizeof(struct pkthdr) == 56); 173 CTASSERT(sizeof(struct m_ext) == 160); 174 #else 175 CTASSERT(offsetof(struct mbuf, m_dat) == 24); 176 CTASSERT(sizeof(struct pkthdr) == 48); 177 #if defined(__powerpc__) && defined(BOOKE) 178 /* PowerPC booke has 64-bit physical pointers. */ 179 CTASSERT(sizeof(struct m_ext) == 184); 180 #else 181 CTASSERT(sizeof(struct m_ext) == 180); 182 #endif 183 #endif 184 185 /* 186 * Assert that the queue(3) macros produce code of the same size as an old 187 * plain pointer does. 188 */ 189 #ifdef INVARIANTS 190 static struct mbuf __used m_assertbuf; 191 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next)); 192 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next)); 193 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt)); 194 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt)); 195 #endif 196 197 /* 198 * Attach the cluster from *m to *n, set up m_ext in *n 199 * and bump the refcount of the cluster. 200 */ 201 void 202 mb_dupcl(struct mbuf *n, struct mbuf *m) 203 { 204 volatile u_int *refcnt; 205 206 KASSERT(m->m_flags & (M_EXT|M_EXTPG), 207 ("%s: M_EXT|M_EXTPG not set on %p", __func__, m)); 208 KASSERT(!(n->m_flags & (M_EXT|M_EXTPG)), 209 ("%s: M_EXT|M_EXTPG set on %p", __func__, n)); 210 211 /* 212 * Cache access optimization. 213 * 214 * o Regular M_EXT storage doesn't need full copy of m_ext, since 215 * the holder of the 'ext_count' is responsible to carry the free 216 * routine and its arguments. 217 * o M_EXTPG data is split between main part of mbuf and m_ext, the 218 * main part is copied in full, the m_ext part is similar to M_EXT. 219 * o EXT_EXTREF, where 'ext_cnt' doesn't point into mbuf at all, is 220 * special - it needs full copy of m_ext into each mbuf, since any 221 * copy could end up as the last to free. 222 */ 223 if (m->m_flags & M_EXTPG) { 224 bcopy(&m->m_epg_startcopy, &n->m_epg_startcopy, 225 __rangeof(struct mbuf, m_epg_startcopy, m_epg_endcopy)); 226 bcopy(&m->m_ext, &n->m_ext, m_epg_ext_copylen); 227 } else if (m->m_ext.ext_type == EXT_EXTREF) 228 bcopy(&m->m_ext, &n->m_ext, sizeof(struct m_ext)); 229 else 230 bcopy(&m->m_ext, &n->m_ext, m_ext_copylen); 231 232 n->m_flags |= m->m_flags & (M_RDONLY | M_EXT | M_EXTPG); 233 234 /* See if this is the mbuf that holds the embedded refcount. */ 235 if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) { 236 refcnt = n->m_ext.ext_cnt = &m->m_ext.ext_count; 237 n->m_ext.ext_flags &= ~EXT_FLAG_EMBREF; 238 } else { 239 KASSERT(m->m_ext.ext_cnt != NULL, 240 ("%s: no refcounting pointer on %p", __func__, m)); 241 refcnt = m->m_ext.ext_cnt; 242 } 243 244 if (*refcnt == 1) 245 *refcnt += 1; 246 else 247 atomic_add_int(refcnt, 1); 248 } 249 250 void 251 m_demote_pkthdr(struct mbuf *m) 252 { 253 254 M_ASSERTPKTHDR(m); 255 256 m_tag_delete_chain(m, NULL); 257 m->m_flags &= ~M_PKTHDR; 258 bzero(&m->m_pkthdr, sizeof(struct pkthdr)); 259 } 260 261 /* 262 * Clean up mbuf (chain) from any tags and packet headers. 263 * If "all" is set then the first mbuf in the chain will be 264 * cleaned too. 265 */ 266 void 267 m_demote(struct mbuf *m0, int all, int flags) 268 { 269 struct mbuf *m; 270 271 for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) { 272 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p", 273 __func__, m, m0)); 274 if (m->m_flags & M_PKTHDR) 275 m_demote_pkthdr(m); 276 m->m_flags = m->m_flags & (M_EXT | M_RDONLY | M_NOFREE | 277 M_EXTPG | flags); 278 } 279 } 280 281 /* 282 * Sanity checks on mbuf (chain) for use in KASSERT() and general 283 * debugging. 284 * Returns 0 or panics when bad and 1 on all tests passed. 285 * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they 286 * blow up later. 287 */ 288 int 289 m_sanity(struct mbuf *m0, int sanitize) 290 { 291 struct mbuf *m; 292 caddr_t a, b; 293 int pktlen = 0; 294 295 #ifdef INVARIANTS 296 #define M_SANITY_ACTION(s) panic("mbuf %p: " s, m) 297 #else 298 #define M_SANITY_ACTION(s) printf("mbuf %p: " s, m) 299 #endif 300 301 for (m = m0; m != NULL; m = m->m_next) { 302 /* 303 * Basic pointer checks. If any of these fails then some 304 * unrelated kernel memory before or after us is trashed. 305 * No way to recover from that. 306 */ 307 a = M_START(m); 308 b = a + M_SIZE(m); 309 if ((caddr_t)m->m_data < a) 310 M_SANITY_ACTION("m_data outside mbuf data range left"); 311 if ((caddr_t)m->m_data > b) 312 M_SANITY_ACTION("m_data outside mbuf data range right"); 313 if ((caddr_t)m->m_data + m->m_len > b) 314 M_SANITY_ACTION("m_data + m_len exeeds mbuf space"); 315 316 /* m->m_nextpkt may only be set on first mbuf in chain. */ 317 if (m != m0 && m->m_nextpkt != NULL) { 318 if (sanitize) { 319 m_freem(m->m_nextpkt); 320 m->m_nextpkt = (struct mbuf *)0xDEADC0DE; 321 } else 322 M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf"); 323 } 324 325 /* packet length (not mbuf length!) calculation */ 326 if (m0->m_flags & M_PKTHDR) 327 pktlen += m->m_len; 328 329 /* m_tags may only be attached to first mbuf in chain. */ 330 if (m != m0 && m->m_flags & M_PKTHDR && 331 !SLIST_EMPTY(&m->m_pkthdr.tags)) { 332 if (sanitize) { 333 m_tag_delete_chain(m, NULL); 334 /* put in 0xDEADC0DE perhaps? */ 335 } else 336 M_SANITY_ACTION("m_tags on in-chain mbuf"); 337 } 338 339 /* M_PKTHDR may only be set on first mbuf in chain */ 340 if (m != m0 && m->m_flags & M_PKTHDR) { 341 if (sanitize) { 342 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr)); 343 m->m_flags &= ~M_PKTHDR; 344 /* put in 0xDEADCODE and leave hdr flag in */ 345 } else 346 M_SANITY_ACTION("M_PKTHDR on in-chain mbuf"); 347 } 348 } 349 m = m0; 350 if (pktlen && pktlen != m->m_pkthdr.len) { 351 if (sanitize) 352 m->m_pkthdr.len = 0; 353 else 354 M_SANITY_ACTION("m_pkthdr.len != mbuf chain length"); 355 } 356 return 1; 357 358 #undef M_SANITY_ACTION 359 } 360 361 /* 362 * Non-inlined part of m_init(). 363 */ 364 int 365 m_pkthdr_init(struct mbuf *m, int how) 366 { 367 #ifdef MAC 368 int error; 369 #endif 370 m->m_data = m->m_pktdat; 371 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr)); 372 #ifdef NUMA 373 m->m_pkthdr.numa_domain = M_NODOM; 374 #endif 375 #ifdef MAC 376 /* If the label init fails, fail the alloc */ 377 error = mac_mbuf_init(m, how); 378 if (error) 379 return (error); 380 #endif 381 382 return (0); 383 } 384 385 /* 386 * "Move" mbuf pkthdr from "from" to "to". 387 * "from" must have M_PKTHDR set, and "to" must be empty. 388 */ 389 void 390 m_move_pkthdr(struct mbuf *to, struct mbuf *from) 391 { 392 393 #if 0 394 /* see below for why these are not enabled */ 395 M_ASSERTPKTHDR(to); 396 /* Note: with MAC, this may not be a good assertion. */ 397 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), 398 ("m_move_pkthdr: to has tags")); 399 #endif 400 #ifdef MAC 401 /* 402 * XXXMAC: It could be this should also occur for non-MAC? 403 */ 404 if (to->m_flags & M_PKTHDR) 405 m_tag_delete_chain(to, NULL); 406 #endif 407 to->m_flags = (from->m_flags & M_COPYFLAGS) | 408 (to->m_flags & (M_EXT | M_EXTPG)); 409 if ((to->m_flags & M_EXT) == 0) 410 to->m_data = to->m_pktdat; 411 to->m_pkthdr = from->m_pkthdr; /* especially tags */ 412 SLIST_INIT(&from->m_pkthdr.tags); /* purge tags from src */ 413 from->m_flags &= ~M_PKTHDR; 414 if (from->m_pkthdr.csum_flags & CSUM_SND_TAG) { 415 from->m_pkthdr.csum_flags &= ~CSUM_SND_TAG; 416 from->m_pkthdr.snd_tag = NULL; 417 } 418 } 419 420 /* 421 * Duplicate "from"'s mbuf pkthdr in "to". 422 * "from" must have M_PKTHDR set, and "to" must be empty. 423 * In particular, this does a deep copy of the packet tags. 424 */ 425 int 426 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how) 427 { 428 429 #if 0 430 /* 431 * The mbuf allocator only initializes the pkthdr 432 * when the mbuf is allocated with m_gethdr(). Many users 433 * (e.g. m_copy*, m_prepend) use m_get() and then 434 * smash the pkthdr as needed causing these 435 * assertions to trip. For now just disable them. 436 */ 437 M_ASSERTPKTHDR(to); 438 /* Note: with MAC, this may not be a good assertion. */ 439 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags")); 440 #endif 441 MBUF_CHECKSLEEP(how); 442 #ifdef MAC 443 if (to->m_flags & M_PKTHDR) 444 m_tag_delete_chain(to, NULL); 445 #endif 446 to->m_flags = (from->m_flags & M_COPYFLAGS) | 447 (to->m_flags & (M_EXT | M_EXTPG)); 448 if ((to->m_flags & M_EXT) == 0) 449 to->m_data = to->m_pktdat; 450 to->m_pkthdr = from->m_pkthdr; 451 if (from->m_pkthdr.csum_flags & CSUM_SND_TAG) 452 m_snd_tag_ref(from->m_pkthdr.snd_tag); 453 SLIST_INIT(&to->m_pkthdr.tags); 454 return (m_tag_copy_chain(to, from, how)); 455 } 456 457 /* 458 * Lesser-used path for M_PREPEND: 459 * allocate new mbuf to prepend to chain, 460 * copy junk along. 461 */ 462 struct mbuf * 463 m_prepend(struct mbuf *m, int len, int how) 464 { 465 struct mbuf *mn; 466 467 if (m->m_flags & M_PKTHDR) 468 mn = m_gethdr(how, m->m_type); 469 else 470 mn = m_get(how, m->m_type); 471 if (mn == NULL) { 472 m_freem(m); 473 return (NULL); 474 } 475 if (m->m_flags & M_PKTHDR) 476 m_move_pkthdr(mn, m); 477 mn->m_next = m; 478 m = mn; 479 if (len < M_SIZE(m)) 480 M_ALIGN(m, len); 481 m->m_len = len; 482 return (m); 483 } 484 485 /* 486 * Make a copy of an mbuf chain starting "off0" bytes from the beginning, 487 * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf. 488 * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller. 489 * Note that the copy is read-only, because clusters are not copied, 490 * only their reference counts are incremented. 491 */ 492 struct mbuf * 493 m_copym(struct mbuf *m, int off0, int len, int wait) 494 { 495 struct mbuf *n, **np; 496 int off = off0; 497 struct mbuf *top; 498 int copyhdr = 0; 499 500 KASSERT(off >= 0, ("m_copym, negative off %d", off)); 501 KASSERT(len >= 0, ("m_copym, negative len %d", len)); 502 MBUF_CHECKSLEEP(wait); 503 if (off == 0 && m->m_flags & M_PKTHDR) 504 copyhdr = 1; 505 while (off > 0) { 506 KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain")); 507 if (off < m->m_len) 508 break; 509 off -= m->m_len; 510 m = m->m_next; 511 } 512 np = ⊤ 513 top = NULL; 514 while (len > 0) { 515 if (m == NULL) { 516 KASSERT(len == M_COPYALL, 517 ("m_copym, length > size of mbuf chain")); 518 break; 519 } 520 if (copyhdr) 521 n = m_gethdr(wait, m->m_type); 522 else 523 n = m_get(wait, m->m_type); 524 *np = n; 525 if (n == NULL) 526 goto nospace; 527 if (copyhdr) { 528 if (!m_dup_pkthdr(n, m, wait)) 529 goto nospace; 530 if (len == M_COPYALL) 531 n->m_pkthdr.len -= off0; 532 else 533 n->m_pkthdr.len = len; 534 copyhdr = 0; 535 } 536 n->m_len = min(len, m->m_len - off); 537 if (m->m_flags & (M_EXT|M_EXTPG)) { 538 n->m_data = m->m_data + off; 539 mb_dupcl(n, m); 540 } else 541 bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t), 542 (u_int)n->m_len); 543 if (len != M_COPYALL) 544 len -= n->m_len; 545 off = 0; 546 m = m->m_next; 547 np = &n->m_next; 548 } 549 550 return (top); 551 nospace: 552 m_freem(top); 553 return (NULL); 554 } 555 556 /* 557 * Copy an entire packet, including header (which must be present). 558 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'. 559 * Note that the copy is read-only, because clusters are not copied, 560 * only their reference counts are incremented. 561 * Preserve alignment of the first mbuf so if the creator has left 562 * some room at the beginning (e.g. for inserting protocol headers) 563 * the copies still have the room available. 564 */ 565 struct mbuf * 566 m_copypacket(struct mbuf *m, int how) 567 { 568 struct mbuf *top, *n, *o; 569 570 MBUF_CHECKSLEEP(how); 571 n = m_get(how, m->m_type); 572 top = n; 573 if (n == NULL) 574 goto nospace; 575 576 if (!m_dup_pkthdr(n, m, how)) 577 goto nospace; 578 n->m_len = m->m_len; 579 if (m->m_flags & (M_EXT|M_EXTPG)) { 580 n->m_data = m->m_data; 581 mb_dupcl(n, m); 582 } else { 583 n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat ); 584 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 585 } 586 587 m = m->m_next; 588 while (m) { 589 o = m_get(how, m->m_type); 590 if (o == NULL) 591 goto nospace; 592 593 n->m_next = o; 594 n = n->m_next; 595 596 n->m_len = m->m_len; 597 if (m->m_flags & (M_EXT|M_EXTPG)) { 598 n->m_data = m->m_data; 599 mb_dupcl(n, m); 600 } else { 601 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 602 } 603 604 m = m->m_next; 605 } 606 return top; 607 nospace: 608 m_freem(top); 609 return (NULL); 610 } 611 612 static void 613 m_copyfromunmapped(const struct mbuf *m, int off, int len, caddr_t cp) 614 { 615 struct iovec iov; 616 struct uio uio; 617 int error; 618 619 KASSERT(off >= 0, ("m_copyfromunmapped: negative off %d", off)); 620 KASSERT(len >= 0, ("m_copyfromunmapped: negative len %d", len)); 621 KASSERT(off < m->m_len, 622 ("m_copyfromunmapped: len exceeds mbuf length")); 623 iov.iov_base = cp; 624 iov.iov_len = len; 625 uio.uio_resid = len; 626 uio.uio_iov = &iov; 627 uio.uio_segflg = UIO_SYSSPACE; 628 uio.uio_iovcnt = 1; 629 uio.uio_offset = 0; 630 uio.uio_rw = UIO_READ; 631 error = m_unmappedtouio(m, off, &uio, len); 632 KASSERT(error == 0, ("m_unmappedtouio failed: off %d, len %d", off, 633 len)); 634 } 635 636 /* 637 * Copy data from an mbuf chain starting "off" bytes from the beginning, 638 * continuing for "len" bytes, into the indicated buffer. 639 */ 640 void 641 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp) 642 { 643 u_int count; 644 645 KASSERT(off >= 0, ("m_copydata, negative off %d", off)); 646 KASSERT(len >= 0, ("m_copydata, negative len %d", len)); 647 while (off > 0) { 648 KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain")); 649 if (off < m->m_len) 650 break; 651 off -= m->m_len; 652 m = m->m_next; 653 } 654 while (len > 0) { 655 KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain")); 656 count = min(m->m_len - off, len); 657 if ((m->m_flags & M_EXTPG) != 0) 658 m_copyfromunmapped(m, off, count, cp); 659 else 660 bcopy(mtod(m, caddr_t) + off, cp, count); 661 len -= count; 662 cp += count; 663 off = 0; 664 m = m->m_next; 665 } 666 } 667 668 /* 669 * Copy a packet header mbuf chain into a completely new chain, including 670 * copying any mbuf clusters. Use this instead of m_copypacket() when 671 * you need a writable copy of an mbuf chain. 672 */ 673 struct mbuf * 674 m_dup(const struct mbuf *m, int how) 675 { 676 struct mbuf **p, *top = NULL; 677 int remain, moff, nsize; 678 679 MBUF_CHECKSLEEP(how); 680 /* Sanity check */ 681 if (m == NULL) 682 return (NULL); 683 M_ASSERTPKTHDR(m); 684 685 /* While there's more data, get a new mbuf, tack it on, and fill it */ 686 remain = m->m_pkthdr.len; 687 moff = 0; 688 p = ⊤ 689 while (remain > 0 || top == NULL) { /* allow m->m_pkthdr.len == 0 */ 690 struct mbuf *n; 691 692 /* Get the next new mbuf */ 693 if (remain >= MINCLSIZE) { 694 n = m_getcl(how, m->m_type, 0); 695 nsize = MCLBYTES; 696 } else { 697 n = m_get(how, m->m_type); 698 nsize = MLEN; 699 } 700 if (n == NULL) 701 goto nospace; 702 703 if (top == NULL) { /* First one, must be PKTHDR */ 704 if (!m_dup_pkthdr(n, m, how)) { 705 m_free(n); 706 goto nospace; 707 } 708 if ((n->m_flags & M_EXT) == 0) 709 nsize = MHLEN; 710 n->m_flags &= ~M_RDONLY; 711 } 712 n->m_len = 0; 713 714 /* Link it into the new chain */ 715 *p = n; 716 p = &n->m_next; 717 718 /* Copy data from original mbuf(s) into new mbuf */ 719 while (n->m_len < nsize && m != NULL) { 720 int chunk = min(nsize - n->m_len, m->m_len - moff); 721 722 bcopy(m->m_data + moff, n->m_data + n->m_len, chunk); 723 moff += chunk; 724 n->m_len += chunk; 725 remain -= chunk; 726 if (moff == m->m_len) { 727 m = m->m_next; 728 moff = 0; 729 } 730 } 731 732 /* Check correct total mbuf length */ 733 KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL), 734 ("%s: bogus m_pkthdr.len", __func__)); 735 } 736 return (top); 737 738 nospace: 739 m_freem(top); 740 return (NULL); 741 } 742 743 /* 744 * Concatenate mbuf chain n to m. 745 * Both chains must be of the same type (e.g. MT_DATA). 746 * Any m_pkthdr is not updated. 747 */ 748 void 749 m_cat(struct mbuf *m, struct mbuf *n) 750 { 751 while (m->m_next) 752 m = m->m_next; 753 while (n) { 754 if (!M_WRITABLE(m) || 755 (n->m_flags & M_EXTPG) != 0 || 756 M_TRAILINGSPACE(m) < n->m_len) { 757 /* just join the two chains */ 758 m->m_next = n; 759 return; 760 } 761 /* splat the data from one into the other */ 762 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 763 (u_int)n->m_len); 764 m->m_len += n->m_len; 765 n = m_free(n); 766 } 767 } 768 769 /* 770 * Concatenate two pkthdr mbuf chains. 771 */ 772 void 773 m_catpkt(struct mbuf *m, struct mbuf *n) 774 { 775 776 M_ASSERTPKTHDR(m); 777 M_ASSERTPKTHDR(n); 778 779 m->m_pkthdr.len += n->m_pkthdr.len; 780 m_demote(n, 1, 0); 781 782 m_cat(m, n); 783 } 784 785 void 786 m_adj(struct mbuf *mp, int req_len) 787 { 788 int len = req_len; 789 struct mbuf *m; 790 int count; 791 792 if ((m = mp) == NULL) 793 return; 794 if (len >= 0) { 795 /* 796 * Trim from head. 797 */ 798 while (m != NULL && len > 0) { 799 if (m->m_len <= len) { 800 len -= m->m_len; 801 m->m_len = 0; 802 m = m->m_next; 803 } else { 804 m->m_len -= len; 805 m->m_data += len; 806 len = 0; 807 } 808 } 809 if (mp->m_flags & M_PKTHDR) 810 mp->m_pkthdr.len -= (req_len - len); 811 } else { 812 /* 813 * Trim from tail. Scan the mbuf chain, 814 * calculating its length and finding the last mbuf. 815 * If the adjustment only affects this mbuf, then just 816 * adjust and return. Otherwise, rescan and truncate 817 * after the remaining size. 818 */ 819 len = -len; 820 count = 0; 821 for (;;) { 822 count += m->m_len; 823 if (m->m_next == (struct mbuf *)0) 824 break; 825 m = m->m_next; 826 } 827 if (m->m_len >= len) { 828 m->m_len -= len; 829 if (mp->m_flags & M_PKTHDR) 830 mp->m_pkthdr.len -= len; 831 return; 832 } 833 count -= len; 834 if (count < 0) 835 count = 0; 836 /* 837 * Correct length for chain is "count". 838 * Find the mbuf with last data, adjust its length, 839 * and toss data from remaining mbufs on chain. 840 */ 841 m = mp; 842 if (m->m_flags & M_PKTHDR) 843 m->m_pkthdr.len = count; 844 for (; m; m = m->m_next) { 845 if (m->m_len >= count) { 846 m->m_len = count; 847 if (m->m_next != NULL) { 848 m_freem(m->m_next); 849 m->m_next = NULL; 850 } 851 break; 852 } 853 count -= m->m_len; 854 } 855 } 856 } 857 858 void 859 m_adj_decap(struct mbuf *mp, int len) 860 { 861 uint8_t rsstype; 862 863 m_adj(mp, len); 864 if ((mp->m_flags & M_PKTHDR) != 0) { 865 /* 866 * If flowid was calculated by card from the inner 867 * headers, move flowid to the decapsulated mbuf 868 * chain, otherwise clear. This depends on the 869 * internals of m_adj, which keeps pkthdr as is, in 870 * particular not changing rsstype and flowid. 871 */ 872 rsstype = mp->m_pkthdr.rsstype; 873 if ((rsstype & M_HASHTYPE_INNER) != 0) { 874 M_HASHTYPE_SET(mp, rsstype & ~M_HASHTYPE_INNER); 875 } else { 876 M_HASHTYPE_CLEAR(mp); 877 } 878 } 879 } 880 881 /* 882 * Rearange an mbuf chain so that len bytes are contiguous 883 * and in the data area of an mbuf (so that mtod will work 884 * for a structure of size len). Returns the resulting 885 * mbuf chain on success, frees it and returns null on failure. 886 * If there is room, it will add up to max_protohdr-len extra bytes to the 887 * contiguous region in an attempt to avoid being called next time. 888 */ 889 struct mbuf * 890 m_pullup(struct mbuf *n, int len) 891 { 892 struct mbuf *m; 893 int count; 894 int space; 895 896 KASSERT((n->m_flags & M_EXTPG) == 0, 897 ("%s: unmapped mbuf %p", __func__, n)); 898 899 /* 900 * If first mbuf has no cluster, and has room for len bytes 901 * without shifting current data, pullup into it, 902 * otherwise allocate a new mbuf to prepend to the chain. 903 */ 904 if ((n->m_flags & M_EXT) == 0 && 905 n->m_data + len < &n->m_dat[MLEN] && n->m_next) { 906 if (n->m_len >= len) 907 return (n); 908 m = n; 909 n = n->m_next; 910 len -= m->m_len; 911 } else { 912 if (len > MHLEN) 913 goto bad; 914 m = m_get(M_NOWAIT, n->m_type); 915 if (m == NULL) 916 goto bad; 917 if (n->m_flags & M_PKTHDR) 918 m_move_pkthdr(m, n); 919 } 920 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 921 do { 922 count = min(min(max(len, max_protohdr), space), n->m_len); 923 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 924 (u_int)count); 925 len -= count; 926 m->m_len += count; 927 n->m_len -= count; 928 space -= count; 929 if (n->m_len) 930 n->m_data += count; 931 else 932 n = m_free(n); 933 } while (len > 0 && n); 934 if (len > 0) { 935 (void) m_free(m); 936 goto bad; 937 } 938 m->m_next = n; 939 return (m); 940 bad: 941 m_freem(n); 942 return (NULL); 943 } 944 945 /* 946 * Like m_pullup(), except a new mbuf is always allocated, and we allow 947 * the amount of empty space before the data in the new mbuf to be specified 948 * (in the event that the caller expects to prepend later). 949 */ 950 struct mbuf * 951 m_copyup(struct mbuf *n, int len, int dstoff) 952 { 953 struct mbuf *m; 954 int count, space; 955 956 if (len > (MHLEN - dstoff)) 957 goto bad; 958 m = m_get(M_NOWAIT, n->m_type); 959 if (m == NULL) 960 goto bad; 961 if (n->m_flags & M_PKTHDR) 962 m_move_pkthdr(m, n); 963 m->m_data += dstoff; 964 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 965 do { 966 count = min(min(max(len, max_protohdr), space), n->m_len); 967 memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t), 968 (unsigned)count); 969 len -= count; 970 m->m_len += count; 971 n->m_len -= count; 972 space -= count; 973 if (n->m_len) 974 n->m_data += count; 975 else 976 n = m_free(n); 977 } while (len > 0 && n); 978 if (len > 0) { 979 (void) m_free(m); 980 goto bad; 981 } 982 m->m_next = n; 983 return (m); 984 bad: 985 m_freem(n); 986 return (NULL); 987 } 988 989 /* 990 * Partition an mbuf chain in two pieces, returning the tail -- 991 * all but the first len0 bytes. In case of failure, it returns NULL and 992 * attempts to restore the chain to its original state. 993 * 994 * Note that the resulting mbufs might be read-only, because the new 995 * mbuf can end up sharing an mbuf cluster with the original mbuf if 996 * the "breaking point" happens to lie within a cluster mbuf. Use the 997 * M_WRITABLE() macro to check for this case. 998 */ 999 struct mbuf * 1000 m_split(struct mbuf *m0, int len0, int wait) 1001 { 1002 struct mbuf *m, *n; 1003 u_int len = len0, remain; 1004 1005 MBUF_CHECKSLEEP(wait); 1006 for (m = m0; m && len > m->m_len; m = m->m_next) 1007 len -= m->m_len; 1008 if (m == NULL) 1009 return (NULL); 1010 remain = m->m_len - len; 1011 if (m0->m_flags & M_PKTHDR && remain == 0) { 1012 n = m_gethdr(wait, m0->m_type); 1013 if (n == NULL) 1014 return (NULL); 1015 n->m_next = m->m_next; 1016 m->m_next = NULL; 1017 if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) { 1018 n->m_pkthdr.snd_tag = 1019 m_snd_tag_ref(m0->m_pkthdr.snd_tag); 1020 n->m_pkthdr.csum_flags |= CSUM_SND_TAG; 1021 } else 1022 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; 1023 n->m_pkthdr.len = m0->m_pkthdr.len - len0; 1024 m0->m_pkthdr.len = len0; 1025 return (n); 1026 } else if (m0->m_flags & M_PKTHDR) { 1027 n = m_gethdr(wait, m0->m_type); 1028 if (n == NULL) 1029 return (NULL); 1030 if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) { 1031 n->m_pkthdr.snd_tag = 1032 m_snd_tag_ref(m0->m_pkthdr.snd_tag); 1033 n->m_pkthdr.csum_flags |= CSUM_SND_TAG; 1034 } else 1035 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; 1036 n->m_pkthdr.len = m0->m_pkthdr.len - len0; 1037 m0->m_pkthdr.len = len0; 1038 if (m->m_flags & (M_EXT|M_EXTPG)) 1039 goto extpacket; 1040 if (remain > MHLEN) { 1041 /* m can't be the lead packet */ 1042 M_ALIGN(n, 0); 1043 n->m_next = m_split(m, len, wait); 1044 if (n->m_next == NULL) { 1045 (void) m_free(n); 1046 return (NULL); 1047 } else { 1048 n->m_len = 0; 1049 return (n); 1050 } 1051 } else 1052 M_ALIGN(n, remain); 1053 } else if (remain == 0) { 1054 n = m->m_next; 1055 m->m_next = NULL; 1056 return (n); 1057 } else { 1058 n = m_get(wait, m->m_type); 1059 if (n == NULL) 1060 return (NULL); 1061 M_ALIGN(n, remain); 1062 } 1063 extpacket: 1064 if (m->m_flags & (M_EXT|M_EXTPG)) { 1065 n->m_data = m->m_data + len; 1066 mb_dupcl(n, m); 1067 } else { 1068 bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain); 1069 } 1070 n->m_len = remain; 1071 m->m_len = len; 1072 n->m_next = m->m_next; 1073 m->m_next = NULL; 1074 return (n); 1075 } 1076 /* 1077 * Routine to copy from device local memory into mbufs. 1078 * Note that `off' argument is offset into first mbuf of target chain from 1079 * which to begin copying the data to. 1080 */ 1081 struct mbuf * 1082 m_devget(char *buf, int totlen, int off, struct ifnet *ifp, 1083 void (*copy)(char *from, caddr_t to, u_int len)) 1084 { 1085 struct mbuf *m; 1086 struct mbuf *top = NULL, **mp = ⊤ 1087 int len; 1088 1089 if (off < 0 || off > MHLEN) 1090 return (NULL); 1091 1092 while (totlen > 0) { 1093 if (top == NULL) { /* First one, must be PKTHDR */ 1094 if (totlen + off >= MINCLSIZE) { 1095 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1096 len = MCLBYTES; 1097 } else { 1098 m = m_gethdr(M_NOWAIT, MT_DATA); 1099 len = MHLEN; 1100 1101 /* Place initial small packet/header at end of mbuf */ 1102 if (m && totlen + off + max_linkhdr <= MHLEN) { 1103 m->m_data += max_linkhdr; 1104 len -= max_linkhdr; 1105 } 1106 } 1107 if (m == NULL) 1108 return NULL; 1109 m->m_pkthdr.rcvif = ifp; 1110 m->m_pkthdr.len = totlen; 1111 } else { 1112 if (totlen + off >= MINCLSIZE) { 1113 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1114 len = MCLBYTES; 1115 } else { 1116 m = m_get(M_NOWAIT, MT_DATA); 1117 len = MLEN; 1118 } 1119 if (m == NULL) { 1120 m_freem(top); 1121 return NULL; 1122 } 1123 } 1124 if (off) { 1125 m->m_data += off; 1126 len -= off; 1127 off = 0; 1128 } 1129 m->m_len = len = min(totlen, len); 1130 if (copy) 1131 copy(buf, mtod(m, caddr_t), (u_int)len); 1132 else 1133 bcopy(buf, mtod(m, caddr_t), (u_int)len); 1134 buf += len; 1135 *mp = m; 1136 mp = &m->m_next; 1137 totlen -= len; 1138 } 1139 return (top); 1140 } 1141 1142 /* 1143 * Copy data from a buffer back into the indicated mbuf chain, 1144 * starting "off" bytes from the beginning, extending the mbuf 1145 * chain if necessary. 1146 */ 1147 void 1148 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp) 1149 { 1150 int mlen; 1151 struct mbuf *m = m0, *n; 1152 int totlen = 0; 1153 1154 if (m0 == NULL) 1155 return; 1156 while (off > (mlen = m->m_len)) { 1157 off -= mlen; 1158 totlen += mlen; 1159 if (m->m_next == NULL) { 1160 n = m_get(M_NOWAIT, m->m_type); 1161 if (n == NULL) 1162 goto out; 1163 bzero(mtod(n, caddr_t), MLEN); 1164 n->m_len = min(MLEN, len + off); 1165 m->m_next = n; 1166 } 1167 m = m->m_next; 1168 } 1169 while (len > 0) { 1170 if (m->m_next == NULL && (len > m->m_len - off)) { 1171 m->m_len += min(len - (m->m_len - off), 1172 M_TRAILINGSPACE(m)); 1173 } 1174 mlen = min (m->m_len - off, len); 1175 bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen); 1176 cp += mlen; 1177 len -= mlen; 1178 mlen += off; 1179 off = 0; 1180 totlen += mlen; 1181 if (len == 0) 1182 break; 1183 if (m->m_next == NULL) { 1184 n = m_get(M_NOWAIT, m->m_type); 1185 if (n == NULL) 1186 break; 1187 n->m_len = min(MLEN, len); 1188 m->m_next = n; 1189 } 1190 m = m->m_next; 1191 } 1192 out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) 1193 m->m_pkthdr.len = totlen; 1194 } 1195 1196 /* 1197 * Append the specified data to the indicated mbuf chain, 1198 * Extend the mbuf chain if the new data does not fit in 1199 * existing space. 1200 * 1201 * Return 1 if able to complete the job; otherwise 0. 1202 */ 1203 int 1204 m_append(struct mbuf *m0, int len, c_caddr_t cp) 1205 { 1206 struct mbuf *m, *n; 1207 int remainder, space; 1208 1209 for (m = m0; m->m_next != NULL; m = m->m_next) 1210 ; 1211 remainder = len; 1212 space = M_TRAILINGSPACE(m); 1213 if (space > 0) { 1214 /* 1215 * Copy into available space. 1216 */ 1217 if (space > remainder) 1218 space = remainder; 1219 bcopy(cp, mtod(m, caddr_t) + m->m_len, space); 1220 m->m_len += space; 1221 cp += space, remainder -= space; 1222 } 1223 while (remainder > 0) { 1224 /* 1225 * Allocate a new mbuf; could check space 1226 * and allocate a cluster instead. 1227 */ 1228 n = m_get(M_NOWAIT, m->m_type); 1229 if (n == NULL) 1230 break; 1231 n->m_len = min(MLEN, remainder); 1232 bcopy(cp, mtod(n, caddr_t), n->m_len); 1233 cp += n->m_len, remainder -= n->m_len; 1234 m->m_next = n; 1235 m = n; 1236 } 1237 if (m0->m_flags & M_PKTHDR) 1238 m0->m_pkthdr.len += len - remainder; 1239 return (remainder == 0); 1240 } 1241 1242 /* 1243 * Apply function f to the data in an mbuf chain starting "off" bytes from 1244 * the beginning, continuing for "len" bytes. 1245 */ 1246 int 1247 m_apply(struct mbuf *m, int off, int len, 1248 int (*f)(void *, void *, u_int), void *arg) 1249 { 1250 u_int count; 1251 int rval; 1252 1253 KASSERT(off >= 0, ("m_apply, negative off %d", off)); 1254 KASSERT(len >= 0, ("m_apply, negative len %d", len)); 1255 while (off > 0) { 1256 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1257 if (off < m->m_len) 1258 break; 1259 off -= m->m_len; 1260 m = m->m_next; 1261 } 1262 while (len > 0) { 1263 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1264 count = min(m->m_len - off, len); 1265 rval = (*f)(arg, mtod(m, caddr_t) + off, count); 1266 if (rval) 1267 return (rval); 1268 len -= count; 1269 off = 0; 1270 m = m->m_next; 1271 } 1272 return (0); 1273 } 1274 1275 /* 1276 * Return a pointer to mbuf/offset of location in mbuf chain. 1277 */ 1278 struct mbuf * 1279 m_getptr(struct mbuf *m, int loc, int *off) 1280 { 1281 1282 while (loc >= 0) { 1283 /* Normal end of search. */ 1284 if (m->m_len > loc) { 1285 *off = loc; 1286 return (m); 1287 } else { 1288 loc -= m->m_len; 1289 if (m->m_next == NULL) { 1290 if (loc == 0) { 1291 /* Point at the end of valid data. */ 1292 *off = m->m_len; 1293 return (m); 1294 } 1295 return (NULL); 1296 } 1297 m = m->m_next; 1298 } 1299 } 1300 return (NULL); 1301 } 1302 1303 void 1304 m_print(const struct mbuf *m, int maxlen) 1305 { 1306 int len; 1307 int pdata; 1308 const struct mbuf *m2; 1309 1310 if (m == NULL) { 1311 printf("mbuf: %p\n", m); 1312 return; 1313 } 1314 1315 if (m->m_flags & M_PKTHDR) 1316 len = m->m_pkthdr.len; 1317 else 1318 len = -1; 1319 m2 = m; 1320 while (m2 != NULL && (len == -1 || len)) { 1321 pdata = m2->m_len; 1322 if (maxlen != -1 && pdata > maxlen) 1323 pdata = maxlen; 1324 printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len, 1325 m2->m_next, m2->m_flags, "\20\20freelist\17skipfw" 1326 "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly" 1327 "\3eor\2pkthdr\1ext", pdata ? "" : "\n"); 1328 if (pdata) 1329 printf(", %*D\n", pdata, (u_char *)m2->m_data, "-"); 1330 if (len != -1) 1331 len -= m2->m_len; 1332 m2 = m2->m_next; 1333 } 1334 if (len > 0) 1335 printf("%d bytes unaccounted for.\n", len); 1336 return; 1337 } 1338 1339 u_int 1340 m_fixhdr(struct mbuf *m0) 1341 { 1342 u_int len; 1343 1344 len = m_length(m0, NULL); 1345 m0->m_pkthdr.len = len; 1346 return (len); 1347 } 1348 1349 u_int 1350 m_length(struct mbuf *m0, struct mbuf **last) 1351 { 1352 struct mbuf *m; 1353 u_int len; 1354 1355 len = 0; 1356 for (m = m0; m != NULL; m = m->m_next) { 1357 len += m->m_len; 1358 if (m->m_next == NULL) 1359 break; 1360 } 1361 if (last != NULL) 1362 *last = m; 1363 return (len); 1364 } 1365 1366 /* 1367 * Defragment a mbuf chain, returning the shortest possible 1368 * chain of mbufs and clusters. If allocation fails and 1369 * this cannot be completed, NULL will be returned, but 1370 * the passed in chain will be unchanged. Upon success, 1371 * the original chain will be freed, and the new chain 1372 * will be returned. 1373 * 1374 * If a non-packet header is passed in, the original 1375 * mbuf (chain?) will be returned unharmed. 1376 */ 1377 struct mbuf * 1378 m_defrag(struct mbuf *m0, int how) 1379 { 1380 struct mbuf *m_new = NULL, *m_final = NULL; 1381 int progress = 0, length; 1382 1383 MBUF_CHECKSLEEP(how); 1384 if (!(m0->m_flags & M_PKTHDR)) 1385 return (m0); 1386 1387 m_fixhdr(m0); /* Needed sanity check */ 1388 1389 #ifdef MBUF_STRESS_TEST 1390 if (m_defragrandomfailures) { 1391 int temp = arc4random() & 0xff; 1392 if (temp == 0xba) 1393 goto nospace; 1394 } 1395 #endif 1396 1397 if (m0->m_pkthdr.len > MHLEN) 1398 m_final = m_getcl(how, MT_DATA, M_PKTHDR); 1399 else 1400 m_final = m_gethdr(how, MT_DATA); 1401 1402 if (m_final == NULL) 1403 goto nospace; 1404 1405 if (m_dup_pkthdr(m_final, m0, how) == 0) 1406 goto nospace; 1407 1408 m_new = m_final; 1409 1410 while (progress < m0->m_pkthdr.len) { 1411 length = m0->m_pkthdr.len - progress; 1412 if (length > MCLBYTES) 1413 length = MCLBYTES; 1414 1415 if (m_new == NULL) { 1416 if (length > MLEN) 1417 m_new = m_getcl(how, MT_DATA, 0); 1418 else 1419 m_new = m_get(how, MT_DATA); 1420 if (m_new == NULL) 1421 goto nospace; 1422 } 1423 1424 m_copydata(m0, progress, length, mtod(m_new, caddr_t)); 1425 progress += length; 1426 m_new->m_len = length; 1427 if (m_new != m_final) 1428 m_cat(m_final, m_new); 1429 m_new = NULL; 1430 } 1431 #ifdef MBUF_STRESS_TEST 1432 if (m0->m_next == NULL) 1433 m_defraguseless++; 1434 #endif 1435 m_freem(m0); 1436 m0 = m_final; 1437 #ifdef MBUF_STRESS_TEST 1438 m_defragpackets++; 1439 m_defragbytes += m0->m_pkthdr.len; 1440 #endif 1441 return (m0); 1442 nospace: 1443 #ifdef MBUF_STRESS_TEST 1444 m_defragfailure++; 1445 #endif 1446 if (m_final) 1447 m_freem(m_final); 1448 return (NULL); 1449 } 1450 1451 /* 1452 * Return the number of fragments an mbuf will use. This is usually 1453 * used as a proxy for the number of scatter/gather elements needed by 1454 * a DMA engine to access an mbuf. In general mapped mbufs are 1455 * assumed to be backed by physically contiguous buffers that only 1456 * need a single fragment. Unmapped mbufs, on the other hand, can 1457 * span disjoint physical pages. 1458 */ 1459 static int 1460 frags_per_mbuf(struct mbuf *m) 1461 { 1462 int frags; 1463 1464 if ((m->m_flags & M_EXTPG) == 0) 1465 return (1); 1466 1467 /* 1468 * The header and trailer are counted as a single fragment 1469 * each when present. 1470 * 1471 * XXX: This overestimates the number of fragments by assuming 1472 * all the backing physical pages are disjoint. 1473 */ 1474 frags = 0; 1475 if (m->m_epg_hdrlen != 0) 1476 frags++; 1477 frags += m->m_epg_npgs; 1478 if (m->m_epg_trllen != 0) 1479 frags++; 1480 1481 return (frags); 1482 } 1483 1484 /* 1485 * Defragment an mbuf chain, returning at most maxfrags separate 1486 * mbufs+clusters. If this is not possible NULL is returned and 1487 * the original mbuf chain is left in its present (potentially 1488 * modified) state. We use two techniques: collapsing consecutive 1489 * mbufs and replacing consecutive mbufs by a cluster. 1490 * 1491 * NB: this should really be named m_defrag but that name is taken 1492 */ 1493 struct mbuf * 1494 m_collapse(struct mbuf *m0, int how, int maxfrags) 1495 { 1496 struct mbuf *m, *n, *n2, **prev; 1497 u_int curfrags; 1498 1499 /* 1500 * Calculate the current number of frags. 1501 */ 1502 curfrags = 0; 1503 for (m = m0; m != NULL; m = m->m_next) 1504 curfrags += frags_per_mbuf(m); 1505 /* 1506 * First, try to collapse mbufs. Note that we always collapse 1507 * towards the front so we don't need to deal with moving the 1508 * pkthdr. This may be suboptimal if the first mbuf has much 1509 * less data than the following. 1510 */ 1511 m = m0; 1512 again: 1513 for (;;) { 1514 n = m->m_next; 1515 if (n == NULL) 1516 break; 1517 if (M_WRITABLE(m) && 1518 n->m_len < M_TRAILINGSPACE(m)) { 1519 m_copydata(n, 0, n->m_len, 1520 mtod(m, char *) + m->m_len); 1521 m->m_len += n->m_len; 1522 m->m_next = n->m_next; 1523 curfrags -= frags_per_mbuf(n); 1524 m_free(n); 1525 if (curfrags <= maxfrags) 1526 return m0; 1527 } else 1528 m = n; 1529 } 1530 KASSERT(maxfrags > 1, 1531 ("maxfrags %u, but normal collapse failed", maxfrags)); 1532 /* 1533 * Collapse consecutive mbufs to a cluster. 1534 */ 1535 prev = &m0->m_next; /* NB: not the first mbuf */ 1536 while ((n = *prev) != NULL) { 1537 if ((n2 = n->m_next) != NULL && 1538 n->m_len + n2->m_len < MCLBYTES) { 1539 m = m_getcl(how, MT_DATA, 0); 1540 if (m == NULL) 1541 goto bad; 1542 m_copydata(n, 0, n->m_len, mtod(m, char *)); 1543 m_copydata(n2, 0, n2->m_len, 1544 mtod(m, char *) + n->m_len); 1545 m->m_len = n->m_len + n2->m_len; 1546 m->m_next = n2->m_next; 1547 *prev = m; 1548 curfrags += 1; /* For the new cluster */ 1549 curfrags -= frags_per_mbuf(n); 1550 curfrags -= frags_per_mbuf(n2); 1551 m_free(n); 1552 m_free(n2); 1553 if (curfrags <= maxfrags) 1554 return m0; 1555 /* 1556 * Still not there, try the normal collapse 1557 * again before we allocate another cluster. 1558 */ 1559 goto again; 1560 } 1561 prev = &n->m_next; 1562 } 1563 /* 1564 * No place where we can collapse to a cluster; punt. 1565 * This can occur if, for example, you request 2 frags 1566 * but the packet requires that both be clusters (we 1567 * never reallocate the first mbuf to avoid moving the 1568 * packet header). 1569 */ 1570 bad: 1571 return NULL; 1572 } 1573 1574 #ifdef MBUF_STRESS_TEST 1575 1576 /* 1577 * Fragment an mbuf chain. There's no reason you'd ever want to do 1578 * this in normal usage, but it's great for stress testing various 1579 * mbuf consumers. 1580 * 1581 * If fragmentation is not possible, the original chain will be 1582 * returned. 1583 * 1584 * Possible length values: 1585 * 0 no fragmentation will occur 1586 * > 0 each fragment will be of the specified length 1587 * -1 each fragment will be the same random value in length 1588 * -2 each fragment's length will be entirely random 1589 * (Random values range from 1 to 256) 1590 */ 1591 struct mbuf * 1592 m_fragment(struct mbuf *m0, int how, int length) 1593 { 1594 struct mbuf *m_first, *m_last; 1595 int divisor = 255, progress = 0, fraglen; 1596 1597 if (!(m0->m_flags & M_PKTHDR)) 1598 return (m0); 1599 1600 if (length == 0 || length < -2) 1601 return (m0); 1602 if (length > MCLBYTES) 1603 length = MCLBYTES; 1604 if (length < 0 && divisor > MCLBYTES) 1605 divisor = MCLBYTES; 1606 if (length == -1) 1607 length = 1 + (arc4random() % divisor); 1608 if (length > 0) 1609 fraglen = length; 1610 1611 m_fixhdr(m0); /* Needed sanity check */ 1612 1613 m_first = m_getcl(how, MT_DATA, M_PKTHDR); 1614 if (m_first == NULL) 1615 goto nospace; 1616 1617 if (m_dup_pkthdr(m_first, m0, how) == 0) 1618 goto nospace; 1619 1620 m_last = m_first; 1621 1622 while (progress < m0->m_pkthdr.len) { 1623 if (length == -2) 1624 fraglen = 1 + (arc4random() % divisor); 1625 if (fraglen > m0->m_pkthdr.len - progress) 1626 fraglen = m0->m_pkthdr.len - progress; 1627 1628 if (progress != 0) { 1629 struct mbuf *m_new = m_getcl(how, MT_DATA, 0); 1630 if (m_new == NULL) 1631 goto nospace; 1632 1633 m_last->m_next = m_new; 1634 m_last = m_new; 1635 } 1636 1637 m_copydata(m0, progress, fraglen, mtod(m_last, caddr_t)); 1638 progress += fraglen; 1639 m_last->m_len = fraglen; 1640 } 1641 m_freem(m0); 1642 m0 = m_first; 1643 return (m0); 1644 nospace: 1645 if (m_first) 1646 m_freem(m_first); 1647 /* Return the original chain on failure */ 1648 return (m0); 1649 } 1650 1651 #endif 1652 1653 /* 1654 * Free pages from mbuf_ext_pgs, assuming they were allocated via 1655 * vm_page_alloc() and aren't associated with any object. Complement 1656 * to allocator from m_uiotombuf_nomap(). 1657 */ 1658 void 1659 mb_free_mext_pgs(struct mbuf *m) 1660 { 1661 vm_page_t pg; 1662 1663 M_ASSERTEXTPG(m); 1664 for (int i = 0; i < m->m_epg_npgs; i++) { 1665 pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]); 1666 vm_page_unwire_noq(pg); 1667 vm_page_free(pg); 1668 } 1669 } 1670 1671 static struct mbuf * 1672 m_uiotombuf_nomap(struct uio *uio, int how, int len, int maxseg, int flags) 1673 { 1674 struct mbuf *m, *mb, *prev; 1675 vm_page_t pg_array[MBUF_PEXT_MAX_PGS]; 1676 int error, length, i, needed; 1677 ssize_t total; 1678 int pflags = malloc2vm_flags(how) | VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | 1679 VM_ALLOC_WIRED; 1680 1681 MPASS((flags & M_PKTHDR) == 0); 1682 MPASS((how & M_ZERO) == 0); 1683 1684 /* 1685 * len can be zero or an arbitrary large value bound by 1686 * the total data supplied by the uio. 1687 */ 1688 if (len > 0) 1689 total = MIN(uio->uio_resid, len); 1690 else 1691 total = uio->uio_resid; 1692 1693 if (maxseg == 0) 1694 maxseg = MBUF_PEXT_MAX_PGS * PAGE_SIZE; 1695 1696 /* 1697 * If total is zero, return an empty mbuf. This can occur 1698 * for TLS 1.0 connections which send empty fragments as 1699 * a countermeasure against the known-IV weakness in CBC 1700 * ciphersuites. 1701 */ 1702 if (__predict_false(total == 0)) { 1703 mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs); 1704 if (mb == NULL) 1705 return (NULL); 1706 mb->m_epg_flags = EPG_FLAG_ANON; 1707 return (mb); 1708 } 1709 1710 /* 1711 * Allocate the pages 1712 */ 1713 m = NULL; 1714 while (total > 0) { 1715 mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs); 1716 if (mb == NULL) 1717 goto failed; 1718 if (m == NULL) 1719 m = mb; 1720 else 1721 prev->m_next = mb; 1722 prev = mb; 1723 mb->m_epg_flags = EPG_FLAG_ANON; 1724 needed = length = MIN(maxseg, total); 1725 for (i = 0; needed > 0; i++, needed -= PAGE_SIZE) { 1726 retry_page: 1727 pg_array[i] = vm_page_alloc(NULL, 0, pflags); 1728 if (pg_array[i] == NULL) { 1729 if (how & M_NOWAIT) { 1730 goto failed; 1731 } else { 1732 vm_wait(NULL); 1733 goto retry_page; 1734 } 1735 } 1736 mb->m_epg_pa[i] = VM_PAGE_TO_PHYS(pg_array[i]); 1737 mb->m_epg_npgs++; 1738 } 1739 mb->m_epg_last_len = length - PAGE_SIZE * (mb->m_epg_npgs - 1); 1740 MBUF_EXT_PGS_ASSERT_SANITY(mb); 1741 total -= length; 1742 error = uiomove_fromphys(pg_array, 0, length, uio); 1743 if (error != 0) 1744 goto failed; 1745 mb->m_len = length; 1746 mb->m_ext.ext_size += PAGE_SIZE * mb->m_epg_npgs; 1747 if (flags & M_PKTHDR) 1748 m->m_pkthdr.len += length; 1749 } 1750 return (m); 1751 1752 failed: 1753 m_freem(m); 1754 return (NULL); 1755 } 1756 1757 /* 1758 * Copy the contents of uio into a properly sized mbuf chain. 1759 */ 1760 struct mbuf * 1761 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags) 1762 { 1763 struct mbuf *m, *mb; 1764 int error, length; 1765 ssize_t total; 1766 int progress = 0; 1767 1768 if (flags & M_EXTPG) 1769 return (m_uiotombuf_nomap(uio, how, len, align, flags)); 1770 1771 /* 1772 * len can be zero or an arbitrary large value bound by 1773 * the total data supplied by the uio. 1774 */ 1775 if (len > 0) 1776 total = (uio->uio_resid < len) ? uio->uio_resid : len; 1777 else 1778 total = uio->uio_resid; 1779 1780 /* 1781 * The smallest unit returned by m_getm2() is a single mbuf 1782 * with pkthdr. We can't align past it. 1783 */ 1784 if (align >= MHLEN) 1785 return (NULL); 1786 1787 /* 1788 * Give us the full allocation or nothing. 1789 * If len is zero return the smallest empty mbuf. 1790 */ 1791 m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags); 1792 if (m == NULL) 1793 return (NULL); 1794 m->m_data += align; 1795 1796 /* Fill all mbufs with uio data and update header information. */ 1797 for (mb = m; mb != NULL; mb = mb->m_next) { 1798 length = min(M_TRAILINGSPACE(mb), total - progress); 1799 1800 error = uiomove(mtod(mb, void *), length, uio); 1801 if (error) { 1802 m_freem(m); 1803 return (NULL); 1804 } 1805 1806 mb->m_len = length; 1807 progress += length; 1808 if (flags & M_PKTHDR) 1809 m->m_pkthdr.len += length; 1810 } 1811 KASSERT(progress == total, ("%s: progress != total", __func__)); 1812 1813 return (m); 1814 } 1815 1816 /* 1817 * Copy data from an unmapped mbuf into a uio limited by len if set. 1818 */ 1819 int 1820 m_unmappedtouio(const struct mbuf *m, int m_off, struct uio *uio, int len) 1821 { 1822 vm_page_t pg; 1823 int error, i, off, pglen, pgoff, seglen, segoff; 1824 1825 M_ASSERTEXTPG(m); 1826 error = 0; 1827 1828 /* Skip over any data removed from the front. */ 1829 off = mtod(m, vm_offset_t); 1830 1831 off += m_off; 1832 if (m->m_epg_hdrlen != 0) { 1833 if (off >= m->m_epg_hdrlen) { 1834 off -= m->m_epg_hdrlen; 1835 } else { 1836 seglen = m->m_epg_hdrlen - off; 1837 segoff = off; 1838 seglen = min(seglen, len); 1839 off = 0; 1840 len -= seglen; 1841 error = uiomove(__DECONST(void *, 1842 &m->m_epg_hdr[segoff]), seglen, uio); 1843 } 1844 } 1845 pgoff = m->m_epg_1st_off; 1846 for (i = 0; i < m->m_epg_npgs && error == 0 && len > 0; i++) { 1847 pglen = m_epg_pagelen(m, i, pgoff); 1848 if (off >= pglen) { 1849 off -= pglen; 1850 pgoff = 0; 1851 continue; 1852 } 1853 seglen = pglen - off; 1854 segoff = pgoff + off; 1855 off = 0; 1856 seglen = min(seglen, len); 1857 len -= seglen; 1858 pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]); 1859 error = uiomove_fromphys(&pg, segoff, seglen, uio); 1860 pgoff = 0; 1861 }; 1862 if (len != 0 && error == 0) { 1863 KASSERT((off + len) <= m->m_epg_trllen, 1864 ("off + len > trail (%d + %d > %d, m_off = %d)", off, len, 1865 m->m_epg_trllen, m_off)); 1866 error = uiomove(__DECONST(void *, &m->m_epg_trail[off]), 1867 len, uio); 1868 } 1869 return (error); 1870 } 1871 1872 /* 1873 * Copy an mbuf chain into a uio limited by len if set. 1874 */ 1875 int 1876 m_mbuftouio(struct uio *uio, const struct mbuf *m, int len) 1877 { 1878 int error, length, total; 1879 int progress = 0; 1880 1881 if (len > 0) 1882 total = min(uio->uio_resid, len); 1883 else 1884 total = uio->uio_resid; 1885 1886 /* Fill the uio with data from the mbufs. */ 1887 for (; m != NULL; m = m->m_next) { 1888 length = min(m->m_len, total - progress); 1889 1890 if ((m->m_flags & M_EXTPG) != 0) 1891 error = m_unmappedtouio(m, 0, uio, length); 1892 else 1893 error = uiomove(mtod(m, void *), length, uio); 1894 if (error) 1895 return (error); 1896 1897 progress += length; 1898 } 1899 1900 return (0); 1901 } 1902 1903 /* 1904 * Create a writable copy of the mbuf chain. While doing this 1905 * we compact the chain with a goal of producing a chain with 1906 * at most two mbufs. The second mbuf in this chain is likely 1907 * to be a cluster. The primary purpose of this work is to create 1908 * a writable packet for encryption, compression, etc. The 1909 * secondary goal is to linearize the data so the data can be 1910 * passed to crypto hardware in the most efficient manner possible. 1911 */ 1912 struct mbuf * 1913 m_unshare(struct mbuf *m0, int how) 1914 { 1915 struct mbuf *m, *mprev; 1916 struct mbuf *n, *mfirst, *mlast; 1917 int len, off; 1918 1919 mprev = NULL; 1920 for (m = m0; m != NULL; m = mprev->m_next) { 1921 /* 1922 * Regular mbufs are ignored unless there's a cluster 1923 * in front of it that we can use to coalesce. We do 1924 * the latter mainly so later clusters can be coalesced 1925 * also w/o having to handle them specially (i.e. convert 1926 * mbuf+cluster -> cluster). This optimization is heavily 1927 * influenced by the assumption that we're running over 1928 * Ethernet where MCLBYTES is large enough that the max 1929 * packet size will permit lots of coalescing into a 1930 * single cluster. This in turn permits efficient 1931 * crypto operations, especially when using hardware. 1932 */ 1933 if ((m->m_flags & M_EXT) == 0) { 1934 if (mprev && (mprev->m_flags & M_EXT) && 1935 m->m_len <= M_TRAILINGSPACE(mprev)) { 1936 /* XXX: this ignores mbuf types */ 1937 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 1938 mtod(m, caddr_t), m->m_len); 1939 mprev->m_len += m->m_len; 1940 mprev->m_next = m->m_next; /* unlink from chain */ 1941 m_free(m); /* reclaim mbuf */ 1942 } else { 1943 mprev = m; 1944 } 1945 continue; 1946 } 1947 /* 1948 * Writable mbufs are left alone (for now). 1949 */ 1950 if (M_WRITABLE(m)) { 1951 mprev = m; 1952 continue; 1953 } 1954 1955 /* 1956 * Not writable, replace with a copy or coalesce with 1957 * the previous mbuf if possible (since we have to copy 1958 * it anyway, we try to reduce the number of mbufs and 1959 * clusters so that future work is easier). 1960 */ 1961 KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags)); 1962 /* NB: we only coalesce into a cluster or larger */ 1963 if (mprev != NULL && (mprev->m_flags & M_EXT) && 1964 m->m_len <= M_TRAILINGSPACE(mprev)) { 1965 /* XXX: this ignores mbuf types */ 1966 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 1967 mtod(m, caddr_t), m->m_len); 1968 mprev->m_len += m->m_len; 1969 mprev->m_next = m->m_next; /* unlink from chain */ 1970 m_free(m); /* reclaim mbuf */ 1971 continue; 1972 } 1973 1974 /* 1975 * Allocate new space to hold the copy and copy the data. 1976 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by 1977 * splitting them into clusters. We could just malloc a 1978 * buffer and make it external but too many device drivers 1979 * don't know how to break up the non-contiguous memory when 1980 * doing DMA. 1981 */ 1982 n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS); 1983 if (n == NULL) { 1984 m_freem(m0); 1985 return (NULL); 1986 } 1987 if (m->m_flags & M_PKTHDR) { 1988 KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR", 1989 __func__, m0, m)); 1990 m_move_pkthdr(n, m); 1991 } 1992 len = m->m_len; 1993 off = 0; 1994 mfirst = n; 1995 mlast = NULL; 1996 for (;;) { 1997 int cc = min(len, MCLBYTES); 1998 memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc); 1999 n->m_len = cc; 2000 if (mlast != NULL) 2001 mlast->m_next = n; 2002 mlast = n; 2003 #if 0 2004 newipsecstat.ips_clcopied++; 2005 #endif 2006 2007 len -= cc; 2008 if (len <= 0) 2009 break; 2010 off += cc; 2011 2012 n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS); 2013 if (n == NULL) { 2014 m_freem(mfirst); 2015 m_freem(m0); 2016 return (NULL); 2017 } 2018 } 2019 n->m_next = m->m_next; 2020 if (mprev == NULL) 2021 m0 = mfirst; /* new head of chain */ 2022 else 2023 mprev->m_next = mfirst; /* replace old mbuf */ 2024 m_free(m); /* release old mbuf */ 2025 mprev = mfirst; 2026 } 2027 return (m0); 2028 } 2029 2030 #ifdef MBUF_PROFILING 2031 2032 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/ 2033 struct mbufprofile { 2034 uintmax_t wasted[MP_BUCKETS]; 2035 uintmax_t used[MP_BUCKETS]; 2036 uintmax_t segments[MP_BUCKETS]; 2037 } mbprof; 2038 2039 #define MP_MAXDIGITS 21 /* strlen("16,000,000,000,000,000,000") == 21 */ 2040 #define MP_NUMLINES 6 2041 #define MP_NUMSPERLINE 16 2042 #define MP_EXTRABYTES 64 /* > strlen("used:\nwasted:\nsegments:\n") */ 2043 /* work out max space needed and add a bit of spare space too */ 2044 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE) 2045 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES) 2046 2047 char mbprofbuf[MP_BUFSIZE]; 2048 2049 void 2050 m_profile(struct mbuf *m) 2051 { 2052 int segments = 0; 2053 int used = 0; 2054 int wasted = 0; 2055 2056 while (m) { 2057 segments++; 2058 used += m->m_len; 2059 if (m->m_flags & M_EXT) { 2060 wasted += MHLEN - sizeof(m->m_ext) + 2061 m->m_ext.ext_size - m->m_len; 2062 } else { 2063 if (m->m_flags & M_PKTHDR) 2064 wasted += MHLEN - m->m_len; 2065 else 2066 wasted += MLEN - m->m_len; 2067 } 2068 m = m->m_next; 2069 } 2070 /* be paranoid.. it helps */ 2071 if (segments > MP_BUCKETS - 1) 2072 segments = MP_BUCKETS - 1; 2073 if (used > 100000) 2074 used = 100000; 2075 if (wasted > 100000) 2076 wasted = 100000; 2077 /* store in the appropriate bucket */ 2078 /* don't bother locking. if it's slightly off, so what? */ 2079 mbprof.segments[segments]++; 2080 mbprof.used[fls(used)]++; 2081 mbprof.wasted[fls(wasted)]++; 2082 } 2083 2084 static void 2085 mbprof_textify(void) 2086 { 2087 int offset; 2088 char *c; 2089 uint64_t *p; 2090 2091 p = &mbprof.wasted[0]; 2092 c = mbprofbuf; 2093 offset = snprintf(c, MP_MAXLINE + 10, 2094 "wasted:\n" 2095 "%ju %ju %ju %ju %ju %ju %ju %ju " 2096 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2097 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2098 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2099 #ifdef BIG_ARRAY 2100 p = &mbprof.wasted[16]; 2101 c += offset; 2102 offset = snprintf(c, MP_MAXLINE, 2103 "%ju %ju %ju %ju %ju %ju %ju %ju " 2104 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2105 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2106 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2107 #endif 2108 p = &mbprof.used[0]; 2109 c += offset; 2110 offset = snprintf(c, MP_MAXLINE + 10, 2111 "used:\n" 2112 "%ju %ju %ju %ju %ju %ju %ju %ju " 2113 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2114 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2115 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2116 #ifdef BIG_ARRAY 2117 p = &mbprof.used[16]; 2118 c += offset; 2119 offset = snprintf(c, MP_MAXLINE, 2120 "%ju %ju %ju %ju %ju %ju %ju %ju " 2121 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2122 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2123 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2124 #endif 2125 p = &mbprof.segments[0]; 2126 c += offset; 2127 offset = snprintf(c, MP_MAXLINE + 10, 2128 "segments:\n" 2129 "%ju %ju %ju %ju %ju %ju %ju %ju " 2130 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2131 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2132 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2133 #ifdef BIG_ARRAY 2134 p = &mbprof.segments[16]; 2135 c += offset; 2136 offset = snprintf(c, MP_MAXLINE, 2137 "%ju %ju %ju %ju %ju %ju %ju %ju " 2138 "%ju %ju %ju %ju %ju %ju %ju %jju", 2139 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2140 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2141 #endif 2142 } 2143 2144 static int 2145 mbprof_handler(SYSCTL_HANDLER_ARGS) 2146 { 2147 int error; 2148 2149 mbprof_textify(); 2150 error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1); 2151 return (error); 2152 } 2153 2154 static int 2155 mbprof_clr_handler(SYSCTL_HANDLER_ARGS) 2156 { 2157 int clear, error; 2158 2159 clear = 0; 2160 error = sysctl_handle_int(oidp, &clear, 0, req); 2161 if (error || !req->newptr) 2162 return (error); 2163 2164 if (clear) { 2165 bzero(&mbprof, sizeof(mbprof)); 2166 } 2167 2168 return (error); 2169 } 2170 2171 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, 2172 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, NULL, 0, 2173 mbprof_handler, "A", 2174 "mbuf profiling statistics"); 2175 2176 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, 2177 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 2178 mbprof_clr_handler, "I", 2179 "clear mbuf profiling statistics"); 2180 #endif 2181